
On the evaluation complexity of cubic regularization

methods for potentially rank-deficient nonlinear

least-squares problems and its relevance to constrained

nonlinear optimization

by C. Cartis, N. I. M. Gould and Ph. L. Toint

Report NAXYS-05-2012 11 March 2012

University of Edinburgh, Edinburgh, EH9 3JZ, Scotland (UK)

Rutherford Appleton Laboratory, Chilton, OX11 0QX, England (UK)

University of Namur, 61, rue de Bruxelles, B5000 Namur (Belgium)

http://www.fundp.ac.be/sciences/naxys

On the evaluation complexity of cubic regularization methods

for potentially rank-deficient nonlinear least-squares problems

and its relevance to constrained nonlinear optimization

Coralia Cartis∗, Nicholas I. M. Gould†, Philippe L. Toint‡

11 March 2012

Abstract

We propose a new termination criteria suitable for potentially singular, zero or non-
zero residual, least-squares problems, with which cubic regularization variants take at
most O(ǫ−3/2) residual- and Jacobian-evaluations to drive either the residual or a scaled
gradient of the least-squares function below ǫ; this is the best-known bound for potentially
singular nonlinear least-squares problems. We then apply the new optimality measure and
cubic regularization steps to a family of least-squares merit functions in the context of
a target-following algorithm for nonlinear equality-constrained problems; this approach
yields the first evaluation complexity bound of order ǫ−3/2 for nonconvexly constrained
problems when higher accuracy is required for primal feasibility than for dual first-order
criticality.

Keywords: evaluation complexity, worst-case analysis, least-squares, constrained non-
linear optimization, cubic regularization methods.

1 Introduction

An ubiquitous challenge in scientific computing is the minimization of an appropriate norm of
a given, sufficiently smooth, vector-valued function r : IRn −→ IRm. This problem formulation
arises in numerous real-life applications requiring data fitting, parameter estimation, image
reconstruction, weather forecasting and so forth [23]. Crucially, it is often an essential building
block when solving constrained nonlinear programming problems, being used for example, to
reduce the constraint violation in various sequential programming [2, 12, 24–26], filter [16],
funnel [18] and re-weighted least squares approaches [23]. Nonlinear least-squares problems
are also at the heart of the path-following method for constrained problems which we propose
and analyze here, as well.

Here we focus on the Euclidean-norm case that gives rise to the equivalent nonlinear
least-squares problem,

min
x∈IRn

Φ(x)
def
= 1

2
‖r(x)‖2, (1.1)

∗School of Mathematics, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, Scotland,
UK. Email: coralia.cartis@ed.ac.uk.

†Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxford-
shire, OX11 0QX, England, UK. Email: nick.gould@stfc.ac.uk.

‡Namur Centre for Complex Systems (NAXYS), FUNDP - University of Namur, 61, rue de Bruxelles,
B-5000, Namur, Belgium. Email: philippe.toint@fundp.ac.be.

1

Evaluation complexity of nonlinear least-squares and constrained problems 2

now involving the smooth function Φ(x); other norms may be of interest and some are equally
acceptable in this framework. We allow arbitrary values for m and n, and so both over- and
under-determined residuals r(x) are allowed in (1.1), as well as square nonlinear systems of
equations; in the latter two cases, one may wish to reduce Φ(x) in (1.1) to zero so as to find
the zeros of the system r(x) = 0.

Methods for solving (1.1) differ not only in their practical performance, but also in the
theoretical bounds known on their worst-case efficiency, which is the focus of this paper.
Of the various methods proposed, Gauss-Newton techniques are the most popular and well-
researched [15, 23]. Rather than tackling the smooth formulation (1.1), recent algorithmic
variants [1, 8, 21] attempt to minimize the un-squared and hence nonsmooth, norm of r(x)
instead, in an attempt to improve the conditioning of the system that defines the change
to the iterates. Using only first-order information—namely, values of the residual r(x) and
its Jacobian J(x) at given x, obtained from a so-called black-box/oracle—both classical and
modern variants can be made/shown to be globally convergent to stationary points of (1.1),
namely to points satisfying

∇xΦ(x)
def
= J(x)T r(x) = 0; (1.2)

furthermore, the number of residual and Jacobian evaluations required to bring the norm of
(1.2) or some (nonsmooth) first-order optimality measure within some tolerance ǫ is O(ǫ−2),
provided J(x) and r(x) are Lipschitz continuous [1,8,13,21,23]. Another possibility is to apply
Newton-type methods to the unconstrained problem (1.1), which can ensure for example, fast
local convergence for nonzero residual problems and most importantly here, improved global
efficiency for both zero- and non-zero residual problems. In particular, cubic regularization
methods [9,17,22] applied to (1.1) take O(ǫ−3/2) residual evaluations to ensure (1.2) is within
ǫ, provided r(x), J(x) and the Hessians ∇xxri(x), i = 1, . . . ,m, are Lipschitz continuous; this
bound is sharp for nonlinear least-squares [11], is optimal from a worst-case complexity point
of view for a wide class of second-order methods and nonconvex unconstrained problems [4],
and is the best-known complexity for second-order methods. This bound can be further
improved for gradient-dominated residuals (such as when the singular values of the Jacobian
are uniformly bounded away from, or converge to, zero at the same rate as the residual) [22].

The (natural) approximate satisfaction of (1.2) as termination criteria for the cubic regu-
larization and other methods suffers from the disadvantage that an approximate zero of r(x)
is guaranteed only when J(x) is uniformly full-rank, with a known lower bound on its smallest
singular value — this is a strong assumption. In this paper, we introduce a termination condi-
tion that can distinguish between the zero and non-zero residual case automatically/implicitly.
Namely, we argue for the use of a scaled variant of (1.2), which is precisely the gradient of
‖r(x)‖ whenever r(x) 6= 0, as well as the inclusion of the size of the residual in the termi-
nation condition. Without requiring a non-degenerate Jacobian, we then show that cubic
regularization methods can generate either an approximate scaled gradient or residual value
within ǫ in at most O(ǫ−3/2) residual-evaluations, thus preserving the (optimal) order of the
bound for cubic regularization.

Consider now the evaluation complexity of minimizing a smooth but potentially non-
convex objective f(x) ∈ IR for x ∈ C. When C is described by finitely many smooth (but
potentially nonconvex) equality and inequality constraints, we have shown that a first-order
exact penalty method with bounded penalty parameters [8], as well as a short-step target-
following algorithm with steepest-descent-like steps [3], take O(ǫ−2) objective and constraint
evaluations to generate an approximate KKT point of the problem or an infeasible point of the

Evaluation complexity of nonlinear least-squares and constrained problems 3

feasibility measure with respect to the constraints. Thus adding constraints does not deterio-
rate the order of worst-case evaluation complexity bound achieved in the unconstrained case
when steepest-descent like methods are employed. A natural question arises as to whether
an improved evaluation complexity bound, of the order of cubic regularization, can be shown
for constrained problems. In the case when C is given by convex constraints, projected cubic
regularization variants can be shown to satisfy the O(ǫ−3/2) evaluation bound [6]. In this pa-
per, in a similar vein to [3], we propose a short-step target-following algorithm for problems
with nonconvex equality constraints

minimize f(x) such that c(x) = 0,

that takes cubic regularization steps for a sequence of shifting least-squares merit functions.
The evaluation complexity of the resulting algorithm is better than that for steepest-descent,
and can even achieve O(ǫ−3/2), provided the (dual) KKT conditions are satisfied with lower
accuracy than the (primal) feasibility with respect to the constraints.

The structure of the paper is as follows. Section 2 summarizes adaptive cubic regulariza-
tion methods [9] and relevant complexity results. Section 3.1 presents the new termination
criteria for (1.1) based on the scaled gradient, while Section 3.2 gives the complexity re-
sult for cubic regularization applied to (1.1) with the new termination criteria. Sections 4
and 5 present the short-step target-following cubic regularization algorithm for the equality-
constrained problem and its complexity analysis, respectively. Section 6 summarizes our
contributions and discusses possible extensions of this work.

2 Previous cubic regularization construction and results

2.1 Description of adaptive cubic regularization algorithm

We consider applying the Adaptive Regularization with Cubics (ARC) algorithm [9, 10] to
(1.1); here, we focus on the ARC variant that has the best known and optimal worst-case
evaluation complexity, so-called ARC(S). At each iterate xk, k ≥ 0, a step sk is computed
that approximately minimizes the local cubic model

mk(s) = 1

2
‖r(xk)‖2 + sTJ(xk)

T r(xk) + 1

2
sTBks+ 1

3
σk‖s‖3 (2.1)

of Φ(xk + s) with respect to s, where Bk is an approximation to the Hessian of Φ at xk and
σk > 0 is a regularization parameter. In this method, the step sk is computed to satisfy

sTk J(xk)
T r(xk) + sTkBksk + σk‖sk‖3 = 0 (2.2)

and
sTkBksk + σk‖sk‖3 ≥ 0. (2.3)

Conditions (2.2) and (2.3) are achieved whenever sk is a global minimizer of the model mk

along the direction sk, namely, arg minα∈IRmk(αsk) = 1; in particular, they are satisfied
whenever sk is a global minimizer of the model mk over a(ny) subspace [10, Theorem 3.1,
Lemma 3.2]. Note that if sk is chosen as the global minimizer of mk over the entire space, σk
is maintained at a sufficiently large value and Bk is the true Hessian, then ARC(S) is similar
to the cubic regularization technique proposed in [22].

Evaluation complexity of nonlinear least-squares and constrained problems 4

To ensure ARC’s fast local convergence, we need to go beyond unidimensional minimiza-
tion, and so we terminate the inner model minimization when

TC.s ‖∇smk(sk)‖ ≤ κθ min {1, ‖sk‖} ‖J(xk)T r(xk)‖, (2.4)

where κθ is any constant in (0, 1); see [10, §3.2] for a detailed description of this and other
possible termination conditions. Note that ∇smk(0) = ∇xΦ(xk) = J(xk)

T r(xk) so that
(2.4) is a relative error condition, which is clearly satisfied at any minimizer sk of mk since
then ∇smk(sk) = 0. Generally, we hope that the inner minimization will be terminated
before this inevitable outcome. Note that when sk is computed by minimizing mk over a
subspace, we may increase the subspace of minimization until TC.s is satisfied. In particular,
one may use a Lanczos-based approach where the subspace is the Krylov one generated by
{

∇xΦ(xk), Bk∇xΦ(xk), B
2
k∇xΦ(xk) . . .

}

. In this case, conditions (2.2) and (2.3) are also
achieved [10, §3.2, §6, §7].

It remains to describe the iterate updating and model improvement technique in ARC.
The step sk is accepted and the new iterate xk+1 set to xk + sk whenever (a reasonable
fraction of) the predicted model decrease Φ(xk) −mk(sk) is realized by the actual decrease
in the objective, Φ(xk) − Φ(xk + sk). This is measured by computing the ratio ρk in (2.5)
and requiring ρk to be greater than a prescribed positive constant η1 (for example, η1 = 0.1);
it can be shown that ρk is well-defined whenever ∇xΦ(xk) 6= 0 [10, Lemma 2.1]. Since the
current weight σk has resulted in a successful step, there is no pressing reason to increase
it, and indeed there may be benefits in decreasing it if the model overestimates the function
locally. By contrast, if ρk is smaller than η1, we judge that the improvement in objective
is insufficient—indeed there is no improvement if ρk ≤ 0. If this happens, the step will be
rejected and xk+1 left as xk. Under these circumstances, the only recourse available is to
increase the weight σk prior to the next iteration with the implicit intention of reducing the
size of the step.

A summary of the ARC(S) algorithm applied to (1.1) is shown on the following page.

Note that we have not yet defined the condition required for ARC(S) to terminate. In
[9,10], we terminate ARC when ‖∇xΦ(xk)‖ ≤ ǫ, and possibly also λmin(∇xxΦ(xk)) ≥ −ǫ, for
a user-specified tolerance ǫ ∈ (0, 1). Here, we will require that either some scaled gradient
or the residual is within ǫ; this novel termination condition, specific to (1.1), is described in
Section 3.1.

2.2 Assumptions and useful results

The following assumptions are chosen to ensure that those in [9,10] are satisfied when ARC(S)

is applied to (1.1), which allows us to employ some crucial ARC results from [9,10] to (1.1).
Let X be an open convex set containing all the generated iterates {xk, xk + sk}, k ≥ 0.

We assume that

AR.1 ri ∈ C2(IRn) and ri(x) is uniformly bounded above on X, i ∈ {1, . . . ,m}.
(2.7)

For each i ∈ {1, . . . ,m}, the residuals ri are Lipschitz continuous on X, namely,

AR.2 |ri(x)− ri(y)| ≤ κri‖x− y‖, for all x, y ∈ X, and some κri ≥ 1. (2.8)

Evaluation complexity of nonlinear least-squares and constrained problems 5

Algorithm 2.1: Adaptive Regularization using Cubics (ARC(S)) [9,10] applied
to (1.1).

A starting point x0, an initial and a minimal regularization parameter σ0 ≥ σmin > 0,
and algorithmic parameters γ2 ≥ γ1 > 1 and 1 > η2 ≥ η1 > 0, are given.
For k = 0, 1, . . ., until termination, do:

1. Compute a step sk that satisfies (2.2)–(2.4).

2. Compute r(xk + sk) and

ρk =
1

2
‖r(xk)‖2 − 1

2
‖r(xk + sk)‖2

1

2
‖r(xk)‖2 −mk(sk)

. (2.5)

3. Set

xk+1 =

{

xk + sk if ρk ≥ η1
xk otherwise.

4. Set

σk+1 ∈

[σmin, σk] if ρk > η2 [very successful iteration]
[σk, γ1σk] if η1 ≤ ρk ≤ η2 [successful iteration]
[γ1σk, γ2σk] otherwise. [unsuccessful iteration]

(2.6)

This implies that r is Lipschitz continuous on X, with Lipschitz constant

κr
def
= ‖(κr1 , . . . , κrm)‖ ≥ 1.

We also assume that the Jacobian J of r is Lipschitz continuous on X, namely

AR.3 ‖J(x)− J(y)‖ ≤ κJ‖x− y‖, for all x, y ∈ X, and some κJ > 0. (2.9)

Note that AR.1–AR.3 imply that the gradient ∇xΦ given in (1.2) is Lipschitz continuous on
X with Lipschitz constant

Lg
def
= κ2r + rmaxκJ ≥ 1, (2.10)

where rmax > 0 denotes an upper bound on r(x), x ∈ X. (This is assumption AF.4 in [9,10].)
For each i ∈ {1, . . . ,m}, the Hessian ∇2ri is also assumed to be globally Lipschitz contin-

uous on the path of all generated iterates, namely, there exists a constant Li such that

AR.4 ‖∇2ri(x)−∇2ri(xk)‖ ≤ Li‖x− xk‖, for all x ∈ [xk, xk + sk] and all k ≥ 0.
(2.11)

Note that AR.1–AR.4 imply that the Hessian of Φ

∇xxΦ(x) = J(x)TJ(x) +
n
∑

i=1

ri(x)∇2ri(x) (2.12)

Evaluation complexity of nonlinear least-squares and constrained problems 6

is globally Lipschitz continuous on the path of all generated iterates, with Lipschitz constant

L
def
= 2κJκr + κJ

n
∑

i=1

κri + ‖r(x0)‖
n
∑

i=1

Li, (2.13)

where we also used that ARC generates monotonically decreasing function values so that
‖r(xk)‖ ≤ ‖r(x0)‖. (This is assumption AF.6 in [9, 10].)

Clearly, the values of the residual r(xk) and its Jacobian J(xk) are required to form the
model (2.1) and estimate (2.5). Thus, as Bk is an approximation to the Hessian of Φ in (2.12)
at xk, only the Hessian of each ri needs to be approximated in Bk and so it is natural to
consider Bk to be of the form

Bk = J(xk)
TJ(xk) +Mk, (2.14)

where

Mk ≈ HΦ(xk)
def
=

n
∑

i=1

ri(xk)∇2ri(xk). (2.15)

We require that Mk and HΦ(xk) in (2.15) agree along sk in the sense that

AM.4 ‖(HΦ(xk)−Mk)sk‖ ≤ C‖sk‖2, for all k ≥ 0, and some constant C > 0.
(2.16)

This, (2.12) and (2.14) imply that

‖[∇xxΦ(xk)−Bk]sk‖ ≤ C‖sk‖2, for all k ≥ 0, (2.17)

which is assumption AM.4 in [9, 10]. The condition AM.4 is trivially satisfied with C = 0
when we set Mk = HΦ(xk) i.e., Bk = ∇xxΦ(xk) for all k ≥ 0 in the ARC algorithm. The
requirement (2.16) or (2.17) is a slight strengthening of the Dennis–Moré condition [14]. The
latter is achieved by some quasi-Newton updates provided further assumptions hold (see the
discussion following [10, (4.6)]). Quasi-Newton methods may still satisfy AM.4 in practice,
though we are not aware if this can be ensured theoretically. We have shown in [7] that AM.4
can be achieved when Bk is approximated by (forward) finite differences of gradient values,
without changing the order of the worst-case evaluation complexity bound as a function of
the accuracy ǫ.

The first lemma recalls some useful ARC properties, crucial to the complexity bound in
Section 3.2.

Lemma 2.1 Let AR.1–AR.4 and AM.4 hold, and apply Algorithm ARC(S) to (1.1).
Then

σk ≥ 3

2
(L+ C) =⇒ k is very successful, (2.18)

and so
σk ≤ max (σ0, 3

2
γ2(L+ C))

def
= σ, for all k ≥ 0, (2.19)

where L and C are defined in (2.13) and (2.16), respectively. Also, we have the function
decrease

1

2
‖r(xk)‖2 − 1

2
‖r(xk+1)‖2 ≥ α

∥

∥

∥J(xk+1)
T r(xk+1)

∥

∥

∥

3/2
for all successful iterations k,

(2.20)

where α
def
= η1σminκ

3
g/6 and

Evaluation complexity of nonlinear least-squares and constrained problems 7

where κg is the positive constant

κg
def
=
√

(1− κθ)/(1

2
L+ C + σ + κθLg), (2.21)

with κθ, σ and Lg defined in (2.4), (2.19) and (2.10), respectively.

Proof. The relation (2.18) and the bound (2.19) both follow from [10, Lemma 5.2], and
(2.20) from (2.5), σk ≥ σmin (due to (2.6)), [10, Lemmas 3.3] and [9, Lemma 5.2]. 2

Relating successful and total iteration counts The total number of (major) ARC
iterations is the same as the number of residual/function evaluations (as we also need to
evaluate r on unsuccessful iterations in order to be able to compute ρk in (2.5)), while the
number of successful ARC iterations is the same as that of Jacobian/gradient evaluations.

Let us introduce some useful notation. Throughout, denote the index set

S def
= {k ≥ 0 : k successful or very successful in the sense of (2.6)}, (2.22)

and, given any j ≥ 0, let

Sj
def
= {k ≤ j : k ∈ S}, (2.23)

with |Sj | denoting the cardinality of the latter.
The lower bound on σk and the construction of Steps 2–4 of ARC(S) allow us to quantify

the total iteration count as a function of the successful ones.

Theorem 2.2 For any fixed j ≥ 0, let Sj be defined in (2.23). Assume that there exists
σ > 0 be such that

σk ≤ σ, for all k ≤ j. (2.24)

Then

j ≤
⌈

1 +
2

log γ1
log

(

σ

σmin

)⌉

· |Sj |. (2.25)

Proof. The updates (2.6) imply that σk ≥ σmin for all k. Now apply [9, Theorem
2.1], namely, the bound [9, (2.14)] on the number of unsuccessful iterations up to j, and
use the fact that the unsuccessful iterations up to j together with Sj form a partition of
{0, . . . , j}. 2

Values for σ in (2.24) are provided in (2.19), under the assumptions of Lemma 2.1. Thus,
based on Theorem 2.2, it remains to bound the successful iteration count |Sj | since the total
iteration count up to j is of the same order in ǫ as |Sj |.

Evaluation complexity of nonlinear least-squares and constrained problems 8

3 Evaluation complexity of cubic regularization for potentially
rank-deficient nonlinear least-squares problems

3.1 A suitable termination condition for ARC(S)

Here, we depart from the standard choice of termination criterion for derivative-based opti-
mization algorithms such as ARC(S) when applied to (1.1), namely, requiring a sufficiently

small gradient ‖∇Φx(xk)‖ = ‖J(xk)T r(xk)‖ ≤ ǫ, where ǫ > 0 is the user-specified accuracy
tolerance. Such a condition is only guaranteed to provide an approximate zero of the residual
r when J(x) is uniformly full-rank and a lower bound on its smallest singular values is known,
which are limiting assumptions. Such assumptions are not required for steepest-descent-like
methods if appropriate optimality measures are employed [3, 8], but the complexity of such
methods is worse than the best second-order methods [8, 11]. Thus, we introduce a termi-
nation condition that can distinguish between the zero and non-zero residual case automati-
cally/implicitly. We propose the following termination for ARC(S),

termination : ‖r(xk)‖ ≤ ǫp or ‖gr(xk)‖ ≤ ǫd, (3.1)

where ǫp > 0 and ǫd > 0 are the required accuracy tolerances and where

gr(x)
def
=

J(x)T r(x)
‖r(x)‖ , whenever r(x) 6= 0;

0, otherwise.
(3.2)

Note that the scaled gradient gr(x) in (3.2) is precisely the gradient of ‖r(x)‖ whenever
r(x) 6= 0. If r(x) = 0, we are at the global minimum of r and so gr(x) = 0 ∈ ∂(‖r(x)‖) [19,
§VI.3].

In the termination condition (3.1), the scaled gradient gr(xk) may be bounded away from
zero—for instance, when the singular values of the Jacobian are uniformly bounded away from
zero—then, as we show in the next section, the residual values converge to zero, and so (3.1)
can be achieved. When the iterates approach a nonzero residual value, then gr converges to
zero and so again, (3.1) can be satisfied. Another suitable termination condition with similar
properties is given after the main result in the next section.

In the next section, we show that ARC(S) can generate either an approximate scaled

gradient or residual value within ǫ in at most O(ǫ−3/2) residual-evaluations, thus preserving
the (optimal) order of the bound for cubic regularization.

3.2 Evaluation complexity of ARC(S) with termination condition (3.1)

The first lemma exploits (2.20) to give new lower bounds on the function decrease that
depend on the residual and the scaled gradient (3.2); the bounds below will also be used for
the constrained case.

Evaluation complexity of nonlinear least-squares and constrained problems 9

Lemma 3.1 Let AR.1–AR.4 and AM.4 hold, and apply the ARC(S) algorithm to (1.1).
Then, for all successful iterations k for which r(xk) 6= 0, we have

‖r(xk)‖ − ‖r(xk+1)‖ ≥ min
{

αβ3/2‖gr(xk+1)‖3/2 · ‖r(xk)‖1/2, (1− β)‖r(xk)‖
}

(3.3)

and

‖r(xk)‖1/2 − ‖r(xk+1)‖1/2 ≥ min
{

1

2
αβ3/2‖gr(xk+1)‖3/2, (β−1/2 − 1)‖r(xk+1)‖1/2

}

,

(3.4)
where α is defined just after (2.20) and β ∈ (0, 1) is any fixed problem-independent
constant.

Proof. Suppose that r(xk) 6= 0, let β ∈ (0, 1) and denote

Sβ
def
= {k ∈ S : ‖r(xk+1)‖ > β‖r(xk)‖}, (3.5)

where S is defined in (2.22). We first analyze the function decrease for iterations k ∈ Sβ

and then, for the ones in S \ Sβ . Let k ∈ Sβ ; then r(xk+1) 6= 0 since r(xk) 6= 0. From
(2.20), (3.2) and (3.5), we deduce

‖r(xk)‖2 − ‖r(xk+1)‖2 ≥ 2α‖J(xk+1)
T r(xk+1)‖3/2

= 2α

(

‖J(xk+1)
T r(xk+1)‖

‖r(xk+1)‖

)3/2

‖r(xk+1)‖3/2

= 2α‖gr(xk+1)‖3/2 · ‖r(xk+1)‖3/2

≥ 2αβ3/2‖gr(xk+1)‖3/2 · ‖r(xk)‖3/2 .

(3.6)

Conjugacy properties and the monotonicity relation ‖r(xk)‖ ≥ ‖r(xk+1)‖ give

‖r(xk)‖ − ‖r(xk+1)‖ =
‖r(xk)‖2 − ‖r(xk+1)‖2
‖r(xk)‖+ ‖r(xk+1)‖

≥ ‖r(xk)‖2 − ‖r(xk+1)‖2
2‖r(xk)‖

(3.7)

and furthermore

√

‖r(xk)‖ −
√

‖r(xk+1)‖ =
‖r(xk)‖ − ‖r(xk+1)‖

√

‖r(xk)‖+
√

‖r(xk+1)‖
≥ ‖r(xk)‖2 − ‖r(xk+1)‖2

4‖r(xk)‖3/2
. (3.8)

Employing the last inequality in (3.6) into (3.7) and (3.8), respectively, we obtain

‖r(xk)‖ − ‖r(xk+1)‖ ≥ αβ3/2‖gr(xk+1)‖3/2 · ‖r(xk)‖1/2, for all k ∈ Sβ , (3.9)

and

‖r(xk)‖1/2 − ‖r(xk+1)‖1/2 ≥
αβ3/2

2
‖gr(xk+1)‖3/2, for all k ∈ Sβ . (3.10)

Conversely, let k ∈ S \ Sβ, which gives

‖r(xk+1)‖ ≤ β‖r(xk)‖, (3.11)

Evaluation complexity of nonlinear least-squares and constrained problems 10

and so the residual values decrease linearly on such iterations. It follows from (3.11) that
on such iterations we have the following function decrease

‖r(xk)‖ − ‖r(xk+1)‖ ≥ (1− β)‖r(xk)‖ for all k ∈ S \ Sβ . (3.12)

and

‖r(xk)‖1/2−‖r(xk+1)‖1/2 ≥ (1−
√

β)‖r(xk)‖1/2 ≥
1−

√
β√

β
‖r(xk+1)‖1/2 for all k ∈ S \ Sβ .

(3.13)
(Note that (3.12) and (3.13) continue to hold if r(xk+1) = 0.) The bound (3.3) now follows
from (3.9) and (3.12), and (3.4) from (3.10) and (3.13). 2

The next theorem gives a general evaluation complexity result for ARC(S) applied to (1.1)
when the termination condition (3.1) is employed.

Theorem 3.2 Let AR.1–AR.4 and AM.4 hold, and let ǫp, ǫd ∈ (0, 1). Consider applying
the ARC(S) algorithm with the termination condition (3.1) to minimizing (1.1). Then
ARC(S) terminates after at most

⌈

max{κ1ǫ−3/2
d , κ2ǫ

−1/2
p }

⌉

+ 1 (3.14)

successful iterations—or equivalently, Jacobian-evaluations—and at most

⌈

κSmax{κ1ǫ−3/2
d , κ2ǫ

−1/2
p }

⌉

+ 1 (3.15)

total (successful and unsuccessful) iterations—or equivalently, residual-evaluations,
where

κ1
def
= 2‖r(x0)‖1/2α−1β−3/2, κ2

def
= ‖r(x0)‖1/2(β−1/2 − 1)−1, (3.16)

κS
def
= 2(1 + κuS) and κuS

def
= 2 log(σ/σmin)/ log γ1, (3.17)

with α defined just after (2.20), σ, in (2.19), and β ∈ (0, 1) a fixed problem-independent
constant.

Proof. Clearly, if (3.1) is satisfied at the starting point, there is nothing left to prove.
Assume now that (3.1) fails at k = 0. For any iteration (k+1) at which ARC(S) does not
terminate, it follows from (3.1) that we have

‖r(xk+1)‖ > ǫp and ‖gr(xk+1)‖ > ǫd. (3.18)

From (3.4) and (3.18), we deduce

‖r(xk)‖1/2 − ‖r(xk+1)‖1/2 ≥ min{ 1

2
αβ3/2ǫ

3/2
d , (β−1/2 − 1)ǫ

1/2
p }

for all k ∈ S for which (3.18) holds.
(3.19)

Summing up (3.19) over all iterations k ∈ S for which (3.18) holds, with say jǫ ≤ ∞ as
the largest index, and using that the ARC(S) iterates remain unchanged over unsuccessful

Evaluation complexity of nonlinear least-squares and constrained problems 11

iterations, we obtain

‖r(x0)‖1/2 − ‖r(xjǫ)‖1/2 =
jǫ−1
∑

k=0,k∈S

[

‖r(xk)‖1/2 − ‖r(xk+1)‖1/2
]

≥ |Sǫ|min
{

1

2
αβ3/2ǫ

3/2
d , (β−1/2 − 1)ǫ

1/2
p

}

(3.20)

where |Sǫ| denotes the number of successful iterations up to iteration jǫ. Using that
‖r(xjǫ)‖1/2 ≥ 0, we further obtain from (3.20) that jǫ < ∞ and that

|Sǫ| ≤
‖r(x0)‖1/2

min
{

1

2
αβ3/2ǫ

3/2
d , (β−1/2 − 1)ǫ

1/2
p

} ,

which gives (3.14) since |Sǫ| must be an integer and since the termination condition is
checked at the next iteration; see [9, (5.21), (5.22)] for full details. To derive (3.15), apply
Theorem 2.2 with j = jǫ, σ defined in (2.19), and use also that ǫp, ǫd ∈ (0, 1). 2

The next corollary gives the main complexity result of this section, whose proof follows
immediately from Theorem 3.2. It shows that the evaluation complexity of ARC(S) driving

either ‖r(x)‖ or its gradient below ǫ is O(ǫ−3/2), an improvement of existing ARC(S) results
which can only ensure that the gradient of ‖r(x)‖2 goes below ǫ in that same-order number
of evaluations.

Corollary 3.3 Let AR.1–AR.4 and AM.4 hold, and let ǫ
def
= min{ǫp, ǫd} ∈ (0, 1). Con-

sider applying the ARC(S) algorithm with the termination condition (3.1) to minimizing
(1.1). Then ARC(S) terminates after at most

⌈

κsSǫ
−3/2

⌉

+ 1 (3.21)

successful iterations—or equivalently, Jacobian-evaluations—and at most

⌈

κSκ
s
Sǫ

−3/2
⌉

+ 1 (3.22)

total (successful and unsuccessful) iterations—or equivalently, residual-evaluations,
where

κsS
def
= ‖r(x0)‖1/2/min{ 1

2
αβ3/2, β−1/2 − 1}, (3.23)

with α defined just after (2.20), κS, in (3.17) and β ∈ (0, 1) a fixed problem-independent
constant.

Some remarks on the above theorem/corollary and its proof follow:

• Note that in the non-zero residual case, namely, when {‖r(xk)‖} converges to some
r∗ > 0, the monotonicity of this sequence implies that ‖r(xk+1)‖ ≥ β‖r(xk)‖ for all

k, with β
def
= r∗/‖r(x0)‖ ∈ (0, 1). Thus in this case, there is no need to consider the

iterations (3.11) of faster linear convergence.

Evaluation complexity of nonlinear least-squares and constrained problems 12

• The function decrease in (3.4) implies that instead of (3.1), we could have used the
condition

termination 2 : ‖r(xk)‖1/3 ≤ ǫp or ‖gr(xk)‖ ≤ ǫd, (3.24)

as termination for the ARC(S) algorithm, without changing the order of the complexity
bound as a function of (ǫp, ǫd) or even of ǫ = min{ǫp, ǫd}. In fact, using the condition
(3.24) improves the bound/accuracy for the residual values reaching within ǫp.

• Note that the bound (3.14) is a bound on the total number of successful iterations for
which (3.18) holds. Thus despite the measure (3.1) being non-monotonic, after (3.14)
iterations are taken, this measure would remain below (ǫp, ǫd) for the remaining ARC(S)

iterations, if any are taken.

• The use of conjugacy in the above proof is remindful of re-weighted least-squares tech-
niques [23]. However, our attempts at applying (some modified) ARC to such variants
of (1.1) have not been successful.

3.3 Is the bound (3.15) sharp for the nonlinear least-squares problem (1.1)?

Recall the example in [11, §5] that shows that ARC(S) takes essentially ǫ−3/2 iterations/evalua-
tions to ensure that the norm of the gradient is less than ǫ. The univariate function f : IR → IR
in question is positive for all x ≥ 0 and at the iterates, and it is zero at infinity, minimum to
which ARC(S) converges. Thus this example can be viewed as a least-squares, zero-residual

problem, with r in (1.1) defined as r
def
=

√
f . It shows that ARC(S) with the termination

condition that the absolute value of (1.2)—which in this case, is precisely the first derivative
of f—is less than ǫ takes essentially ǫ−3/2 iterations/evaluations and so the ARC(S) complexity

bound is sharp for nonlinear least-squares. (Note that although
√

f(x) and its derivatives may
not be globally Lipschitz continuous as x → ∞, the first and second derivatives of |r|2 = f
have this property, as we have shown in [11, §5]. The latter conditions are sufficient for the
O(ǫ−3/2) bound to hold for ARC(S).) It is unclear whether the bound (3.15) for ARC(S) with
the termination condition (3.1) is also sharp.

3.4 Further improving the evaluation complexity of cubic regularization
for nonlinear least-squares with special structure

Suppose that r(x) in (1.1) is gradient-dominated of degree 2 [22], namely,

‖J(x)T r(x)‖
‖r(x)‖ ≥ σmin(J(x)) ≥ τ2 > 0, x ∈ IRn, (3.25)

where σmin(J(x)) denotes the smallest singular value of J(x); this implies that gr in (3.1) is
bounded away from zero for all r(x) 6= 0. Then under the conditions of Theorem 3.2, one
can deduce from (3.4) and (3.19) that r(xk) must converge to zero as k → ∞, and that the
asymptotic rate of this convergence is superlinear (i.e., linear with any convergence factor
β ∈ (0, 1)); also, the algorithm takes a (problem-dependent) constant number of steps to
enter this region of superlinear convergence. We do not give the details of this result here
as a (slightly stronger) result of this form—where the size of the neighbourhood of fast local
convergence does not depend on β and r(x0) enters the complexity bound in a polynomial
way—was given in [22, Theorem 7] for cubic regularization; the latter result continues to hold

Evaluation complexity of nonlinear least-squares and constrained problems 13

here for ARC(S) when applied to problems which we know a-priori satisfy (3.25) since then
(3.1) is no longer required explicitly. An advantage of our (slightly weaker) approach here is
that the termination condition (3.1) ’senses’ naturally when (3.25) holds and ensures ARC(S)

behaves accordingly.
Similarly, assume now that the smallest singular value of the Jacobian of r(x) converges

to zero at the same rate as r(x), or that there exists τ1 > 0 such that ‖J(x)T r(x)‖/‖r(x)‖ ≥
τ1‖r(x)‖ for all x, which is the same as r(x) being gradient-dominated of degree 1 [22]. Then
again we can deduce improved complexity bounds from (3.4) in the same vein as [22, Theorem
6], giving that ARC(S) requires at most O

(

ǫ−1
)

evaluations to ensure ‖r(xk)‖ ≤ ǫ. (Note the
understandably weaker bound in this case since we minimize the square of the residual,

when compared to the ARC bound of order O
(

ǫ−1/2
)

for minimizing general unconstrained

gradient-dominated functions of degree 1 [5, 22].)
The cases of gradient-dominated residuals of some intermediate degree with value between

1 and 2, can be similarly analyzed, yielding improvement over the bound (3.15).

4 The ShS-ARC algorithm for equality-constrained problems

Consider now the equality constrained problem

minimize f(x) such that c(x) = 0, (4.1)

where f : IRn → IR and c : IRn → IRm with m ≤ n. We assume that

AC.1 The function c is twice continuously differentiable on IRn and f is twice continu-
ously differentiable in an open neighbourhood of

C1 = {x ∈ IRn | ‖c(x)‖ ≤ κc}, where κc > 0 is (small) constant. (4.2)

The algorithm we now describe consists of two phases; see Figure 4.1 (a) on page 17. In
the first, ARC(S) with termination condition (3.1) is applied to (1.1) with r = c, so as to
minimize 1

2
‖c(x)‖2 (independently of the objective function f), resulting in a point which is

either (approximately) feasible, or is an approximate infeasible stationary point of ‖c(x)‖.
The latter outcome is not desirable if one wishes to solve (4.1), but cannot be avoided by any
algorithm not relying on global minimization or if C1 is empty. If an (approximate) feasible
point has been found, Phase 2 of the algorithm then performs short cubic regularization
steps for a parametrized family of least-squares functions so long as first-order criticality is
not attained. These steps are computed by attempting to preserve approximate feasibility of
the iterates while producing values of the objective function that are close to a sequence of
decreasing “targets”. To be specific, one or more ARC(S) iterations are applied to minimizing

the least-squares function Φ(x, t)
def
= 1

2
‖r(x, t)‖2 with respect to x, where

r(x, t)
def
=

(

c(x)
f(x)− t

)

(4.3)

and where t is a “target” value for f(x). Clearly, the Jacobian A(x, t) of the residual function
r(x, t) in (4.3) satisfies

A(x, t)
def
= A(x) =

(

J(x)
g(x)

)

, (4.4)

Evaluation complexity of nonlinear least-squares and constrained problems 14

where J(x) is the Jacobian of the constraint function c(x) and g(x) is the gradient of f(x).
Thus ∇xΦ(x, t) = A(x, t)T r(x, t) and the scaled gradient (3.2) has the expression

gr(x, t)
def
=

A(x, t)T r(x, t)
‖r(x, t)‖ =

J(x)T c(x) + (f(x)− t)g(x)
‖r(x, t)‖ , whenever r(x, t) 6= 0;

0, otherwise.
(4.5)

We are now ready to summarize our Short-Step ARC (ShS-ARC) algorithm.

Algorithm 4.1: The Short-Step ARC (ShS-ARC) algorithm for (4.1).

A starting point x0, initial regularization parameters σ0 and σ1 and a minimal one
σmin such that min{σ0, σ1} ≥ σmin > 0, and algorithmic parameters γ2 ≥ γ1 > 1 and
1 > η2 ≥ η1 > 0, as well as the tolerances ǫp ∈ (0, 1) and ǫd ∈ (0, 1), are given.

Phase 1:
Starting from x0, apply ARC(S) to minimize 1

2
‖c(x)‖2 until a point x1 is found such

that (3.1) is satisfied, namely,

‖c(x1)‖ ≤ ǫp or
‖J(x1)T c(x1)‖

‖c(x1)‖
≤ ǫd. (4.6)

If ‖c(x1)‖ > ǫp, terminate [locally infeasible].

Phase 2:

1. Set t1 = f(x1)−
√

ǫ2p − ‖c(x1)‖2 and k = 1.

2. For k = 1, 2, . . ., do:

(a) Starting from xk, apply one iteration of ARC(S) to approximately mini-
mize 1

2
‖r(x, tk)‖2 in (4.3).

(b) If ‖gr(xk+1, tk)‖ ≤ ǫd, terminate.

(c) If ρk ≥ η1, set

tk+1 = f(xk+1)−
√

‖r(xk, tk)‖2 − ‖r(xk+1, tk)‖2 + (f(xk+1)− tk)2. (4.7)

Otherwise, set tk+1 = tk.

Note that the monotonicity property of the ARC(S) iterates [10, (2.5), (3.19)] generated
in Step 2a of Phase 2 of ShS-ARC provides

‖r(xk, tk)‖ ≥ ‖r(xk+1, tk)‖ for all k ≥ 1, (4.8)

and so the updating procedure for tk in (4.7) is well defined. Furthermore, (4.7) gives

tk − tk+1 = −(f(xk+1)− tk) +
√

‖r(xk, tk)‖2 − ‖r(xk+1, tk)‖2 + (f(xk+1)− tk)
2, (4.9)

Evaluation complexity of nonlinear least-squares and constrained problems 15

for any successful k ≥ 1, which we use to show next that the target values tk decrease
monotonically.

Lemma 4.1 In Phase 2 of the ShS-ARC algorithm, the target values satisfy

tk ≥ tk+1 for all k ≥ 1. (4.10)

Proof. Due to (4.9), (4.10) follows immediately in the case when f(xk+1) ≤ tk. Other-
wise, when f(xk+1) > tk, conjugacy properties and (4.9) give

tk − tk+1 =
‖r(xk, tk)‖2 − ‖r(xk+1, tk)‖2

f(xk+1)− tk +
√

‖r(xk, tk)‖2 − ‖r(xk+1, tk)‖2 + (f(xk+1)− tk)
2
≥ 0,

where in the last inequality, we also used (4.8). 2

Phase 2 of the ShS-ARC terminates when

‖gr(xk+1, tk)‖ ≤ ǫd, (4.11)

where gr is defined in (4.5) and ǫd ∈ (0, 1) is fixed at the start of the algorithm. Allowing
different primal and dual accuracy tolerances makes sense if one considers the possibly differ-
ent scalings of the (primal) residuals and (dual) gradients. The latter may occur for instance
when the Jacobian A(x) in (4.4) is not full rank, which is the case at KKT points of (4.1).
The next lemma connects (4.11) to approximate KKT points of (4.1) and to critical points
of the feasibility measure ‖c(x)‖.

Lemma 4.2 For some (x, t), assume that the scaled gradient (4.5) of r(x, t) in (4.3)
satisfies

‖gr(x, t)‖ =
‖J(x)T c(x) + (f(x)− t)g(x)‖

‖r(x, t)‖ ≤ ǫd. (4.12)

Denote

R(x)
def
= δ

‖J(x)T c(x)‖
‖c(x)‖ · ‖g(x)‖ , for some δ ∈ (0, 1).

Then either
‖J(x)T c(x)‖

‖c(x)‖ ≤ 1 +R(x)

1− δ
ǫd, (4.13)

or
∥

∥

∥

∥

∥

J(x)T c(x)

|f(x)− t| + g(x)

∥

∥

∥

∥

∥

≤
(

1 +
1

R(x)

)

ǫd. (4.14)

Proof. We distinguish two possible cases. Firstly, assume that

|f(x)− t| < R(x)‖c(x)‖. (4.15)

Evaluation complexity of nonlinear least-squares and constrained problems 16

The triangle inequality and (4.15) provide

‖J(x)T c(x) + (f(x)− t)g(x)‖ ≥ ‖J(x)T c(x)‖ − |f(x)− t| · ‖g(x)‖

≥ ‖J(x)T c(x)‖ −R(x)‖c(x)‖ · ‖g(x)‖.

Using norm properties and (4.15) again give

‖r(x, t)‖ = ‖(c(x), f(x)− t)‖ ≤ ‖c(x)‖+ |f(x)− t| ≤ (1 +R(x)) ‖c(x)‖.

These last two displayed equations, (4.12) and the definition of R(x) give

ǫd ≥ 1

1 +R(x)

[

‖J(x)T c(x)‖
‖c(x)‖ −R(x)‖g(x)‖

]

=
1− δ

1 +R(x)
· ‖J(x)

T c(x)‖
‖c(x)‖ ,

and (4.13) follows.
Alternatively, when (4.15) fails, we must have that

|f(x)− t| ≥ R(x)‖c(x)‖. (4.16)

Then

‖r(x, t)‖ = ‖(c(x), f(x)− t)‖ ≤ ‖c(x)‖+ |f(x)− t| ≤
(

1 +
1

R(x)

)

|f(x)− t|.

It follows from (4.12) that

∥

∥

∥

∥

∥

J(x)T c(x)

|f(x)− t| + g(x)

∥

∥

∥

∥

∥

≤ ǫd
‖r(x, t)‖
|f(x)− t| ≤

(

1 +
1

R(x)

)

ǫd,

which gives (4.14). 2

Note that the value of δ in the expression of R(x) is arbitrary, in particular, it can be say
0.5.

If we enter Phase 2 of ShS-ARC, we have ‖c(x1)‖ ≤ ǫp. We show in the next section
that in fact, we remain sufficiently close to the constraints for all subsequent iterates so that
‖c(xk)‖ ≤ ǫp. This and Lemma 4.2 imply that when the ShS-ARC algorithm terminates
with (4.11), then either we are ‘close’ to a feasible critical point of the feasibility measure
‖c(x)‖ or we are ‘close’ to a KKT point of (4.1). In particular, if the objective’s gradient g(x)
is bounded above on C1 (such as when AC.3 below holds) and some uniform positive lower
bound on ‖J(x)T c(x)‖/‖c(x)‖ is available for all x ∈ C1 (such as when J(x) is uniformly full
rank), then the right-hand sides of (4.14) is independent of x and hence, is constant multiple
of ǫd.

In the next section, we establish that ShS-ARC remains close to the constraints at each
step, and that the target values tk decrease by a fixed amount in each iteration. Thus either
(4.11) holds for some k—and so we are approximately critical for (4.1) or for the constraints—
or the targets reach f∗, the global minimum of f over the set of constraints, in which case again
(4.11) must hold. Thus ShS-ARC will terminate; furthermore, when ǫp = ǫ and ǫd = ǫ2/3, its

worst-case evaluation complexity is O
(

ǫ−3/2
)

, just like in the unconstrained case.

Evaluation complexity of nonlinear least-squares and constrained problems 17

Phase 2

Phase 1

Φ(x
+
,t)

Φ(x,t)

t
+

t

ε3/2

−ε ε
||c||

f

Figure 4.1: (a) Illustration of ShS-ARC Phase 1 & 2. (b) A successful iteration of ShS-ARC’s
Phase 2 in the case where ǫp = ǫ and ǫd = ǫ2/3.

5 Complexity of the ShS-ARC algorithm for the equality
constrained problem

Before analyzing the complexity of Algorithm ShS-ARC, we state our assumptions formally
(in addition to AC.1):

AC.2 The norm of c is uniformly bounded above on IRn by cup and its Jacobian J(x) is
globally Lipschitz continuous in IRn with Lipschitz constant LJ > 0. The components
ci and ∇2ci(x) are globally Lipschitz continuous on IRn with Lipschitz constants Lci > 0
and LH,ci , for i ∈ {1, . . . ,m}.

AC.3 f(x), g(x) and ∇2f(x) are Lipschitz continuous in C1 which is defined in (4.2),
with Lipschitz constants Lf , Lg,f > 0 and LH,f , respectively.

AC.4 The objective f(x) is bounded above and below in C1, that is there exist constants
flow and flow ≥ fup − 1 such that

flow ≤ f(x) ≤ fup for all x ∈ C1.

The assumptions AC.1–AC.4, the construction of ShS-ARC and (4.10) imply that AR.1–AR.4
hold for each of the least-squares functions that we employ in ShS-ARC, namely, 1

2
‖c(x)‖2 and

1

2
‖r(x, tk)‖2 for k ≥ 1; furthermore, the resulting constants are independent of k. In particular,

the corresponding values of Lg in (2.10) for 1

2
‖c(x)‖2 and 1

2
‖r(x, tk)‖2 are, respectively,

Lg,1
def
= L2

c + cupLJ and Lg,2
def
= ‖(Lc, Lf)‖2 +max{cup, |fup|+ |t1|}‖(LJ , Lg,f)‖, (5.1)

where Lc
def
= ‖(Lc1 , . . . , Lcm)‖ is the Lipschitz constant of c, while the corresponding values of

L in (2.13) for 1

2
‖c(x)‖2 and 1

2
‖r(x, tk)‖2 are, respectively,

L1
def
= 2LJLc + LJ

m
∑

i=1

Lci + ‖c(x0)‖
m
∑

i=1

LH,ci , and (5.2)

Evaluation complexity of nonlinear least-squares and constrained problems 18

L2
def
= ‖(LJ , Lg,f)‖

(

2‖(Lc, Lf)‖+ Lf +
m
∑

i=1

Lci

)

+max{cup, |fup|+ |t1|}
(

LH,f +
m
∑

i=1

LH,ci

)

.

(5.3)
The next lemma shows that Phase 2 of ShS-ARC consists of (at most) a constant number

of unsuccessful ARC(S) steps followed by a successful one for minimizing 1

2
‖r(x, tk)‖2 for fixed

tk, after which tk is decreased according to (4.7).

Lemma 5.1 Let AC.1–AC.4 hold, as well as AM.4 for the Hessian of 1

2
‖r(x, tk)‖2 and

its approximation. Then the Phase 2 iterations of the ShS-ARC algorithm satisfy

σk ≤ max (σ1, 3

2
γ2(L2 + C))

def
= σsh, for all k ≥ 1, (5.4)

where L2 is defined in (5.3). Also, at most

Lsh
def
=

⌈

1 +
2

log γ1
log

(

σsh

σmin

)⌉

(5.5)

ShS-ARC/ARC(S) iterations are performed for each distinct target value tk.

Proof. The implication (2.18) in Lemma 2.1 directly applies to the Phase 2 iterations
of ShS-ARC, with constants L = L2 defined in (5.3) and C given in AM.4, independent
of k. The construction of a Phase 2 iteration of ShS-ARC and (2.6) imply that whenever
σk is large in the sense of (2.18), we have σk+1 ≤ σk. Thus (5.4) follows, noting that the
factor γ2 in σsh is allowed for the case when σk is only slightly less than 3(L2+C)/2 and k
is not very successful, while the term σ1 in (5.4) accounts for choices at the start of Phase
2.

Note that Theorem 2.2 directly applies to the Phase 2 iterations of ShS-ARC that employ
the same target value tk. Thus the bound (5.5) follows directly from (2.25), (5.4), the
use of parameters γ1 and σmin in Phase 2 of ShS-ARC, as well as the fact that we only
take one successful ShS-ARC/ARC(S) iteration for each fixed tk (and so, here, |Sj | = 1 in
(2.25)). 2

The next lemma gives an auxiliary result to be used in Lemma 5.3.

Lemma 5.2 Consider the following optimization problem in two variables

min
(f,c)∈IR2

F (f, c)
def
= −f +

√

ǫ2 − c2 subject to f2 + c2 ≤ α2, (5.6)

where 0 < α < ǫ. The global minimum of (5.6) is attained at (f∗, c∗) = (α, 0) and it is
given by F (f∗, c∗) = −α+ ǫ.

Evaluation complexity of nonlinear least-squares and constrained problems 19

Proof. Note that for any feasible (f, c), ǫ2 − c2 > 0 since α < ǫ. We have

∇F (f, c) =

(

−1,− c√
ǫ2 − c2

)

6= 0, for all (f, c).

Thus the solution of (5.6) is attained on the boundary of the feasible region, namely f2
∗ +c2∗ =

α2. Also, (f∗, c∗) satisfies the KKT conditions for (5.6), namely,

−1 + 2λ∗f∗ = 0

− c∗
√

ǫ2 − c2∗

+ 2λ∗c∗ = 0

λ∗ ≥ 0 and f2
∗ + c2∗ = α2,

where λ∗ is the multiplier at the minimizer (f∗, c∗). The first condition above implies that
f∗ 6= 0 and λ∗ 6= 0. Thus λ∗ = 1/(2f∗), which substituted into the second KKT condition
gives

c∗

(

1

f∗
− 1
√

ǫ2 − c2∗

)

= 0.

Note that f∗ 6=
√

ǫ2 − c2∗ since f2
∗ + c2∗ = α2 and α < ǫ. Thus c∗ = 0, and f∗ = ±α. Since we

are minimizing, the smallest value of F (f, c∗) is at f∗ = α. 2

The next lemma proves the crucial observation that all Phase 2 iterates remain (approxi-
mately) feasible, and that the targets tk decrease by a quantity bounded below by a multiple

of ǫ
3/2
d ǫ

1/2
p at every successful iteration k until termination.

Lemma 5.3 Suppose that AC.1–AC.4 hold, as well as AM.4 for the Hessian of
1

2
‖r(x, tk)‖2 and its approximation. For every Phase 2 iteration k ≥ 1 of the ShS-ARC

algorithm for which (4.11) fails, we have that

f(xk+1)− tk+1 ≥ 0, (5.7)

‖r(xk, tk)‖ = ǫp, (5.8)

‖c(xk)‖ ≤ ǫp and |f(xk)− tk| ≤ ǫp. (5.9)

Moreover, if iteration k is successful and ǫd ≤ ǫ
1/3
p , then

tk − tk+1 ≥ κtǫ
3/2
d ǫ1/2p (5.10)

for some problem-dependent constant κt
def
= min{αβ3/2, 1 − β}, where β ∈ (0, 1) is any

fixed problem-independent constant, α
def
= η1σminκ

3
g,r and

κg,r
def
=
√

(1− κθ)/(1

2
L2 + C + σsh + κθLg,2), (5.11)

with κθ, L2, C, σsh and Lg,2 defined in (2.4), (5.3), (2.16), (5.4) and (5.1), respectively.

Evaluation complexity of nonlinear least-squares and constrained problems 20

Proof. We start by observing that (5.7) immediately follows from (4.7) and (4.8). Also,
(5.9) follows straightforwardly from (5.8). Next, we prove (5.8), by induction on k. Firstly,
note that this inequality holds by construction for k = 1. Assume now that iteration k > 1 is
successful and that

‖r(xk, tk)‖ = ǫp. (5.12)

Then

(f(xk+1)− tk+1)
2 = ‖r(xk, tk)‖2−‖r(xk+1, tk)‖2+(f(xk+1)− tk)

2 = ‖r(xk, tk)‖2−‖c(xk+1)‖2,

where (5.7) and (4.7) give the first identity, while the second equality follows from (4.3). Thus
we deduce, also using (4.3), that

‖r(xk+1, tk+1)‖2 = ‖r(xk, tk)‖2,

which concludes our induction step due to (5.12).
It remains to establish (5.10). Lemma 3.1 applies to minimizing 1

2
‖r(x, tk)‖2, and so (3.3)

implies that for any successful k ≥ 1, we have

‖r(xk, tk)‖ − ‖r(xk+1, tk)‖ ≥ κtmin
{

‖gr(xk+1, tk)‖3/2 · ‖r(xk, tk)‖1/2, ‖r(xk, tk)‖
}

, (5.13)

where κt is defined below (5.10). Thus for any successful k ≥ 1 for which (4.11) fails, (5.13)
becomes

‖r(xk, tk)‖ − ‖r(xk+1, tk)‖ ≥ κtmin
{

ǫ
3/2
d ǫ1/2p , ǫp

}

= κtǫ
3/2
d ǫ1/2p , (5.14)

where we also used (5.8) in the first inequality and ǫd ≤ ǫ
1/3
p , in the second identity. Using

(4.3) and the properties of the l2-norm, (4.9) becomes

tk − tk+1 = −(f(xk+1)− tk) +
√

‖r(xk, tk)‖2 − ‖c(xk+1)‖2

= −(f(xk+1)− tk) +
√

ǫ2p − ‖c(xk+1)‖2,
(5.15)

where we used (5.8) in the second equality. It follows from (4.3) that

(f(xk+1)− tk)
2 + ‖c(xk+1)‖2 = ‖r(xk+1, tk)‖2

≤
(

‖r(xk, tk)‖ − κtǫ
3/2
d ǫ

1/2
p

)2

=
(

ǫp − κtǫ
3/2
d ǫ

1/2
p

)2

(5.16)

where in the first inequality we used (5.14) and in the second, (5.8). We now apply Lemma
5.2 to the third right-hand side of (5.15), letting f = f(xk+1)− tk, c = ‖c(xk+1)‖, ǫ = ǫp and

α = ǫp − κtǫ
3/2
d ǫ

1/2
p . We deduce from this Lemma, (5.15) and (5.16) that

tk − tk+1 ≥ −α+ ǫp = −(ǫp − κtǫ
3/2
d ǫ1/2p) + ǫp = κtǫ

3/2
d ǫ1/2p

which proves (5.10). 2

Figure 4.1 (b) illustrates the workings of one successful Phase 2 iteration for ǫ
def
= ǫp and

ǫd
def
= ǫ2/3, the case of most interest to us as it coincides with the evaluation complexity of

Evaluation complexity of nonlinear least-squares and constrained problems 21

ARC for the unconstrained case. The figure exemplifies that the amount of decrease in the
target values is inherited from the merit function decrease (5.14).

Note that the ShS-ARC algorithm requires one evaluation of the objective function, its
gradient (and possibly Hessian) and one evaluation of the vector of constraint functions, its
Jacobian (and possibly Hessians) per iteration. We are now ready to give the main complexity
result for ShS-ARC applied to (4.1).

Theorem 5.4 Suppose that AC.1–AC.4 hold, and that ShS-ARC is applied to minimiz-

ing (4.1) with ǫd ≤ ǫ
1/3
p . Assume also that AM.4 holds for the Hessians of 1

2
‖c(x)‖2 and

1

2
‖r(x, tk)‖2 and its approximations. Then the ShS-ARC algorithm generates an iterate

xk satisfying either the approximate KKT conditions for (4.1), namely,

(4.14) at x = xk with ‖c(xk)‖ ≤ ǫp

or the approximate first-order criticality conditions for the feasibility measure ‖c(x)‖,
namely,

either [(4.6) with ‖c(xk)‖ > ǫp] or [(4.13) at x = xk with ‖c(xk)‖ ≤ ǫp]

in at most
⌈

κf,cǫ
−3/2
d ǫ−1/2

p

⌉

(5.17)

evaluations of c and f (and their derivatives), where κf,c > 0 is a problem-dependent
constant, independent of ǫp,d and x0.

Proof. The evaluation complexity of Phase 1 follows directly from Theorem 3.2 with

Φ(x)
def
= 1

2
‖c(x)‖2. In particular, the evaluation complexity of obtaining x1 is bounded above

by

⌈κSmax{κ1, κ2}max{ǫ−3/2
d , ǫ−1/2

p }⌉ (5.18)

where κ1,2 and κS are defined in (3.16) and (3.17) with r(x0) = c(x0), L = L1 given in
(5.2) and Lg = Lg,1 in (5.1). If the algorithm terminates at this stage, then both (4.6) and
‖c(x1)‖ > ǫp hold, as requested. Assume now that Phase 2 of the ShS-ARC algorithm is
entered. From AC.4 and (5.9), we have

flow ≤ f(xk) ≤ tk + ǫp ≤ t1 − ikκtǫ
3/2
d ǫ1/2p + ǫp ≤ f(x1)− ikκtǫ

3/2
d ǫ1/2p + ǫp

where ik is the number of successful ShS-ARC iterations from 1 to k for which (4.11) fails,
and where we have also used (5.10) and the definition of t1 in the ShS-ARC algorithm. Hence,
we obtain from the inequality f(x1) ≤ fup (itself implied by AC.4 again) and ǫp ∈ (0, 1) that

ik ≤
⌈

fup − flow + 1

κtǫ
3/2
d ǫ

1/2
p

⌉

def
= Ls

sh. (5.19)

Since for each distinct value of tk we have one successful iteration, (5.5) in Lemma 5.1 implies
that the total number of Phase 2 iterations for which (4.11) fails is bounded above by Ls

sh ·Lsh,

Evaluation complexity of nonlinear least-squares and constrained problems 22

where Lsh is defined in (5.5) and Ls
sh, in (5.19). Thus the ShS-ARC algorithm must terminate

after this many iterations at most, yielding, because of Lemma 4.2, an iterate satisfying
‖c(xk)‖ ≤ ǫp and either (4.14) or (4.13). Recalling that only one evaluation of c and f (and
their derivatives, if successful) occurs per iteration, the bound (5.17) now follows by summing
up the Phase 1 and Phase 2 iteration bounds, and using that ǫp ∈ (0, 1) which gives that the
Phase 2 bound dominates in the order of (ǫp, ǫd). 2

If ǫd
def
= ǫ

2/3
p , then Theorem 5.4 implies that the evaluation complexity of ShS-ARC is

at most O(ǫ
−3/2
p), the same as for the unconstrained case. However, if ǫd

def
= ǫp, then this

complexity bound worsens to O(ǫ−2
p), the same in order as for steepest-descent-type methods

for both constrained and unconstrained problems [3, 11].

6 Conclusions

We have shown that with an appropriate and practical termination condition, the (optimal)
cubic regularization variant ARC(S) takes at most O(ǫ−3/2) evaluations to drive the residual
or the scaled gradient of the potentially singular least-squares problem (1.1) below ǫ. Our
analysis has focused on the Euclidean norm case, but it can be easily extended to general
inner products and induced norms, and to smooth lp-norms for p > 2. Though the order ǫ−3/2

of the ARC bound is optimal for unconstrained optimization when second-order methods are
employed [4], and it is sharp for nonlinear least-squares when ensuring (1.2) is sufficiently
small, it is unclear whether it is optimal or even sharp for ARC(S) with the novel termination
condition (3.1).

For the equality-constrained potentially nonconvex programming problem (4.1), we pre-
sented a target-following technique ShS-ARC that applies ARC(S) to target-dependent least-
squares merit functions tracking a path of approximately feasible points (if an initial such
point can be found). Furthermore, in order to ensure approximate first-order conditions for
(4.1) or for a feasibility measure—within ǫp for the constraint feasibility and within ǫd for dual

(first-order) feasibility—ShS-ARC requires at most O(ǫ
−3/2
d ǫ

−1/2
p) problem-evaluations, which

depending on the choice of tolerances ǫp and ǫd can take any value between the complexity

O(ǫ
−3/2
p) of ARC (namely, when ǫd = ǫ

2/3
p) and O(ǫ−2

p) of steepest-descent (when ǫd = ǫp).
Though it is natural for the primal and dual feasibility residuals to vary at different rates,
and hence require different optimality tolerances (with higher accuracy for primal feasibility
than for dual being common), it is an open question at the moment whether an algorithm for
nonconvexly constrained problems can be devised that has worst-case evaluation complexity
of order ǫ−3/2 where ǫ = ǫp = ǫd. Also, extending ShS-ARC or other cubic regularization
approaches to problems with nonconvex inequality constraints remains to be considered.

References

[1] S. Bellavia, C. Cartis, N. I. M. Gould, B. Morini and Ph. L. Toint. Convergence of a
Regularized Euclidean Residual algorithm for nonlinear least-squares. SIAM Journal on

Numerical Analysis, 48(1): 1–29, 2010.

[2] R. H. Byrd, R. B. Schnabel and G. A. Shultz. A trust region algorithm for nonlinearly
constrained optimization. SIAM Journal on Numerical Analysis, 24:1152–1170, 1987.

Evaluation complexity of nonlinear least-squares and constrained problems 23

[3] C. Cartis, N. I. M. Gould and Ph. L. Toint. On the complexity of finding first-order
critical points in constrained nonlinear programming. ERGO Technical Report 11-005,
School of Mathematics, University of Edinburgh, 2011.

[4] C. Cartis, N. I. M. Gould and Ph. L. Toint. Optimal Newton-type methods for nonconvex
smooth optimization problems. ERGO Technical Report 11-009, School of Mathematics,
University of Edinburgh, 2011.

[5] C. Cartis, N. I. M. Gould and Ph. L. Toint. Evaluation complexity of adaptive cubic
regularization methods for convex unconstrained optimization. Optimization Methods

and Software, DOI:10.1080/10556788.2011.602076, 2011.

[6] C. Cartis, N. I. M. Gould and Ph. L. Toint. An adaptive cubic regularization algorithm for
nonconvex optimization with convex constraints and its function-evaluation complexity.
IMA Journal of Numerical Analysis, doi: 10.1093/imanum/drr035, 2011.

[7] C. Cartis, N. I. M. Gould and Ph. L. Toint. On the oracle complexity of first-order
and derivative-free algorithms for smooth nonconvex minimization. SIAM Journal on

Optimization, 22(1):66–86, 2012.

[8] C. Cartis, N. I. M. Gould and Ph. L. Toint. On the evaluation complexity of composite
function minimization with applications to nonconvex nonlinear programming. SIAM

Journal on Optimization, 21(4):1721–1739, 2011.

[9] C. Cartis, N. I. M. Gould and Ph. L. Toint. Adaptive cubic regularisation methods
for unconstrained optimization. Part II: worst-case function- and derivative-evaluation
complexity. Mathematical Programming, 130(2):295–319, 2011.

[10] C. Cartis, N. I. M. Gould and Ph. L. Toint. Adaptive cubic regularisation methods
for unconstrained optimization. Part I: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295, 2011.

[11] C. Cartis, N. I. M. Gould and Ph. L. Toint. On the complexity of steepest descent,
Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization.
SIAM Journal on Optimization, 20(6):2833–2852, 2010.

[12] M. R. Celis. A trust region strategy for nonlinear equality constrained optimization.
Technical Report 85-4. Department of Computational and Applied Mathematics, Rice
University, Houston, Texas, USA, 1985.

[13] A. R. Conn, N. I. M. Gould and Ph. L. Toint. Trust-Region Methods. SIAM, Philadelphia,
USA, 2000.

[14] J. E. Dennis and J. J. Moré. A characterization of superlinear convergence and its
application to quasi-Newton methods. Mathematics of Computation, 28(126):549–560,
1974.

[15] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization

and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, USA, 1983. Reprinted as
Classics in Applied Mathematics 16, SIAM, Philadelphia, USA, 1996.

Evaluation complexity of nonlinear least-squares and constrained problems 24

[16] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathe-

matical Programming, 91:239–270, 2002.

[17] A. Griewank. The modification of Newton’s method for unconstrained optimization by
bounding cubic terms. Technical Report NA/12 (1981), Department of Applied Mathe-
matics and Theoretical Physics, University of Cambridge, United Kingdom, 1981.

[18] N. I. M. Gould and Ph. L. Toint. Nonlinear programming without a penalty function or
a filter. Mathematical Programming, 122:155-196, 2010.

[19] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms

I. Springer-Verlag, Berlin Heidelberg, 1993.

[20] Yu. Nesterov. Gradient methods for minimizing composite objective function. CORE
Discussion Paper 2007/76, Université Catholique de Louvain, Belgium, 2007.

[21] Yu. Nesterov. Modified Gauss-Newton scheme with worst case guarantees for global
performance. Optimization Methods and Software, 22(3):469–483, 2007.

[22] Yu. Nesterov and B. T. Polyak. Cubic regularization of Newton’s method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[23] J. Nocedal and S. J. Wright. Numerical Optimization. Second edition, Springer-Verlag,
New York, USA, 2006.

[24] E. O. Omojokun. Trust region algorithms for optimization with nonlinear equality and
inequality constraints. PhD Thesis, University of Colorado, Boulder, Colorado, USA,
1989.

[25] M. J. D. Powell and Y. Yuan. A trust region algorithm for equality constrained opti-
mization. Mathematical Programming, 49(2):189–213, 1990.

[26] A. Vardi. A trust region algorithm for equality constrained minimization: convergence
properties and implementation. SIAM Journal on Numerical Analysis, 22(3):575–591,
1985.

[27] M. Weiser, P. Deuflhard and B. Erdmann. Affine conjugate adaptive Newton methods
for nonlinear elastomechanics. Optimization Methods and Software, 22(3):413–431, 2007.

