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Abstract

Among numerical methods for smooth unconstrained optimization,
gradient-based linesearch methods, like quasi-Newton methods, may
work quite well even in the presence of relatively high amplitude noise
in the gradient of the objective function. We present some properties
on the amplitude of this noise which ensure a descent direction for such
a method. Exploiting this bound, we also discuss conditions under
which global convergence can be guaranteed.

1 Introduction

In the solution of smooth unconstrained optimization problems, one may
anticipate that the presence of noise in the gradient of the objective function
may create specific numerical difficulties, possibly jeopardizing convergence.
Global convergence to local critical points has nevertheless been proved for
a class of trust-region methods for smooth unconstrained optimization [1, 2,
4, 5] in which the gradient values are approximated rather than computed
exactly. The situation is less clear for linesearch methods [6], but it may
be observed that, assuming accurate objective function values, gradient-
based linesearch methods, such as quasi-Newton methods, often work well
for many problems, even in the presence of relatively high amplitude noise
in the gradient. The purpose of this short paper is to shed light on why this
is the case by attempting to model the gradient noise which is allowed by
such a method.
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2 Getting sufficient decrease in the presence of a
noisy gradient

We consider the smooth nonlinear unconstrained minimization problem, i.e.

min
x∈IRn

f(x) (2.1)

where f is a continuously differentiable function from IRn into IR. We also re-
strict our attention to linesearch methods of the form given by Algorithm 2.1,

in which the k-th iterate is denoted by xk and gk
def
= ∇xf(xk).

Algorithm 2.1: Linesearch minimization

Step 0: A starting point x0 is given. Compute f(x0) and g0, and set
k = 0.

Step 1: Determine a search direction dk such that gTk dk < 0.

Step 2: Perform a linesearch along dk, yielding xk+1, f(xk+1) and
gk+1.

Step 3: Increment k and go back to Step 1.

The hope is that the sequence {xk} generated by this algorithm asymp-
totically approaches a first-order critical point of problem (2.1), in the sense
that

lim
k→∞

‖gk‖ = 0, (2.2)

where ‖ · ‖ denotes the Euclidean norm on IRn. We then say that the
algorithm is globally convergent.

2.1 Deterministic properties

It is well-known that the descent condition stated in Step 1 of this algorithm
is generally insufficient to guarantee (2.2) from arbitrary starting points,
even if the linesearch used in Step 2 satisfies the standard conditions (see,
for instance, page 116 ff. in [6]). However, this desired convergence property
may be ensured if one is ready to strengthen the descent condition of Step 1
and assume that the angle formed by the search direction dk and the steepest
descent direction −gk is uniformly bounded away from 90 degrees. This was
formalized by Zoutendijk [11] as the condition that

cosϕk ≥ δ > 0, for all k, (2.3)
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where δ is a positive constant and

cosϕk =
−gTk dk
‖gk‖‖dk‖

(2.4)

is the cosine of the said angle. Thus, if condition (2.3) holds, the direction dk
has sufficient decrease to guarantee (2.2) with a proper linesearch scheme.
Let us know assume that gk is unknown, but that a noisy gradient g̃k is
available instead, and review the consequences of this simple change.

Steepest descent method
Following (2.3), the noisy variant of the steepest descent method chooses

the direction dk = −g̃k. Therefore, if condition

gTk g̃k
‖gk‖2‖g̃k‖2

≥ δ, (2.5)

holds, the negative noisy gradient direction remains a sufficient descent di-

rection. Furthermore, defining ∆gk, the noise in the gradient, by g̃k
def
=

gk + ∆gk, we obtain the following property.

Proposition 2.1 Assuming that, for all k ≥ 0, the norm of the gradient
noise satisfies

‖∆gk‖2 ≤
1− δ
1 + δ

‖gk‖2, (2.6)

then condition (2.5) holds for all k and the noisy steepest descent algorithm
is globally convergent.

In the interest of readability we will drop the iteration count k in the fol-
lowing proofs.

Proof. We know that

‖g‖2‖∆g‖2 ≥ |gT∆g| ≥ −gT∆g.

By combining these with (2.6) multiplied by ‖g‖2, we obtain that

−gT∆g + δ‖g‖2‖∆g‖2 ≤ ‖g‖22 − δ‖g‖22

and then that

δ‖g‖22 + δ‖g‖2‖∆g‖2 ≤ ‖g‖22 + gT∆g.

Using now that ‖g+ ∆g‖2 ≤ ‖g‖2 +‖∆g‖2 by the triangle inequality and
that ‖g‖22 = gT g, we deduce that

δ‖g‖2‖g + ∆g‖2 ≤ gT g + gT∆g,

which, in turn, gives that cosϕ ≥ δ > 0. 2
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General quasi-Newton method
If we now consider using the noisy gradient g̃k in a quasi-Newton framework,
that is choosing dk = −H−1k g̃k for some symmetric positive definite matrix
Hk, we may verify that condition (2.3) becomes

gTkH
−1
k g̃k

‖gk‖2‖H−1k g̃k‖2
≥ δ, (2.7)

In this case, it is possible to derive the following property.

Proposition 2.2 Assuming that the matrices Hk are positive definite with
uniformly bounded condition numbers κ, that δ ≤ 1√

κ
, and that the noise

satisfies

‖∆gk‖2 ≤
1− δ

√
κ

1 + δ
√
κ

‖gk‖2√
κ

(2.8)

for all k ≥ 0, then condition (2.7) holds and the corresponding quasi-Newton
algorithm is globally convergent.

Proof. We know from Property 2.1 that

if ‖∆ĝ‖2 ≤
1− δ
1 + δ

‖ĝ‖2, then
ĝT (ĝ + ∆ĝ)

‖ĝ‖2‖(ĝ + ∆ĝ)‖2
≥ δ.

If we now substitute H−
1
2 g = ĝ and H−

1
2 ∆g = ∆ĝ, we obtain that

if ‖H−
1
2 ∆g‖2 ≤

1− δ
1 + δ

‖H−
1
2 g‖2, then

gTH−1(g + ∆g)

‖H−
1
2 g‖2‖H−

1
2 (g + ∆g)‖2

≥ δ.

The right hand side of this statement can be reformulated by considering
the singular values ofH

1
2 andH−

1
2 and using the facts that σmin(H−

1
2 )‖g‖ ≤

‖H−
1
2 g‖2, that σmin(H

1
2 )‖H−1(g+∆g)‖2 and that σmin(H−

1
2 )σmin(H

1
2 ) =

1/κ(H
1
2 ). As a consequence, after dividing the complete if-statement by

‖H−
1
2 ‖2 and using that ‖H−

1
2 ∆g‖2 ≤ ‖H−

1
2 ‖2‖∆g‖2, we obtain that

if ‖∆g‖2 ≤
1− δ
1 + δ

‖H−
1
2 g‖2

‖H−
1
2 ‖2

, then
1

1/κ(H
1
2 )

gTH−1(g + ∆g)

‖g‖2‖H−1(g + ∆g)‖2
≥ δ,

which gives, using the definition of cosϕ from (2.4), that

if ‖∆g‖2 ≤
1− δ
1 + δ

‖H−
1
2 g‖2

‖H−
1
2 ‖2

, then cosϕ ≥ δ

κ(H
1
2 )
.

By substituting δ′ = δ/κ(H
1
2 ), we thus deduce that

if ‖∆g‖2 ≤
1− δ′κ(H

1
2 )

1 + δ′κ(H
1
2 )

‖H−
1
2 g‖2

‖H−
1
2 ‖2

, then cosϕ ≥ δ′.
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Multiplying the numerator and denominator of the right hand-term of the
if-statement by ‖H

1
2 ‖2 and using then that ‖H

1
2 ‖2‖H−

1
2 g‖2 ≥ ‖H

1
2H−

1
2 g‖2 =

‖g‖2 and that ‖H
1
2 ‖2‖H−

1
2 ‖2 = κ(H

1
2 ), we obtain that

if ‖∆g‖2 ≤
1− δ′κ(H

1
2 )

1 + δ′κ(H
1
2 )

‖g‖2
κ(H

1
2 )
, then cosϕ ≥ δ′.

The proof is completed by observing that κ(H
1
2 ) =

√
κ. 2

After having proved these properties and having observed that the re-
quired upper bound on the noise is (unsurprisingly) depending on the con-
dition number of the involved Hessian matrix of the optimization problem,
we may now have a closer look and perform a small test. The idea is to
check the sign of the supposed descent direction (2.7) for different random
values of ∆g with different amplitudes. We observed that condition (2.7), of
course, always held for ∆g smaller than the bound from (2.8) but, somewhat
surprisingly, that it also held very often for ∆g bigger than the bound given
by (2.8). This observation suggests that the necessary condition (2.8) might
be often too stringent.

We illustrate this issue on a small test example (Powell badly scaled
function [9]) with x∗ = (1.1 · 10−5, 9.1) and a uniform random gradient
noise with standard deviation equal to 10−3), assuming for the moment that
Property 2.2 is a tight upper bound, which means that no noise would be
allowed for an ill-conditioned problem and thus that quasi-Newton methods
would break down in a noisy situation. In this setting, it seems possible to
regularize the problem whenever the condition number is too big to allow
for a higher amplitude noise in the problem. Applying this strategy to an
existing line search BFGS method gave interesting results, as can be seen in
Figure 2.1. We implemented an automatic regularization technique which
checks at every iteration whether Property 2.2 holds or not. If it is not
satisfied for the given noise level, the condition number is decreased by
applying Hk = Hk + λI for an increasing λ until Property 2.2 holds. The
iterates obtained by using such a regularization step are displayed in the
right-hand side figure, while the left-hand side figure shows the minimization
of the problem without taking care of the gradient noise.

As it can be seen in Figure 2.1, both methods terminated prematurely
due to the noise but the regularized version stopped significantly earlier than
the unregularized one, in contrast with what can be expected from Prop-
erty 2.2. In fact, the regularization had a negative effect on the convergence
path because steps become close to steepest descent steps and get very short
due to the conditioning of the matrix.

This experience therefore confirms the overly stringent nature of Prop-
erty 2.2, and suggests that another approach could be of interest.
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Figure 2.1: Convergence paths for Powell 2D problem with (right) and with-
out (left) regularization

3 Statistical approach for a quasi-Newton method

One such approach is of statistical nature. If we now assume that the gradi-
ent noise is Gaussian ∆g ∼ N (0, σ2I) with a normal distribution with zero
mean and standard deviation σ, can we find out the largest σ ensuring a
(user specified) probability to obtain a descent direction?

Before investigating sufficient decrease, we start by considering the case
where only strict descent is required (which corresponds to the condition
in Step 1 of the linesearch algorithm, or to the case where δ = 0 and the
inequality is strict in (2.3)).

Strict descent direction
The condition for a quasi-Newton direction with an inexact gradient to be
a strict descent direction is obviously that

−gTkH−1k g̃k < 0. (3.9)

The question is therefore to find for which standard deviation σ does (3.9)
hold with a given probability. In other words, how big can the noise become
in average such that (3.9) is still very likely to hold? As we know the
distribution of ∆g, we can rewrite (3.9) as

gTH−1∆g ≥ −gTH−1g,
(StD) where the left hand side is normally distributed with

gTH−1∆g ∼ N (0, σ2‖H−1g‖22).
(3.10)

The strict inequality from (3.9) can be relaxed in the statistical approach as
the probability that exactly −gTkH

−1
k g̃k = 0 is zero.

We now look for σmax, the largest σ ensuring (StD) with a given proba-
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bility. From (3.10) we obtain that

PStD
def
= P [(StD) holds] =

2√
π

∫ +∞

− gTH−1g√
2σmax‖H−1g‖2

e−t
2
dt. (3.11)

This can be expressed in terms of the complementary Gauss error function
erfc as

PStD =
1

2
erfc

[
1√

2σmax

(
− g

TH−1g

‖H−1g‖2

)]
, (3.12)

or, in terms of the inverse complementary Gauss error function erfcinv, as

erfcinv(2PStD) =
1√

2σmax

(
− g

TH−1g

‖H−1g‖2

)
. (3.13)

We may then extract the value of σmax from this equality and obtain that

σmax =
1√

2 erfcinv(2PStD)

(
− g

TH−1g

‖H−1g‖2

)
. (3.14)

This indicates that one could expect the allowed noise level σmax to depend
on the conditioning of the matrix H, the amplitude of the gradient and of
course on the required probability of descent. We present a numerical illus-
tration of these findings below.

Sufficient descent direction
Consider now the sufficient descent direction (2.7) and the question to find
the largest σ ensuring (2.7) for a given probability. From the known distri-
bution of ∆g, we rewrite (2.7) as

(SuD) gTH−1g ≥ δ‖g‖2‖H−1(g + ∆g)‖2 − gTH−1∆g. (3.15)

and we are now interested in finding the largest σmax such that (3.15) holds
for a given probability PSuD.

Unfortunately, the distribution of the right-hand side of (3.15) can no
longer be easily computed, and we therefore have resort to simulation to
compute a corresponding value of σmax. This can be done by imposing
a first σ0, e.g., the one obtained from (StD), generating 107 examples of
the random variable δ‖g‖2‖H−1(g + ∆g)‖2 − gTH−1∆g, and computing a
CDF (cumulative distribution function) from which we then compute the
probability that (SuD) holds. If this is lower than the desired probability,
σ0 is decreased by using

σk+1 = σk −
σk
10

and a new simulation is started, until a suitable σmax is found.
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Numerical illustration
We now wish to assess our analysis and apply it to a 10-dimensional test
problem where the gradient and Hessian are defined as follows

g = [1, 2, . . . , 10]/10, H =


1t . . . 0

2t

...
. . .

...
0 . . . 10t


where t = 0, . . . , 8 represents the order of magnitude of κ, the condition
number of H. We then compute how much gradient noise can be tolerated
when the problem becomes more and more ill-conditioned. In Property 2.2
and in (SuD), we set δ = 10−5 for the experiments. The results are reported
in Figures 3.2-3.4.

Figure 3.2: Critical noise level ‖∆g‖ for Property 2.2 and σmax for PStD =
PSuD = 0.99

On each of these figures, we see the inversely proportional connection
between the condition number of H and the bound on the noise level ∆g such
that Property 2.2 holds (dashed line). The other curves show the behaviour
of the standard deviation σmax of the Gaussian noise ∆g. More specifically,
the plain line shows the values σmax ensuring that (StD) (strict descent)
holds with probability 0.99. The dash-dotted line shows the values σmax

ensuring that (SuD) (simulated sufficient descent) holds with probability
0.99. We can see on Figure 3.2 that the plain line (StD) and the dash-
dotted line (SuD) are very close together, but we observed that the bigger
δ, the larger the distance between the two curves because the allowed noise
level σmax in (SuD) decreases if δ is increased in the condition.
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Figure 3.3: Critical noise level ‖∆g‖ for Property 2.2 and σmax for PSuD =
0.99 for varying gradient norm

In the example description above, a normalized gradient ‖g‖∞ = 1 is
used. In the following, we are interested in the influence of the size of the
gradient on the tolerated noise level in the optimization method. The case
of (StD) is not represented on Figure 3.3 for visibility reasons, given that it
is nearly undistinguishable from that of (SuD) for δ = 10−5. If we look at
Figure 3.3 along the axis representing the log of the condition number, we
see the pattern of Figure 3.2 with Property 2.2 and (SuD).

The effect of the gradient norm (with ‖g‖∞ = 10−2, . . . , 102) can be
appreciated by looking at the same figure along the other horizontal axis,
which shows the propotional dependence of the tolerated noise on the size of
the gradient. This shows that, for well-conditioned problems, the tolerated
noise level is nearly as big as the infinity norm of the gradient itself.

On Figure 3.4, all statistical properties are tightened to hold with a
probability 0.9999. As expected, the curves show that the noise has to be
smaller than for the smaller probability (see Figure 3.2).

Furthermore, we can observe, in these experiments, that our statistical
approach allows for an amplitude of noise wich is sometimes considerably
higher than the deterministic one, and also that the dependency on the con-
dition number of H is very marginal in the statistical approach.

In practice. . .
Of course, the question remains of how to interpret the obtained probabil-
ities of descent in terms of convergence of the corresponding minimization
algorithm, assuming that the gradient noise at different iterations is inde-
pendent. Theoretical global convergence guarantees of the type (2.2) now
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Figure 3.4: Critical noise level ‖∆g‖ for Property 2.2 and σmax for PStD =
PSuD = 0.9999

depend on the infinite product of sufficient descent probablilities at each
iteration. Obviously, if sufficient descent occurs with the same probability
at every iteration and if this probability is less than one, then the product is
zero and convergence almost certainly fails. However, it is possible to choose
a sequence of increasing probablities of sufficient descent such that their in-
finite product converges to a value reasonably close to one, implying global
convergence with probability equal to this value (see [10] for a discussion of
suitable conditions on infinite products). But this theoretical perspective is
again somewhat too pessimistic, as algorithms are never run for infinitely
many iterations. A first reason is that practical methods always include
some stopping criterion, and that complexity theory results (see [8, 7, 3] for
examples) indicate that these stopping criteria may be achieved in a finite
(albeit large) number of iterations. More significantly, stopping rules nearly
always include a limit on the number of iterations which is often relatively
small. This limit is typically even smaller (a few tens) in the frequent case
where the only purpose of the minimization is to obtain significant decrease
of the objective function (rather than convergence to a solution). If p is
an iteration independent probability of sufficient descent resulting from our
above discussion, the probability that the corresponding minimization algo-
rithm finds a descent direction for the first m iterations is pm, which might
still be acceptable, in this perspective, for small m and p relatively close to
one.
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4 Numerical example in aerodynamics

We finally illustrate our theory on some real data from an aerodynamical
shape optimization problem. In this test case, we consider a function mea-
suring the pressure drag for a parameterized wing shape, which is obtained
by approximately solving the Navier-Stokes equations by simulation. We
sampled 100 function and gradient values by only changing one variable
(the position of a normalized bump on the upside of the wing) in the in-
tervall (0.7, 0.9). Figure 4.5 displays the adjoint state gradient (dotted line)
and the gradient approximated by finite differences (plain line). By exam-
ining the zero ordinate, we note that the finite differences gradient reports a
critical point close to 0.82, while the adjoint gradient places it close to 0.78.
Assuming that the finite differences gradient gives a fairly good approxima-
tion of the real gradient, the picture reveals a very significant error/noise in
the adjoint state gradient.

Figure 4.5: Finite differences gradient and adjoint state gradient of aerody-
namic example

However, the adjoint can be computed much more cheaply (in terms
of computing time) than a finite differences gradient, especially in higher
dimensions. As a consequence, practitioners prefer to use the adjoint even
though it clearly inherits a considerable amount of noise from the simulation
process. In Figure 4.6, the attained noise level of the adjoint state gradient
(computed error with respect to the finite differences gradient) is depicted as
a dotted line, the amount of tolerated noise to ensure deterministic descent
(Property 2.2) as a dashed line, and the amount of tolerated noise to ensure
that (SuD) holds with probability 0.99 as a dotted line. Thus, we expect a
gradient-based algorithm to converge if the values of the gradient error are
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Figure 4.6: Error in adjoint state gradient and error bounds of quasi-Newton
method

below one of these curves. In our example, this gives a hypothetically safe
region up to an abscissa of 0.77 and beginning again from 0.84. The interval
[0.77, 0.84] indicates the region where we expect the iterates of the opti-
mization algorithm to get into trouble. Note that the deterministic bound
is violated for all reported values of the abscissa. Interestingly, these obser-
vations provide a nice a posteriori explanation of the unexpected results of a
comparison of gradient-based optimization packages which we ran for other
purposes (with a maximum number of iterations of 100), and in which the
approximate solutions returned by the solvers for this one-dimensional prob-
lem ranged from x∗ = 0.7862 to x∗ = 0.8180 with corresponding function
values from f∗ = 111.515 to f∗ = 111.705.

5 Conclusions

We addressed the question of how much noise in the gradient is tolerable
for a quasi-Newton method without jeopardizing its descent properties. We
established a deterministic property on the noise which ensures a sufficient
descent direction for a globally convergent algorithm using an inexact gradi-
ent in this method. This property shows a strong dependence between the
condition of the problem and the allowed noise. However, a simple experi-
mental check with random noise of different amplitude has shown that this
property indeed covers the worst case but seems to be overstringent in the
average case. We also developed an alternative model assuming that the
gradient noise has Gaussian distribution with mean zero and variance σ2 in
order to analyze what level of noise can be accomodated on average.
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Our theory and experiments confirmed dependencies between the ampli-
tude of the gradient norm and Hessian condition number and the tolerated
noise in the gradient. However, the dependence on the allowed noise level
on Hessian conditioning is much weaker in the statistical context than in
the deterministic one.

Finally, we used our analysis to explain the unexpectedly good behaviour
of quasi-Newton methods on a practical problem arising from aerodynamics.

Our development assumes exact function values and noisy gradient val-
ues. The extension to the more general situation where both, function and
gradient information, are inexact is of course also of interest.
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