
On the evaluation complexity of composite

function minimization with applications

to nonconvex nonlinear programming

by C. Cartis, N. I. M. Gould and Ph. L. Toint

Report NAXYS-06-2011 7 February 2011

University of Namur

61, rue de Bruxelles, B5000 Namur (Belgium)

http://www.fundp.ac.be/sciences/naxys

On the evaluation complexity of composite function minimization

with applications to nonconvex nonlinear programming

Coralia Cartis∗, Nicholas I. M. Gould† and Philippe L. Toint‡

May 2, 2011

Abstract

We estimate the worst-case complexity of minimizing an unconstrained, nonconvex com-

posite objective with a structured nonsmooth term by means of some first-order methods. We

find that it is unaffected by the nonsmoothness of the objective in that a first-order trust-region

or quadratic regularization method applied to it takes at most O(ǫ−2) function-evaluations to

reduce the size of a first-order criticality measure below ǫ. Specializing this result to the case

when the composite objective is an exact penalty function allows us to consider the objective-

and constraint-evaluation worst-case complexity of nonconvex equality-constrained optimiza-

tion when the solution is computed using a first-order exact penalty method. We obtain that

in the reasonable case when the penalty parameters are bounded, the complexity of reaching

within ǫ of a KKT point is at most O(ǫ−2) problem-evaluations, which is the same in order

as the function-evaluation complexity of steepest-descent methods applied to unconstrained,

nonconvex smooth optimization.

1 Introduction

We consider the unconstrained minimization of the composite function

Φh(x) := f(x) + h(c(x)), (1.1)

where h : IRm → IR is convex but may be nonsmooth and where f : IRn → IR and c : IRn → IRm

are continuously differentiable throughout the domain of interest but may be nonconvex. We

shall be concerned with estimating the function-evaluation worst-case complexity of solving (1.1)

to approximate first-order optimality from an arbitrary initial guess. We will investigate two

approaches, namely, (first-order) trust-region and quadratic regularization, the latter mindful

of Levenberg-Morrison-Marquardt techniques [15]. If Φh were differentiable, generating an it-

erate within ǫ of a first-order criticality measure for Φh can be achieved in O(ǫ−2) function-

evaluations by steepest descent [11, p.29], by trust-region [4, 8, 9] and quadratic-regularization

techniques [11, p.29], [2]. We show that the order of this bound stays the same for (first-order)

∗School of Mathematics, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, Scotland, UK.

Email: coralia.cartis@ed.ac.uk. All three authors are grateful to the Royal Society for its support through the

International Joint Project 14265.
†Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxford-

shire, OX11 0QX, England, UK. Email: nick.gould@stfc.ac.uk. This work was supported by the EPSRC grant

EP/E053351/1.
‡Department of Mathematics, FUNDP - University of Namur, 61, rue de Bruxelles, B-5000, Namur, Belgium.

Email: philippe.toint@fundp.ac.be.

1

2 C. Cartis, N. I. M. Gould and Ph. L. Toint

trust-region and quadratic regularization when Φh has a nonsmooth component. The worst-case

complexity of minimizing a composite function with a nonsmooth term by gradient methods has

been addressed in [12], but there, the nonsmooth term is assumed to be convex. By contrast,

the nonsmooth term of Φh is here a composition of the convex nonsmooth function h with the

nonconvex smooth vector-valued function c(x). Similarly, the global rate of convergence of solv-

ing a system of nonlinear equations by means of a sharp (potentially nonsmooth) merit function

and quadratic regularization has been investigated in [13]. There, a worst-case bound of order

O(ǫ−2) was obtained for the general nonconvex case, and is then further improved to reflect fast

local convergence in the case of zero-residual problems and uniformly non-degenerate Jacobians.

These results and the proposed quadratic regularization techniques apply directly to instances

(1.1) when f = 0 and h is the Euclidean or some other norm; here, we address a more general

framework by imposing fewer requirements on h than in [13] and allowing the addition of the

objective term f .

An illustrative example of (1.1) is the exact penalty function

Φ(x, ρ) = f(x) + ρ‖c(x)‖, (1.2)

with the penalty parameter ρ > 0 and associated to the equality-constrained optimization prob-

lem

minimize
x∈IRn

f(x) subject to c(x) = 0, (1.3)

where m ≤ n. We can now make use of the above-mentioned algorithms and their complexity

bounds when applied to (1.2) so as to estimate the worst-case problem—that is, objective and

constraints—evaluation complexity of generating an approximate solution of (1.3) by means of an

exact penalty method, noting that each function-evaluation of the penalty function Φ(·, ρ) requires
one evaluation of the objective and constraints of (1.3). To the best of our knowledge, the results

presented here are the first worst-case global evaluation bounds for constrained optimization

when both the objective and the constraints are allowed to be nonconvex.

For approximate optimality for problem (1.3), we are content with getting sufficiently close

to a KKT point of our problem (1.3), namely, to any x∗ satisfying

g(x∗) + J(x∗)
T y∗ = 0 and c(x∗) = 0, (1.4)

for some Lagrange multiplier y∗ ∈ IRm, where g denotes the gradient of f , and J , the Jacobian

of the constraints c. Recall that the KKT points (1.4) of (1.3) correspond to critical points of

(1.2) for sufficiently large ρ provided usual constraint qualifications hold [1, 6, 15]. The exact

penalty algorithm for solving (1.3) proceeds by sequentially minimizing the penalty function

(1.2) using the trust-region or quadratic-regularization approach, and then adaptively increasing

the penalty parameter ρ through a steering procedure [1]. We obtain that when the penalty

parameter is bounded—which is a reasonable assumption since the penalty is exact—the exact

penalty algorithm takes at most O(ǫ−2) total problem-evaluations to satisfy the KKT conditions

(1.4) within ǫ or reach within ǫ of an infeasible (first-order) critical point of the feasibility measure

‖c(x)‖. Otherwise, when the penalty parameter grows unbounded, the algorithm takes at most

O(ǫ−4) total problem-evaluations to satisfy the same approximate optimality conditions.

The above exact penalty approach can be extended to problems that also have finitely-many

inequality constraints, say c(x) ≥ 0, by adding the term ρ‖c−(x)‖ to the expression (1.2) of the

exact penalty function, where c−(x) is defined componentwise as c−(x)
def
= min{ci(x), 0}.

Evaluation complexity of composite functions and nonconvex nonlinear programming 3

The structure of the paper is as follows. Sections 2.1 and 2.2 address the global evaluation-

complexity of minimizing a composite nonconvex function that may have a nonsmooth term,

by employing a first-order trust-region and quadratic regularization method, respectively. Then

by letting the composite function be the exact penalty function (1.2), Section 3.1 connects the

approximate critical points of (1.2) to approximate KKT points of (1.3), while Section 3.2 applies

the complexity results in Section 2 in the context of an exact penalty algorithm for problem

(1.3), to deduce a bound on the worst-case complexity of the latter. We draw our conclusions in

Section 4.

2 Function-evaluation complexity for composite nonsmooth un-

constrained minimization

Let us consider the unconstrained minimization of the general function (1.1), where h may be

nonsmooth. The following assumptions will be required throughout, namely,

AF.1 f, ci ∈ C1(IRn), i ∈ {1, . . . ,m}, (2.1)

and, letting g denote the gradient of f , and J(x), the Jacobian of c at x,

AF.2
g and J are globally Lipchitz continuous on [xk, xk + sk] for all k,

with constants Lg ≥ 1 and LJ , respectively.
(2.2)

Similarly, for h, we assume that

AH.1 h is convex and globally Lipschitz continous, with Lipschitz constant Lh. (2.3)

Note that h being convex implies that h is globally Lipschitz continuous at all required points

(in the results that follow) provided the iterates lie in a bounded set or h is bounded above and

below on IRn [10, pp. 173–174]. In the case of (1.2), h
def
= ρ‖ · ‖ and so AH.1 holds with Lh = ρ.

We consider linearizing the argument of Φh around (any) x to obtain the approximation

l(x, s)
def
= f(x) + g(x)T s+ h(c(x) + J(x)s), s ∈ IRn. (2.4)

An appropriate criticality measure for Φh is the quantity

Ψ(x)
def
= l(x, 0)− min

‖s‖≤1
l(x, s). (2.5)

In particular, following [1,16], Ψ(x) is continuous for all x, and we say that x∗ is a critical point

of Φh if

Ψ(x∗) = 0. (2.6)

Note that other first-order necessary optimality conditions for Φh such as [6, pp. 369] can be

shown to be equivalent to (2.6) [16, Lemma 2.1]. Note also the connection of (2.5) to the criticality

measure for smooth constrained optimization χ(x) in [5, Section 12.1.4] that we employed for the

complexity analysis of cubic regularization variants for convex-constrained problems [3].

We will investigate two techniques, namely, first-order trust-region and quadratic regulariza-

tion for minimizing Φh. These algorithms generate a sequence of iterates {xk} and trial steps

{sk} from a given initial point x0. At each iterate xk, we let

fk
def
= f(xk), gk

def
= g(xk), Jk

def
= J(xk) and Ψk

def
= Ψ(xk).

4 C. Cartis, N. I. M. Gould and Ph. L. Toint

On the basis of (2.6), we will terminate each method as soon as we find an iterate for which

Ψk ≤ ǫ, where ǫ > 0 is a(ny) user-defined accuracy tolerance. We will address the global

function-evaluation complexity of these methods until termination is achieved. Note that each of

the algorithms applied to Φh require one evaluation of Φh per each iteration, or equivalently, one

objective- and constraints-evaluation of problem (1.3), while only the so-called (very) successful

iterations, when the trial step sk is employed in forming the new iterate, evaluate the gradients

of f and c.

2.1 A trust-region approach

Let us now apply a (first-order) trust-region method to minimizing Φh, which is summarized in

Algorithm 2.1. At each iterate k, the trial step sk is computed as the solution of the trust-region

subproblem

min
s∈IRn

l(xk, s) subject to ‖s‖ ≤ ∆k, (2.7)

where l(xk, s) is defined in (2.4). Since h is convex, (2.4) implies that the subproblem (2.7) is also

convex. Thus provided that h is computationally inexpensive to minimize, the cost of computing

sk is acceptable. In particular, if h = ‖ · ‖ is a polyhedral norm, then (2.7) can be solved as

a linear programming problem. Note also that the solution of (2.7) does not require additional

problem evaluations to those already computed for constructing the model (2.4) of Φ.

The radius ∆k is adjusted, and the new iterate constructed, according to standard trust-region

rules based on the value of the ratio rk of the actual function decrease Φh(xk)− Φh(xk + sk) to

the optimal model decrease, namely

Ψ(xk,∆k)
def
= l(xk, 0)− min

‖s‖≤∆k

l(xk, s) = l(xk, 0)− l(xk, sk); (2.8)

note that l(xk, 0) = Φh(xk). Note the connection between the optimality measure (2.5) and the

model decrease (2.8), namely, Ψk = Ψ(xk, 1).

Now, we investigate the function-evaluation complexity of Algorithm 2.1 generating Ψk ≤ ǫ.

Our results follow similarly to those in [1, Section 3].

Lemma 2.1 [1, Lemma 3.1] Let AF.1 and AH.1 hold. Then

Ψ(xk,∆k) ≥ min{∆k, 1}Ψk. (2.11)

Proof. Assume first that ∆k ≥ 1. Then

min
‖s‖≤1

l(xk, s) ≥ min
‖s‖≤∆k

l(xk, s),

and so Ψk ≤ Ψ(xk,∆k), which proves (2.11) in this case since min{∆k, 1} = 1.

Let now ∆k < 1 and s∗k
def
= argmin‖s‖≤1 l(xk, s). Then ‖∆ks

∗
k‖ ≤ ∆k and so l(xk, sk) ≤

l(xk, s
∗
k), implying

Ψ(xk, sk) ≥ l(xk, 0)− l(xk,∆ks
∗
k) ≥ ∆k(l(xk, 0)− l(xk, s

∗
k)) = ∆kΨk,

Evaluation complexity of composite functions and nonconvex nonlinear programming 5

Algorithm 2.1: A trust-region algorithm for minimizing Φh.

Step 0: Initialization. Initial data: x0, ∆0, 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1, ǫ > 0. Set

k = 0.

While Ψk > ǫ, do:

Step 1: Step calculation. Compute the step sk as the solution of (2.7).

Step 2: Acceptance of trial point. Compute Φh(xk + sk) and define

rk =
Φh(xk)− Φh(xk + sk)

Ψ(xk,∆k)
, (2.9)

where Ψ(xk,∆k) is defined in (2.8).

If rk ≥ η1, then xk+1 = xk + sk; else, xk+1 = xk.

Step 3: Trust-region radius update. Set

∆k+1 ∈











[∆k,∞), if rk ≥ η2, [k very successful]

[γ2∆k,∆k], if rk ∈ [η1, η2), [k successful]

[γ1∆k, γ2∆k], if rk < η1. [k unsuccessful]

(2.10)

Increment k by one and return to Step 1.

where the second inequality follows from ∆k ≤ 1 and l in (2.4) being convex due to AH.1. 2

The next lemmas deduce a lower bound on ∆k.

Lemma 2.2 Let AF.1, AF.2 and AH.1 hold. Then, provided Ψk 6= 0, we have that

∆k ≤ κL

√

Ψk min{1,
√

Ψk} =⇒ k is very successful in the sense of (2.10), (2.12)

where

κL

def
=

1− η2
Lg + 1

2
LhLJ

. (2.13)

Proof. From (1.1), (2.9), (2.8) and (2.4), we have

|rk − 1| = 1
Ψ(xk,∆k)

|Φh(xk + sk)− l(xk, sk)|
= 1

Ψ(xk,∆k)

∣

∣

∣f(xk + sk)− fk − gTk sk + h(c(xk + sk))− h(ck + Jksk)
∣

∣

∣

≤ 1
Ψ(xk,∆k)

{∣

∣

∣f(xk + sk)− fk − gTk sk
∣

∣

∣+ |h(c(xk + sk))− h(ck + Jksk)|
}

.

The Taylor expansions f(xk+sk) = fk+g(ξk)
T sk for some ξk ∈ [xk, xk+sk], and c(xk+sk) =

ck +
∫ 1
0 J(xk + tsk)skdt imply, together with AF.2 and AH.1, that

∣

∣

∣f(xk + sk)− fk − gTk sk
∣

∣

∣ ≤ Lg‖sk‖2 and |h(c(xk + sk))− h(ck + Jksk)| ≤ 1
2
LhLJ‖sk‖2.

6 C. Cartis, N. I. M. Gould and Ph. L. Toint

From (2.13), it follows that

|rk − 1| ≤ (1− η2)‖sk‖2
κLΨ(xk,∆k)

≤ 1− η2
κL

· ∆2
k

min{∆k, 1}Ψk

,

where in the second inequality, we used ‖sk‖ ≤ ∆k and (2.11). The implication (2.12) now

follows from (2.10) and κL ≤ 1, the latter being provided by Lg ≥ 1 and η2 ∈ (0, 1). 2

Lemma 2.3 Let AF.1, AF.2 and AH.1 hold. Also, let ǫ ∈ (0, 1] such that

Ψk > ǫ for all k = 0, . . . , j, (2.14)

where j ≤ ∞. Then

∆k ≥ min{∆0, γ1κLǫ}, for all k = 0, . . . , j, (2.15)

where κL is defined in (2.13).

Proof. For any k ∈ {0, . . . , j}, ǫ ∈ (0, 1] and (2.14) give

κLǫ = κL

√
ǫmin{1,

√
ǫ} ≤ κL

√

Ψk min{1,
√

Ψk}

and so Lemma 2.2 and (2.10) provide the implication

∆k ≤ κLǫ =⇒ ∆k+1 ≥ ∆k. (2.16)

Thus when ∆0 ≥ γ1κLǫ, (2.16) implies that ∆k ≥ γ1κLǫ for all k ∈ {0, . . . , j}, where the

factor γ1 is introduced for the case when ∆k is greater than κLǫ and iteration k is not very

successful. Letting k = 0 in (2.16) gives (2.15) when ∆0 < γ1κLǫ since γ1 ∈ (0, 1). 2

We are now ready to give the main result of this section.

Theorem 2.4 Let AF.1, AF.2 and AH.1 hold, and {Φh(xk)} be bounded below by Φlow
h .

Given any ǫ ∈ (0, 1], assume that Ψ0 > ǫ and let j1 ≤ ∞ be the first iteration such that

Ψj1+1 ≤ ǫ. Then the trust-region algorithm, Algorithm 2.1, takes at most

Js
1

def
= ⌈κs

TR
ǫ−2⌉

successful iterations, or equivalently, problem-gradients evaluations, to generate Ψj1+1 ≤ ǫ,

where

κs
TR

def
=

Φh(x0)− Φlow
h

η1min{∆0, γ1κL}
, (2.17)

where κL is defined in (2.13).

Evaluation complexity of composite functions and nonconvex nonlinear programming 7

Additionally, assume that on each very successful iteration k, ∆k+1 is chosen such that

∆k+1 ≤ γ3∆k, (2.18)

for some γ3 > 1. Then

j1 ≤ ⌈κTRǫ
−2⌉ def

= J1, (2.19)

and so Algorithm 2.1 takes at most J1 (successful and unsuccessful) iterations, or equivalently,

problem-evaluations, to generate Ψj1+1 ≤ ǫ, where

κTR

def
= κs

TR

(

1− log γ3
log γ2

)

+
1

| log γ2|
· ∆0

γ1κL

.

Proof. The definition of j1 in the statement of the Theorem is equivalent to

Ψk > ǫ, for all k = 0, . . . , j1, and Ψj1+1 ≤ ǫ. (2.20)

Thus Lemma 2.3 applies with j = j1. It follows from (2.11) and (2.15) that

Ψ(xk,∆k) ≥ min{1,∆0, γ1κLǫ}Ψk, k = 0, . . . , j1,

which further becomes, due to ǫ, κL ∈ (0, 1], γ1 ∈ (0, 1), and again (2.20),

Ψ(xk,∆k) ≥ min{∆0, γ1κL}ǫ2, k = 0, . . . , j1. (2.21)

Let now k ∈ S ∩ {0, . . . , j1}, where S denotes the set of all successful or very successful

iterations in the sense of (2.10). Then (2.9), (2.10) and (2.21) imply

Φh(xk)− Φh(xk + sk) ≥ η1Ψ(xk,∆k) ≥ η1min{∆0, γ1κL}ǫ2. (2.22)

Summing up (2.22) over k ∈ {0, . . . , j1}, recalling that function values remain unchanged on

unsuccessful iterations and that Φh(xj1) ≥ Φlow
h , we get

Φh(x0)− Φlow
h ≥ ksj1η1min{∆0, γ1κL}ǫ2,

where ksj1 denotes the number of successful iterations that occur up to iteration j1. The latter

gives the iteration upper bound Js
1 . To prove the bound J1, we need to bound the number of

unsuccessful iterations up to j1. Firstly, (2.18) implies

∆k+1 ≤ γ3∆k, k ∈ {0, . . . , j1} ∩ S,

and (2.10) gives

∆i+1 ≤ γ2∆i, i ∈ {0, . . . , j1} \ S.
Thus we deduce inductively that

∆j1 ≤ ∆0γ
ks
j1

3 γ
ku
j1

2 ,

where kuj1 denotes the number of unsuccessful iterations up to j1; this further becomes from

(2.15)

min

{

1,
γ1κLǫ

∆0

}

≤ γ
ks
j1

3 γ
ku
j1

2 ,

8 C. Cartis, N. I. M. Gould and Ph. L. Toint

and so, taking logarithm on both sides and recalling that γ2 ∈ (0, 1), we get

kuj1 ≤ −ksj1
log γ3
log γ2

− 1

log γ2
log

∆0

γ1κLǫ
.

Hence, using also that log(∆0/(γ1κLǫ)) ≤ ∆0/(γ1κLǫ),

j1 = ksj1 + kuj1 ≤ ksj1

(

1− log γ3
log γ2

)

+
∆0

γ1κL| log γ2|
· 1
ǫ
,

which together with the bound Js
1 on ksj1 and ǫ ∈ (0, 1] yields (2.19). 2

When applying Algorithm 2.1 to (1.2) in place of Φh, Theorem 2.4 applies and the value of

every constant stays the same in the bounds except Lh in expression (2.13) is replaced by ρ; thus

for ρ sufficiently large, κL = O(ρ−1) and so κs
TR

and κTR are both O(ρ). Note also that to ensure

that Φ(·, ρ) is bounded below it is sufficient to require that f is bounded below on IRn; both of

these, however, are restrictive assumptions when related to problem (1.3), as discussed in greater

detail in Section 4.

2.2 A quadratic regularization approach

Let us now apply instead a (first-order) quadratic regularization method to minimizing Φh, which

is mindful of Levenberg-Morrison-Marquardt techniques; see Algorithm 2.2. Our approach and

results here mirror those in [13, Section 2], while employing a more general merit function due

to the choice of h and the addition of the smooth objective term f .

At iteration k, the step sk is now computed as the solution of the regularized subproblem

min
s∈IRn

l(xk, s) +
σk
2
‖s‖2, (2.23)

where l(xk, s) is defined in (2.4). The cost of computing sk is manageable for some h as (2.23)

is a convex unconstrained problem with simple quadratic terms; furthermore, it does not require

additional problem evaluations to those already computed for constructing the model (2.4) of Φ.

The regularization weight σk > 0 and the new iterate are chosen adaptively, based on the value of

the ratio rrk of the actual function decrease Φh(xk)−Φh(xk + sk) to the optimal model decrease,

namely

Ψr(xk, σk)
def
= l(xk, 0)− min

s∈IRn

[

l(xk, s) +
σk
2
‖s‖2

]

= l(xk, 0)− l(xk, sk)−
σk
2
‖sk‖2. (2.24)

As termination criterion in Algorithm 2.2, we use the same optimality measure Ψk as for the

trust-region approach in the previous section, namely, (2.5). Note that (2.24) with σk = 1 is also

an optimality measure for Φh, but it is not scaled appropriately in that when c = 0, it is of order

‖gk‖2 rather than ‖gk‖. As a result of this, using (2.24) with σk = 1 in the termination condition

of Algorithm 2.2 worsens its complexity bound.

Evaluation complexity of composite functions and nonconvex nonlinear programming 9

Algorithm 2.2: A quadratic-regularization algorithm for minimizing Φh.

Step 0: Initialization. Initial data: x0, σ0, 0 < η1 ≤ η2 < 1, 1 < γ1 ≤ γ2, ǫ > 0. Set

k = 0.

While Ψk > ǫ, do:

Step 1: Step calculation. Compute the step sk as the solution of (2.23).

Step 2: Acceptance of trial point. Compute Φh(xk + sk) and define

rrk =
Φh(xk)− Φh(xk + sk)

Ψr(xk, σk)
, (2.25)

where Ψr(xk, σk) is defined in (2.24).

If rrk ≥ η1, then xk+1 = xk + sk; else, xk+1 = xk.

Step 3: Updating the regularization weight. Set

σk+1 ∈











(0,σk], if rrk ≥ η2, [k very successful]

[σk, γ1σk], if rrk ∈ [η1, η2), [k successful]

[γ1σk, γ2σk], if rrk < η1. [k unsuccessful]

(2.26)

Increment k by one and return to Step 1.

Now, we investigate the problem-evaluation complexity of Algorithm 2.2 generating Ψk ≤ ǫ.

Firstly, we relate the model decrease Ψr(xk, σk) to the optimality measure Ψk in (2.5).

Lemma 2.5 Let AF.1 and AH.1 hold. Then

Ψr(xk, σk) ≥
1

2
min

{

1,
Ψk

σk

}

Ψk. (2.27)

Proof. Assume first that σk ≤ Ψk. Then clearly,

min
s∈IRn

[

l(xk, s) +
σk
2
‖s‖2

]

≤ min
‖s‖≤1

[

l(xk, s) +
σk
2
‖s‖2

]

≤ min
‖s‖≤1

l(xk, s)+
σk
2

≤ min
‖s‖≤1

l(xk, s)+
Ψk

2
,

and so, from (2.24) and (2.5),

Ψr(xk, σk) ≥ l(xk, 0)− min
‖s‖≤1

l(xk, s)−
Ψk

2
= Ψk −

Ψk

2
=

Ψk

2
,

which proves (2.27) in the case when σk ≤ Ψk.

Let now σk > Ψk and s∗k
def
= argmin‖s‖≤1 l(xk, s). Then the definition of sk as the solution of

(2.23) implies

l(xk, sk) +
σk
2
‖sk‖2 ≤ l

(

xk,
Ψk

σk
s∗k

)

+
σk
2

∥

∥

∥

∥

Ψk

σk
s∗k

∥

∥

∥

∥

2

≤ l

(

xk,
Ψk

σk
s∗k

)

+
Ψ2

k

2σk
,

10 C. Cartis, N. I. M. Gould and Ph. L. Toint

where to obtain the second inequality, we used ‖s∗k‖ ≤ 1. This and (2.24) give

Ψr(xk, σk) ≥ l(xk, 0)− l

(

xk,
Ψk

σk
s∗k

)

− Ψ2
k

2σk
. (2.28)

Using 0 < Ψk/σk < 1 and l in (2.4) being convex due to AH.1, we deduce

l

(

xk,
Ψk

σk
s∗k

)

≤
(

1− Ψk

σk

)

l(xk, 0) +
Ψk

σk
l(xk, s

∗
k),

which substituted into (2.28) gives

Ψr(xk, σk) ≥
Ψk

σk
[l(xk, 0)− l(xk, s

∗
k)]−

Ψ2
k

2σk
=

Ψ2
k

σk
− Ψ2

k

2σk
=

Ψ2
k

2σk
,

where we also used (2.5) and the choice of s∗k. 2

Lemma 2.5 implies that rrk in (2.25) is well-defined whenever the current iterate is not first-

order critical, namely Ψk 6= 0. The next lemma deduces an upper bound on σk.

Lemma 2.6 Let AF.1, AF.2 and AH.1 hold. Then

σk ≤ max {σ0, γ2(2Lg + LhLJ)} def
= κσ, for all k ≥ 0. (2.29)

Proof. Let κσ,1
def
= 2Lg + LhLJ . To prove (2.29), it is sufficient to show the implication

σk ≥ κσ,1 =⇒ k is very successful in the sense of (2.26), (2.30)

and so σk+1 ≤ σk. We allow the factor γ2 in κσ for the case when σk is only slightly less

than κσ,1 and k is not very successful, while the term σ0 in (2.29) accounts for the choice at

start-up.

To prove (2.30), note that (2.26) provides that rrk ≥ 1 implies k is very successful. It follows

from (2.25), Ψr(xk, σk) > 0, (2.24) and Φh(xk) = l(xk, 0) that r
r
k ≥ 1 provided

Dk
def
= Φh(xk + sk)−

[

l(xk, sk) +
σk
2
‖sk‖2

]

≤ 0. (2.31)

From (1.1) and (2.4), and Taylor expansions for f and c, we have

Dk =
[

f(xk + sk)− fk − gTk sk
]

+ [h(c(xk + sk))− h(ck + Jksk)]− σk

2 ‖sk‖2

≤ [g(ξ1k)− gk]
T sk + Lh‖c(xk + sk)− ck − Jksk‖ − σk

2 ‖sk‖2

≤ [g(ξk)− gk]
T sk + Lh

∥

∥

∥

∫ 1
0 J(xk + tsk)skdt− Jksk

∥

∥

∥− σk

2 ‖sk‖2,

where ξk ∈ (xk, xk + sk), and where we also used AH.1 in the second inequality. Now using

AF.1, and ‖ξk − xk‖ ≤ ‖sk‖, the last displayed inequality further becomes

Dk ≤ (Lg + 1
2
LhLJ − 1

2
σk) ‖sk‖2.

Thus (2.31) holds whenever σk ≥ κσ,1. 2

Evaluation complexity of composite functions and nonconvex nonlinear programming 11

The main result of this section follows.

Theorem 2.7 Let AF.1, AF.2 and AH.1 hold, and {Φh(xk)} be bounded below by Φlow
h .

Then, given any ǫ ∈ (0, 1], the total number of successful iterations and problem-gradient

evaluations with

Ψk > ǫ (2.32)

that occur when applying the quadratic regularization Algorithm 2.2 to Φh is at most

Js,r
1

def
= ⌈κs

QR
ǫ−2⌉,

where

κs
QR

def
= 2κση

−1
1

(

Φh(x0)− Φlow
h

)

, (2.33)

with κσ defined in (2.29). Assuming (2.32) holds at k = 0, Algorithm 2.2 takes at most

Js,r
1 +1 successful iterations and problem-gradient evaluations to generate a first iterate, say

j1, such that Ψj1+1 ≤ ǫ.

Additionally, assume that on each very successful iteration k, σk+1 is chosen such that

σk+1 ≥ γ3σk, (2.34)

for some γ3 ∈ (0, 1) independent of k. Then

j1 ≤ ⌈κQRǫ
−2⌉ def

= Jr
1 , (2.35)

and so Algorithm 2.2 takes at most Jr
1 (successful and unsuccessful) iterations, or equiva-

lently, problem-evaluations, to generate Ψj1+1 ≤ ǫ, where

κQR

def
= κs

QR

(

1− log γ3
log γ1

)

+
1

log γ1
log

κσ
σ0

.

Proof. It follows from (2.27) and (2.29) that

Ψr(xk, σk) ≥
1

2
min

{

1,
Ψk

κσ

}

Ψk, k ≥ 0.

Thus, while Algorithm 2.2 does not terminate, (2.32) and ǫ ≤ 1 provide

Ψr(xk, σk) ≥
1

2
min

{

1,
1

κσ

}

ǫ2 =
ǫ2

2κσ
, for all k with (2.32), (2.36)

where the equality follows from κσ in (2.29) satisfying κσ ≥ 1 due to γ2 ≥ 1 and Lg ≥ 1.

Let S denote the set of all successful or very successful iterations in the sense of (2.26). Now

(2.25), (2.26) and (2.36) imply

Φh(xk)− Φh(xk+1) ≥ η1Ψ
r(xk, σk) ≥

η1
2κσ

ǫ2, (2.37)

for all k ∈ S satisfying (2.32); assume there are kǫ such iterations. Summing up (2.37) over

all such k, and recalling that function values remain unchanged on unsuccessful iterations and

12 C. Cartis, N. I. M. Gould and Ph. L. Toint

that Φh(k) ≥ Φlow
h , we get

Φh(x0)− Φlow
h ≥

∑

k

[Φh(xk)− Φh(xk+1)] ≥
∑

k=0,k∈S

[Φh(xk)− Φh(xk+1)] ≥ kǫ
η1ǫ

2

2κσ
,

and so kǫ ≤ 2κσ
[

Φh(x0)− Φlow
h

]

/(η1ǫ
2), which is the bound Js,r

1 . To prove the bound Jr
1 , we

need to bound the number of unsuccessful iterations up to j1. Firstly, (2.34) implies

σk+1 ≥ γ3σk, k ∈ {0, . . . , j1} ∩ S,

and (2.26) gives

σi+1 ≥ γ1σi, i ∈ {0, . . . , j1} \ S.
Thus we deduce inductively that

σj1 ≥ σ0γ
ks
j1

3 γ
ku
j1

1 ,

where kuj1 denotes the number of unsuccessful iterations up to j1; this further becomes from

(2.29)
κσ
σ0

≥ γ
ks
j1

3 γ
ku
j1

1 ,

and so, taking logarithm on both sides and recalling that γ1 > 1, we get

kuj1 ≤ −ksj1
log γ3
log γ1

+
1

log γ1
log

κσ
σ0

.

Hence, since ǫ ∈ (0, 1], we deduce

j1 = ksj1 + kuj1 ≤ ksj1

(

1− log γ3
log γ1

)

+
ǫ−2

log γ1
log

κσ
σ0

,

which together with the bound Js,r
1 on ksj1 yields (2.35). 2

When applying Algorithm 2.2 to (1.2) in place of Φh, Theorem 2.7 applies and the constants

remain the same in the bounds except Lh in expression (2.29) is replaced by ρ; thus for ρ

sufficiently large, κσ = O(ρ) and so κs
QR

and κQR are both O(ρ), hence the same in order as for

the (first-order) trust-region approach in the previous section. Note also that to ensure Φ(·, ρ)
is bounded below it again suffices to require that f be bounded below on IRn; again, both of

these are restrictive assumptions when related to problem (1.3), as we discuss in greater detail

in Section 4.

3 An exact penalty-function algorithm for problem (1.3)

We now return to the problem-evaluation complexity of solving (1.3). In what follows, we let

Φh = Φ(·, ρ), where Φ(·, ρ) is defined in (1.2) for a(ny) ρ > 0, and so the criticality measure (2.5)

becomes in this case

Ψρ(x)
def
= lρ(x, 0)− min

‖s‖≤1
lρ(x, s), (3.1)

where

lρ(x, s) = f(x) + g(x)T s+ ρ‖c(x) + J(x)s‖, for any x and s,

is the approximation (2.4) when Φh = Φ(·, ρ).

Evaluation complexity of composite functions and nonconvex nonlinear programming 13

3.1 Approximate solutions

Let us relate the minimizers of (1.2) to the solutions of our original problem (1.3). It is well-known

that the penalty function (1.2) is exact in that for sufficiently large ρ, strict local minimizers of

(1.3) satisfying the Mangasarian-Fromovitz constraint qualification (MFCQ) are minimizers of

Φ(·, ρ) [1,15]. Conversely, very similarly to the proof of [1, Theorem 4.1], we can show that if x∗
is a critical point of Φ(·, ρ) for some ρ > 0 and it is feasible for (1.3), then x∗ is a KKT point of

(1.3); if x∗ is a critical point of Φ(·, ρ) for all sufficiently large ρ that is infeasible for (1.3), then

x∗ is an (infeasible) critical point of v. In the next theorem, we prove a similar result for when

we have an approximate critical point of Φ(·, ρ) in the sense that the optimality measure (3.1) is

sufficiently small.

Theorem 3.1 Let AF.1 hold and ρ > 0. Consider minimizing Φ(·, ρ) by some algorithm

and obtaining an approximate solution x such that

Ψρ(x) ≤ ǫ, (3.2)

for a given tolerance ǫ > 0. Then there exists y∗(ρ) such that

‖g(x) + J(x)T y∗(ρ)‖ ≤ ǫ. (3.3)

Additionally, if ‖c(x)‖ ≤ κcǫ, for some κc > 0, then x is an approximate KKT point of

problem (1.3), within ǫ.

Proof. Note that it is straightforward that if (3.3) and ‖c(x)‖ ≤ κcǫ hold, then the KKT

conditions (1.4) for (1.3) hold with a residual norm error of order ǫ, so that x is an approximate

KKT point of (1.3). Thus it remains to show that (3.2) implies (3.3). Let

s∗ = arg min
‖s‖≤1

lρ(x, s) = arg min
‖s‖≤1

f(x) + g(x)T s+ ρ‖J(x)s+ c(x)‖. (3.4)

Let us first assume that we are in the case ‖s∗‖ < 1. Then (3.4) is essentially unconstrained

and convex, and first-order conditions [10, Theorem 2.2.1] provide that (0 ∈ ∂lρ(x, s∗)) and so

there exists y∗ ∈ ∂(‖J(x)s∗ + c(x)‖) such that g(x) + ρJ(x)T y∗ = 0, which implies that (3.3)

trivially holds with y∗(ρ)
def
= ρy∗. It remains to consider ‖s∗‖ = 1. Then first-order conditions

for (3.4) imply that there exists y∗ ∈ ∂(‖J(x)s∗ + c(x)‖) and λ∗ ≥ 0 such that

g(x) + ρJ(x)T y∗ + λ∗s∗ = 0. (3.5)

It follows from the definition (3.1) of Ψρ(x) that

Ψρ(x) = lρ(x, 0)− lρ(x, s∗) = −g(x)T s∗ + ρ {‖c(x)‖ − ‖J(x)s∗ + c(x)‖} ,

and replacing g(x) from (3.5) into the above, we deduce

Ψρ(x) = ρ
{

‖c(x)‖ − ‖J(x)s∗ + c(x)‖+ sT∗ J(x)
T y∗

}

+ λ∗‖s∗‖2

= ρ
{

‖c(x)‖ − ‖J(x)s∗ + c(x)‖+ sT∗ J(x)
T y∗

}

+ λ∗,
(3.6)

14 C. Cartis, N. I. M. Gould and Ph. L. Toint

where we also used that ‖s∗‖ = 1. Let p(s) = ‖J(x)s + c(x)‖, which is convex; then,

p(0)− p(s∗) ≥ (−s∗)
TJ(x)T y, for any y ∈ ∂(‖J(x)s∗ + c(x)‖). Letting y = y∗, we deduce

‖c(x)‖ − ‖J(x)s∗ + c(x)‖+ (s∗)
TJ(x)T y∗ ≥ 0,

and so, from (3.2) and (3.6), we have that

ǫ ≥ Ψρ(x) ≥ λ∗. (3.7)

From (3.5) and ‖s∗‖ = 1, we deduce

λ∗ = λ∗‖s∗‖ = ‖g(x) + ρJ(x)T y∗‖. (3.8)

Finally, (3.7) and (3.8) yield (3.3) with y∗(ρ)
def
= ρy∗. 2

Let us introduce the following function as measure of constraint violation,

v(x) = ‖c(x)‖. (3.9)

Clearly, this is a special case of Φh and Φ(·, ρ), obtained by letting f = 0 in (1.1) and in (1.2), as

well as h = ‖ · ‖ in the former and ρ = 1 in the latter. Hence the criticality measure and results

in the previous section apply to v. We let

lv(x, s) = ‖c(x) + J(x)s‖, for any x and s,

be the value of the approximation (2.4) for Φh = v, and

θ(x)
def
= lv(x, 0)− min

‖s‖≤1
lv(x, s), (3.10)

the criticality measure (2.5) for Φh = v at some point x.

By letting f = 0, g = 0 and ρ = 1 in Theorem 3.1, we deduce the implication

θ(x) ≤ ǫ =⇒ ‖J(x)T ỹ‖ ≤ ǫ, (3.11)

for some ỹ ∈ IRm and ǫ > 0, where θ(x) is defined in (3.10). Thus when the optimality measure

θ(x) is small, we are within ǫ of a KKT point of the feasibility problem

min
x

0 subject to c(x) = 0.

Note however, that this may not imply that x is close to being feasible for the constraints c as

required at the end of Theorem 3.1. Indeed, as we shall see in what follows, the exact penalty

algorithm below may terminate at an infeasible critical point of v.

3.2 The outer penalty algorithm with a steering procedure

The algorithm for solving (1.3) that we analyze below is a standard exact penalty method [15],

apart from the inclusion of a steering procedure [1] that we use when updating the penalty

parameter ρ; see Step 1 of Algorithm 3.1. This heuristic ensures that the (main) iterates xk
generated by this Algorithm satisfy

Ψρk(xk) ≥ ξρkθ(xk), for all k ≥ 1, (3.12)

Evaluation complexity of composite functions and nonconvex nonlinear programming 15

and that if ρ is increased on the kth iteration, it is because

Ψρk−1
(xk) < ξρk−1θ(xk). (3.13)

Steering helps ensure that we cannot be close to a critical point of Φ(·, ρ) without being near a

critical point of the feasibility measure v. Note that steering does not involve any additional prob-

lem evaluations of (1.3), only additional computations of the optimality measure (3.1) whenever

ρ is increased.

Algorithm 3.1: Exact penalty-function algorithm for solving (1.3).

Step 0: Initialization. An initial point x1, a steering parameter ξ ∈ (0, 1), an initial

penalty parameter ρ0 ≥ 1/ξ and a minimal increase factor τ > 0, as well as a tolerance

ǫ ∈ (0, 1] are given. Set k = 1.

Step 1: Update the penalty parameter. If ρ = ρk−1 satisfies

Ψρ(xk) ≥ ξρθ(xk), (3.14)

then set ρk = ρk−1. Else, choose any ρk such that ρk ≥ ρk−1 + τ and that (3.14) holds

with ρ = ρk.

Step 2: Inner minimization. (Approximately) solve the problem

minimize
x∈IRn

Φ(x, ρk) (3.15)

by applying some algorithm (e.g., Algorithm 2.1/2.2), starting from some xS

k and stop-

ping at an (approximate) solution xk+1 for which

Ψρk(xk+1) ≤ ǫ, (3.16)

where Ψρk(xk+1) is defined in (3.1) with ρ = ρk and x = xk+1.

Step 3: Termination. If the value of v’s criticality measure θ at xk+1 satisfies

θ(xk+1) ≤ ǫ, (3.17)

where θ(xk+1) is (3.10) with x = xk+1, then terminate. Else, increment k by 1 and go

to Step 1.

Let us argue that Step 1 of Algorithm 3.1 is well-defined, for any ξ ∈ (0, 1), namely, condition

(3.14) can be ensured for sufficiently large ρ; see also [1]. From (3.1), we have

Ψρ(xk) = ρ‖c(xk)‖ −min‖s‖≤1

{

g(xk)
T s+ ρ‖c(xk) + J(xk)s‖

}

≥ −min‖s‖≤1 {‖g(xk)‖ · ‖s‖}+ ρ
{

‖c(xk)‖ −min‖s‖≤1 ‖c(xk) + J(xk)s‖
}

≥ −‖g(xk)‖ − ρθ(xk),

(3.18)

16 C. Cartis, N. I. M. Gould and Ph. L. Toint

where we also used the Cauchy-Schwarz inequality and (3.10). Thus (3.14) holds provided

ρ ≥ ‖g(xk)‖
(1− ξ)θ(xk)

. (3.19)

In practice, the value (3.19) is considerably larger than necessary. In particular, notice that as

xk approaches feasibility, θ(xk) approaches zero and so the right-hand side of (3.19) blows up;

thus, (3.10) should not be used for choosing ρ in Step 1 of the Algorithm [1].

Note the termination condition in Step 3 of Algorithm 3.1. The condition (3.16) ensures

(3.3), due to Theorem 3.1, but to be close to a KKT point of (1.3), we still need to ensure

that ‖c(xk)‖ ≤ κcǫ for some κc > 0. We will show, however, in the Theorem below, that only

the weaker termination condition (3.17) can be ensured by Algorithm 3.1; see also our remarks

following (3.11).

Let us now investigate the problem- (namely, function- and constraints-) evaluation worst-

case complexity of Algorithm 3.1. We need to show that (3.17) will hold after ρk has been finitely

or infinitely increased, so that Algorithm 3.1 terminates either with an approximate KKT point

of (1.3) or an approximate (infeasible) critical point of v.

Theorem 3.2 Let AF.1 and AF.2 hold, and assume that f is bounded below over IRn. Let

either Algorithm 2.1 or 2.2 be applied on each major iteration k of Algorithm 3.1 for solving

the subproblem (3.15).

i) Assume that there exists ρ > 0 such that ρk ≤ ρ for all k. Then Algorithm 3.1 will

terminate either with an approximate KKT point of (1.3) or an infeasible critical point

of the feasibility measure (3.9) in at most

⌈

κepρ
2

ǫ2

⌉

(3.20)

problem-evaluations, where κep is a positive problem-dependent constant, independent

of problem dimensions n and m.

ii) Alternatively, assume that ρk grows unboundedly as k increases. Assume also that

the sequence of (major) iterates {xk} is bounded. Then Algorithm 3.1 will terminate

either with an approximate KKT point of (1.3) or an infeasible critical point of the

feasibility measure (3.9) in at most

⌈

κep,inf
ǫ4

⌉

(3.21)

problem-evaluations, where κep,inf is positive problem-dependent constant, indepen-

dent of problem dimensions n and m.

Proof.

Firstly, note that on any iteration k ≥ 2, either Algorithm 3.1 terminates or ρ must be

increased to satisfy (3.14). Indeed, if (3.14) holds with ρ = ρk−1, then (3.16) on iteration

Evaluation complexity of composite functions and nonconvex nonlinear programming 17

k − 1 implies that

θ(xk) ≤
Ψρk−1

(xk)

ξρk−1
≤ ǫ

ξρk−1
≤ ǫ

ξρ0
≤ ǫ,

where we also used that the penalty parameters are monotonically increasing and the

assumption ρ0ξ ≥ 1. Thus except for maybe the first iteration k = 1, the penalty

parameter ρk will be increased in each iteration until termination.

i) Let us assume Algorithm 2.1 is employed to solve (3.15). Then Theorem 2.4 applies

(since Φ(·, ρk) satisfies AH.1 with Lh = ρk), yielding that the subproblem solution set

(3.15) takes at most
⌈

κTRǫ
−2

⌉

problem-evaluations, where κTR is defined just after (2.19).

Note that (2.13) and the definition of κTR imply that κTR = O(ρk) ≤ O(ρ). Since ρk
will be increased at most (ρ − ρ0)/τ times until reaching its upper bound, there will

be at most ρ/τ subproblems (3.15) solved. Thus Algorithm 3.1 will terminate after at

most (3.20) problem-evaluations, where κep = κTR/(τρ) is independent of k, of n and

m and of ρ. The termination criteria (3.17) implies that we are within ǫ of a critical

point of the feasibility measure v; see (3.10). If this approximate critical point xk of v is

approximately feasible with respect to the constraints so that ‖c(xk)‖ ≤ ǫ, then (3.16)

and Theorem 3.1 imply that we are near a KKT point of (1.3) in the sense of (3.3).

A similar argument can be given when applying Algorithm 2.2 to the subproblem (3.15),

yielding similar problem-evaluation counts by employing Theorems 2.7 and again, 3.1.

ii) In this case, we must have that (3.13) holds for all k apart from possibly k = 1. Then

using (3.18) with ρ = ρk−1, we deduce

Ψρk−1
≥ −‖g(xk)‖+ ρk−1θ(xk),

which together with (3.13) gives

ξρk−1θ(xk) > −‖g(xk)‖+ ρk−1θ(xk),

or equivalently,

θ(xk) ≤
‖g(xk)‖

(1− ξ)ρk−1
. (3.22)

As we have assumed that the iterates are bounded, {‖g(xk)‖} is also bounded above by

say, Mg, and so (3.22) becomes

θ(xk) ≤
Mg

(1− ξ)ρk−1
, (3.23)

for all k ≥ 2. We conclude that θ(xk) ≤ ǫ once

ρk−1 ≥
Mg

(1− ξ)ǫ
, (3.24)

and then Algorithm 3.1 would terminate. The remainder of the proof now follows simi-

larly to case i) by letting ρ be the right-hand side of (3.24).

2

18 C. Cartis, N. I. M. Gould and Ph. L. Toint

Note that the condition on the initial choice of penalty and steering parameters that ρ0ξ ≥ 1

that we imposed in Algorithm 3.1 is merely for convenience, and if ignored, only a change by a

constant multiple occurs in either the accuracy required in (3.16) or in (3.17).

Since the penalty function Φ is exact, some solutions of (1.3) and some feasible ones of

Φ(·, ρ) correspond for all ρ ≥ ρ∗, where ρ∗ is independent of ǫ, provided constraint qualifications

hold [15, Section 17.2]. Thus the assumptions of case i) are reasonable, and so the bound (3.20)

is of most interest and relevance, while the case ii) may not happen too often.

Finally, note that steering can also be performed inside the main iteration k, namely, inside

the subproblem solution algorithm, as in [1]. Then, depending on whether we employ Algorithm

2.1 or 2.2 for the subproblem minimization, the model decreases (2.8) or (2.24) for Φ(·, ρ) and

for v can be used in (3.14) instead of the criticality measures Ψρ(xk) and θ(xk), respectively.

This approach yields some computational savings as the model decreases are already readily

computed; it may even decrease the worst-case problem-evaluation count as not each subproblem

(3.15) needs to be solved to ǫ accuracy. However, the loss of monotonicity in the function values

Φ(xk, ρk) once ρk is allowed to increase inside Algorithm 2.1 or 2.2 seems to prevent this approach

being amenable to our complexity analysis. Fortunately, even if a way were found to overcome the

latter, the (more important) bound (3.20) is unlikely to change in the order of ǫ as it represents the

worst-case function-evaluation cost of solving unconstrained nonconvex optimization problems by

means of a steepest-descent-like method, which we have shown in [4] to be tight.

4 Discussion and conclusions

The problem-evaluation complexity bounds in Theorem 3.2 rely on the assumption that f is

bounded below over the whole of IRn, which ensures that every unconstrained penalty minimiza-

tion subproblem is well-defined. While such an assumption is reasonable in the context of the

minimization of the (unconstrained) composite function Φh or Φ(·, ρ), and hence in our results

in Section 2, it is a strong assumption when related to problem (1.3) as simple (but important)

nonconvex problems such as quadratic programming fail to satisfy it. Nevertheless, convergence

results for penalty methods commonly make this assumption. A way to overcome it in the

quadratic programming case for example, is to choose h in Φh as the “opposite”-Huber function

h(x) = ρ ·
{

‖x‖, for ‖x‖ ≤ 1,
1
2
+ 1

2
‖x‖2, for ‖x‖ > 1,

which also gives an exact penalty function so that Theorem 3.2 continues to hold in this case.

Crucially, the Huber function grows sufficiently at infinity to counter unboundedness of the

objective for sufficiently large ρ. For the more general problem (1.3), a function h is needed

that balances objective and constraint growth at infinity. Alternatively, instead of exact penalty

methods, one may consider funnel techniques [7], which only require f to be bounded below in a

neighbourhood of the feasible set of constraints; but the latter are an SQP-based approach whose

complexity appears to be more difficult to analyse.

We have analysed the function-evaluation complexity of minimizing a composite nonlinear

nonconvex function with (possibly) a nonsmooth term, when solved using a first-order trust-region

and a first-order quadratic regularization method. We found that the worst-case complexity of

both methods driving some first-order optimality below ǫ is of order ǫ−2, the same as for smooth

Evaluation complexity of composite functions and nonconvex nonlinear programming 19

unconstrained nonconvex optimization. Practical examples include nonlinear fitting in polyhedral

(l1, l∞) norms both with and without regularization. We then applied these bounds to the penalty

function subproblem solution in the context of an exact penalty algorithm for the equality-

constrained problem (1.3). We obtained that in the important case when the penalty parameter

is bounded, the problem-evaluation complexity of reaching within ǫ of a KKT point of (1.3) is of

order ǫ−2, the same as for unconstrained optimization. To the best of our knowledge, this is the

first worst-case problem-evaluation complexity bound for smooth constrained optimization when

both the objective and constraints may be nonconvex.

Our exact penalty approach and complexity analysis can be easily extended to problems

that also have finitely-many inequality constraints by commonly incorporating the norm of the

inequality constraint violation as an additional term of the penalty function [1, 6, 15].

References

[1] R. H. Byrd, N. I. M. Gould, J. Nocedal and R. A. Waltz. On the convergence of successive

linear-quadratic programming algorithms. SIAM Journal on Optimization, 16(2):471–489,

2005.

[2] C. Cartis, N. I. M. Gould and Ph. L. Toint. Adaptive cubic regularisation methods for un-

constrained optimization. Part II: worst-case function- and derivative-evaluation complexity.

Mathematical Programming, DOI: 10.1007/s10107-009-0337-y, 2010 (online).

[3] C. Cartis, N. I. M. Gould and Ph. L. Toint. An adaptive cubic regularization algorithm

for nonconvex optimization with convex constraints and its function-evaluation complexity.

ERGO Technical Report 09-04, School of Mathematics, University of Edinburgh, 2009.

[4] C. Cartis, N. I. M. Gould and Ph. L. Toint. On the complexity of steepest descent, Newton’s

and regularized Newton’s methods for nonconvex unconstrained optimization. SIAM Journal

on Optimization, 20:2833–2852, 2010.

[5] A. R. Conn, N. I. M. Gould and Ph. L. Toint. Trust-Region Methods. SIAM, Philadelphia,

USA, 2000.

[6] R. Fletcher. Practical Methods of Optimization. Second Edition, John Wiley & Sons, 1987.

[7] N. I. M. Gould and Ph. L. Toint. Nonlinear programming without a penalty function or a

filter. Mathematical Programming, 122(1):155–196, 2010.

[8] S. Gratton, M. Mouffe, Ph. L. Toint and M. Weber-Mendonça. A recursive trust-region

method in infinity norm for bound-constrained nonlinear optimization. IMA Journal of Nu-

merical Analysis, (to appear) 2008.

[9] S. Gratton, A. Sartenaer and Ph. L. Toint. Recursive trust-region methods for multiscale

nonlinear optimization. SIAM Journal on Optimization, 19(1):414–444, 2008.

[10] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I.

Springer-Verlag, Berlin Heidelberg, 1993.

20 C. Cartis, N. I. M. Gould and Ph. L. Toint

[11] Yu. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers,

Dordrecht, The Netherlands, 2004.

[12] Yu. Nesterov. Gradient methods for minimizing composite objective function. CORE Dis-

cussion Paper 2007/76, Université Catholique de Louvain, Belgium, 2007.

[13] Yu. Nesterov. Modified Gauss-Newton scheme with worst case guarantees for global perfor-

mance. Optimization Methods and Software, 22(3):469–483, 2007.

[14] Yu. Nesterov and B. T. Polyak. Cubic regularization of Newton’s method and its global

performance. Mathematical Programming, 108(1):177–205, 2006.

[15] J. Nocedal and S. J. Wright. Numerical Optimization. Second edition, Springer-Verlag, New

York, USA, 2006.

[16] Y. Yuan. Conditions for convergence of trust region algorithms for non-smooth optimization.

Mathematical Programming, 31(2):220–228, 1985.

