
Numerical experience with a derivative-free trust-funnel
method for nonlinear optimization problems with general

nonlinear constraints

by Ph. R. Sampaio and Ph. L. Toint

Report naXys-03-2015 August 12, 2015

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

Subbasis

Min. Frobenius norm
Min. l

2
−norm

Regression

University of Namur, 61, rue de Bruxelles, B5000 Namur (Belgium)

http://www.unamur.be/sciences/naxys

Numerical experience with a derivative-free trust-funnel method for

nonlinear optimization problems with general nonlinear constraints

Ph. R. Sampaio∗ and Ph. L. Toint†

August 12, 2015

Abstract

A trust-funnel method is proposed for solving nonlinear optimization problems with general
nonlinear constraints. It extends the one presented by Gould and Toint (Math. Prog., 122(1):155-
196, 2010), originally proposed for equality-constrained optimization problems only, to problems
with both equality and inequality constraints and where simple bounds are also considered. As
the original one, our method makes use of neither filter nor penalty functions and considers the
objective function and the constraints as independently as possible. To handle the bounds, an active-
set approach is employed. We then exploit techniques developed for derivative-free optimization to
obtain a method that can also be used to solve problems where the derivatives are unavailable or
are available at a prohibitive cost. The resulting approach extends the DEFT-FUNNEL algorithm
presented by Sampaio and Toint (Comput. Optim. Appl., 61(1):25-49, 2015), which implements a
derivative-free trust-funnel method for equality-constrained problems. Numerical experiments with
the extended algorithm show that our approach compares favorably to other well-known model-
based algorithms for derivative-free optimization.

Keywords: Constrained nonlinear optimization, trust-region method, trust funnel, derivative-free
optimization.

1 Introduction

We consider the solution of the nonlinear optimization problem
min
x

f(x)

s.t.: ls ≤ c(x) ≤ us,
lx ≤ x ≤ ux,

(1.1)

where we assume that f : IRn → IR and c : IRn → IRm are twice continuously differentiable, and
that f is bounded below on the feasible domain. The vectors ls and us are lower and upper bounds,
respectively, on the constraints’ values c(x), while lx and ux are bounds on the x variables, with
ls ∈ (IR ∪ −∞)m, us ∈ (IR ∪∞)m, lx ∈ (IR ∪ −∞)n and ux ∈ (IR ∪∞)n.

∗Namur Center for Complex Systems (naXys) and Department of Mathematics, University of Namur, 61, rue de
Bruxelles, B-5000 Namur, Belgium. Email: phillipece@gmail.com
†Namur Center for Complex Systems (naXys) and Department of Mathematics, University of Namur, 61, rue de

Bruxelles, B-5000 Namur, Belgium. Email: philippe.toint@unamur.be

1

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 2

By defining f(x, s)
def
= f(x) and c(x, s)

def
= c(x) − s, the problem above may be rewritten as the

following equality-constrained optimization problem with simple bounds
min
(x,s)

f(x, s)

s.t.: c(x, s) = 0,
ls ≤ s ≤ us,
lx ≤ x ≤ ux,

(1.2)

which is the one we address throughout this paper.
The trust-funnel method was first introduced by Gould and Toint [11] (see also [10]) as a SQP

(Sequential Quadratic Programming) algorithm for equality-constrained optimization problems whose
convergence is driven by an adaptive bound imposed on the allowed infeasibility at each iteration. Such
bound is monotonically decreased as the algorithm progresses, assuring its global convergence whilst
seeking optimality; hence the name “trust funnel”. It belongs to the class of trust-region methods
and makes use of a composite-step approach to calculate a new direction at each iteration: a normal
step is computed first in the hope of reducing the infeasibility measure ensuing from the constraint
functions’ values, and a tangent step is subsequently calculated with the aim of improving optimality
of the iterates with regard to the objective function. These computations are carried out with the use
of two different trust regions, one for each step component. The main idea is to consider the objective
function and the constraints as independently as possible. The method is noticeable among others
for constrained problems as a parameter-free alternative, for neither filter nor penalties are needed,
freeing the user from common difficulties encountered when choosing the initial penalty parameter, for
instance. An extension to problems with both equalities and inequalities was developed recently by
Curtis et al. [7], who presented an interior-point trust-funnel algorithm for solving large-scale problems
that may be characterized as a barrier-SQP method.

Although many methods have been designed for unconstrained DFO (Derivative-Free Optimiza-
tion), the range of possibilities for the constrained case remains quite open. A derivative-free trust-
funnel method called DEFT-FUNNEL (DErivative-Free Trust FUNNEL), proposed by Sampaio and
Toint [22] for equality-constrained problems, has given good results in comparison with a filter-SQP
method introduced by Colson [4] and a trust-region method by Powell named COBYLA (Constrained
Optimization BY Linear Approximations) [19, 20], all centred on local polynomial interpolation mod-
els. Recently, another trust-region method by Powell [21] entitled LINCOA has been developed for
linearly-constrained optimization without derivatives and makes use of quadratic interpolation-based
models for the objective function. Many other methods that use direct search instead of trust-region
techniques combined to interpolation-based models also have been developed for the constrained case
(e.g., Lewis and Torczon [14, 15, 16], Audet and Dennis [1], Lucidi et al. [17], Yu and Li [24]).

The primary contribution of this paper is the extension of both the original trust-funnel method
[11] and its derivative-free adaptation (DEFT-FUNNEL) [22] to problems with general nonlinear con-
straints as well as the presentation of numerical experience with the resulting algorithm. Particularly
for the derivative-free algorithm, a subspace minimization approach proposed by Gratton et al. [12]
that considers the poisedness of the interpolation set is employed in order to avoid its degeneration.

The final method described here features four main steps to solve problems with general nonlinear
constraints, namely: a subspace minimization approach to handle the bounds on the x variables,
which makes the DEFT-FUNNEL an active-set method, a bounded linear least-squares solver to
calculate the normal step, a projected gradient method to calculate the tangent step and the control
of the permitted infeasibility of the iterates through the funnel bound. The reason behind the choice
of exploring subspaces defined by the active bounds is dual. Besides the fact that we aim to avoid
treating the bounds on the x variables as general inequality constraints, the reduction of the dimension
of the problem after having identified the active bounds helps to thwart a possible degeneration of

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 3

the interpolation set when the sample points become close to each other and thus affinely dependent,
which happens often as the optimal solution is approached. The fact that the s variables play no role
on the choice of the interpolation set vindicates the construction of the subspaces based upon the x
variables only.

This paper is organized as follows. Section 2 introduces the proposed trust-funnel algorithm step
by step. The subsection 2.1 explains the subspace minimization approach, while the subsections
2.2 and 2.3 give details on how the computation of the composite step components is conducted.
The subsections 2.4 and 2.5 then address the whole mechanism of the algorithm itself. Section 3
concerns the application of the method to derivative-free optimization problems and Section 4 gives
the description of the final method, which assembles the techniques elaborated in Sections 2 and 3. In
Section 5, we discuss some initial numerical experiments and compare its performance to COBYLA’s
and LINCOA’s in a selected set of test problems. Ultimately, we draw some final conclusions in
Section 6.

Notation. Unless otherwise specified, our norm ‖ · ‖ is the standard Euclidean norm. Given any
vector x, we denote its i-th component by [x]i. We let B(z; ∆) denote the closed Euclidian ball centered
at z, with radius ∆ > 0. Given any set A, |A| denotes the cardinality of A. By Pdn, we mean the space
of all polynomials of degree at most d in IRn. Finally, given any subspace S, we denote its dimension
by dim(S).

2 An active-set trust-funnel method

Our method generates a sequence of points {(xk, sk)} such that, at each iteration k, the bound
constraints below are satisfied

ls ≤ sk ≤ us, (2.3)

lx ≤ xk ≤ ux. (2.4)

By using a composite-step approach, each trial step dk
def
= (dxk, d

s
k)
T is decomposed as

dk =

(
dxk
dsk

)
=

(
nxk
nsk

)
+

(
txk
tsk

)
= nk + tk,

where the normal step component nk
def
= (nxk, n

s
k)
T aims to improve feasibility, and the tangent step

component tk
def
= (txk, t

s
k)
T reduces the objective function model’s value while preserving any gains in

feasibility obtained through nk.
In the following subsections, we will describe how each component is computed. Before that, we

briefly explain how the subspace minimization is employed in our algorithm.

2.1 Subspace minimization

As in the method proposed by Gratton et al. [12] for bound-constrained optimization problems,
our algorithm makes use of an active-set approach where the minimization is restricted to subspaces
defined by the active x variables.

At each iteration k, we define the subspace Sk as follows

Sk
def
= {x ∈ IRn | [x]i = [lx]i for i ∈ Lk and [x]i = [ux]i for i ∈ Uk},

where Lk
def
= {i | [xk]i − [lx]i ≤ εb} and Uk

def
= {i | [ux]i − [xk]i ≤ εb} define the index sets of (nearly)

active variables at their bounds, for some small constant εb > 0 defined a priori. After that Sk has been

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 4

defined, the minimization at iteration k is then restricted to the new subspace Sk. Once a direction
dk for (xk, sk) has been computed, we set (xk+1, sk+1) = (xk, sk) + dk if k is a successful iteration;
otherwise, we set (xk+1, sk+1) = (xk, sk).

If a solution (x̃k, s̃k) for the subproblem defined by Sk satisfies the optimality conditions for the
subproblem, we check whether it is also optimal for the original problem (2.5). If it is, the solution
encountered is returned to the user and the algorithm halts; otherwise, it proceeds in the full space by
computing a new direction for (x̃k, s̃k) and repeats the above process at iteration k+1 by defining Sk+1.

2.2 The normal step

For any point (x, s), we measure the constraint violation by

v(x, s)
def
= 1

2
‖c(x, s)‖2. (2.5)

Analogous to the trust-funnel method for equality-constrained problems proposed in [11] and in [22],
we also have a funnel bound vmax

k for v such that, for each iteration k,

vk ≤ vmax
k ,

where vk
def
= v(xk, sk). As this bound is monotonically decreased, the algorithm is driven towards

feasibility, guaranteeing the convergence of the algorithm.
In order to ensure that the normal step is indeed “normal”, we add the following condition that

asks that it mostly lies in the space spanned by the columns of the matrix J(xk, sk)
T :

‖nk‖∞ ≤ κn‖c(xk, sk)‖, (2.6)

for some κn ≥ 1. We then perform the calculation of nk by solving the trust-region bound-constrained
linear least-squares problem

min
n=(nx,ns)

1
2
‖c(xk, sk) + J(xk, sk)n‖2

s.t.: ls ≤ sk + ns ≤ us,
lx ≤ xk + nx ≤ ux,
xk + nx ∈ Sk,
n ∈ Nk,

(2.7)

where J(x, s)
def
= (J(x) − I) represents the Jacobian of c(x, s) with respect to (x, s) and

Nk
def
= {z ∈ IRn+m | ‖z‖∞ ≤ min [∆c

k, κn ‖c(xk, sk)‖] }, (2.8)

for some trust-region radius ∆c
k > 0.

2.3 The tangent step

After attempting to reduce infeasibility through the normal step, a tangent step is calculated with
the aim of improving optimality. The computation of the latter is conducted carefully so that the
gains in feasibility obtained by the former are not abandoned without good reasons.

The SQP model for the function f is defined as

ψk((xk, sk) + d)
def
= fk + 〈gk, d〉+ 1

2
〈d,Bkd〉, (2.9)

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 5

where fk
def
= f(xk, sk), gk

def
= ∇(x,s)f(xk, sk), and Bk is the approximate Hessian of the Lagrangian

function

L(x, s, µ, zs, ws, zx, wx) = f(x) + 〈µ, c(x, s))〉+ 〈ws, s− us〉+ 〈zs, ls − s〉
+ 〈wx, x− ux〉+ 〈zx, lx − x〉

with respect to (x, s), given by

Bk =

(
Hk +

∑m
i=1[µ̂k]iCik 0
0 0

)
, (2.10)

where zs and ws are the Lagrange multipliers associated to the lower and upper bounds, respectively, on
the slack variables s, and zx and wx, the Lagrange multipliers associated to the lower and upper bounds
on the x variables. In (2.10), Hk is a bounded symmetric approximation of ∇2

xxf(xk, sk) = ∇2f(xk),
the matrices Cik are bounded symmetric approximations of the constraints’ Hessians ∇2

xxcik(xk, sk) =
∇2cik(xk) and the vector µ̂k may be viewed as a local approximation of the Lagrange multipliers with
respect to the equality constraints c(x, s).

By using the decomposition dk = nk + tk, we then have that

ψk((xk, sk) + nk + t) = ψk((xk, sk) + nk) + 〈gNk , t〉+ 1
2
〈t, Bkt〉, (2.11)

where

gNk
def
= gk +Bk nk. (2.12)

In the interest of assuring that (2.11) it is a proper local approximation for the function f((xk, sk) +
nk + t), the complete step d = nk + t must belong to

Tk
def
= {d ∈ IRn+m | ‖d‖∞ ≤ ∆f

k}, (2.13)

for some radius ∆f
k . The minimization of (2.11) should then be restricted to the intersection of Nk

and Tk, which imposes that the tangent step tk results in a complete step dk = nk + tk that satisfies
the inclusion

dk ∈ Rk
def
= Nk ∩ Tk

def
= {d ∈ IRn+m | ‖d‖∞ ≤ ∆k}, (2.14)

where the radius ∆k of Rk is thus given by

∆k = min[∆c
k,∆

f
k]. (2.15)

Similarly to the computation of the normal step, we intend to remain in the subspace Sk after
walking along the tangent direction. We accomplish that by imposing the following condition

xk + nxk + tx ∈ Sk.

Additionaly, the conditions (2.3) and (2.4) must be satisfied at the final point (xk, sk) + dk, i.e. we
must have

ls ≤ sk + nsk + ts ≤ us,
lx ≤ xk + nxk + tx ≤ ux.

Due to (2.14), we ask nk to belong to Rk before attempting the computation of tk by requiring
that

‖nk‖∞ ≤ κR∆k, (2.16)

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 6

for some κR ∈ (0, 1). If (2.16) happens, which means that there is “enough space left” to make
another step without crossing the trust region border, the tangent step is finally computed by solving
the following problem



min
t=(tx,ts)

〈gNk , t〉+ 1
2
〈t, Bkt〉

s.t.: J(xk, sk)t = 0,
ls ≤ sk + nsk + ts ≤ us,
lx ≤ xk + nxk + tx ≤ ux,
xk + nxk + tx ∈ Sk.
nk + t ∈ Rk.

(2.17)

We define our f -criticality measure as

πfk
def
= −〈gNk , rk〉, (2.18)

where rk is the projected Cauchy direction obtained by solving the linear optimization problem

min
r=(rx,rs)

〈gNk , r〉

s.t.: J(xk, sk)r = 0,
ls ≤ sk + nsk + rs ≤ us,
lx ≤ xk + nxk + rx ≤ ux,
xk + nxk + rx ∈ Sk.
‖r‖∞ ≤ 1.

(2.19)

By definition, πfk measures how much decrease could be obtained locally along the projection of the
negative of the approximate gradient gNk onto the nullspace of J(xk, sk) intersected with the region
delimited by the bounds.

A new local estimate of the Lagrange multipliers (µk, z
s
k, w

s
k, z

x
k , w

x
k) are computed by solving the

following bound-constrained linear least-squares problem{
min

(µ,ẑs,ŵs,ẑx,ŵx)

1
2
‖Mk(µ, ẑ

s, ŵs, ẑx, ŵx)‖2.

s.t.: ẑs, ŵs, ẑx, ŵx ≥ 0,
(2.20)

where

Mk(µ, ẑ
s, ŵs, ẑx, ŵx)

def
=

(
gNk
0

)
+

(
J(xk)

T

−I

)
µ+

(
0
Isw

)
ŵs +

(
0
−Isz

)
ẑs

+

(
Ixw
0

)
ŵx +

(
−Ixz

0

)
ẑx,

the matrix I is the m ×m identity matrix, the matrices Isz and Isw are obtained from I by removing
the columns whose indices are not associated to any active (lower and upper, respectively) bound at
sk + nsk, the matrices Ixz and Ixw are obtained from the n× n identity matrix by removing the columns
whose indices are not associated to any active (lower and upper, respectively) bound at xk + nxk, and
the Lagrange multipliers (ẑs, ŵs, ẑx, ŵx) are those in (zs, ws, zx, wx) associated to active bounds at
sk + nsk and xk + nxk. All the other Lagrange multipliers are set to zero.

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 7

2.4 Which steps to compute and retain

We now explain when the normal step nk and the tangent step tk should be computed at iteration k
given the constraint violation and the measure of optimality described in the previous subsection.

The normal step is computed when k = 0 or the current constraint violation is “significant”, which
is now formally defined by the conditions

‖c(xk, sk)‖ > ωn(πfk−1) or vk > κvvv
max
k , (2.21)

where ωn is some bounding function, κvv ∈ (0, 1) is a constant. If (2.21) fails, the computation of the
normal step is not required and so we set nk = 0.

We define a v-criticality measure that indicates how much decrease could be obtained locally along
the projection of the negative gradient of the Gauss-Newton model of v at (xk, sk) onto the region
delimited by the bounds as

πvk
def
= −〈J(xk, sk)

T c(xk, sk), bk〉,
where the projected Cauchy direction bk is given by the solution of

min
b=(bx,bs)

〈J(xk, sk)
T c(xk, sk), b〉

s.t.: ls ≤ sk + bs ≤ us,
lx ≤ xk + bx ≤ ux,
xk + bx ∈ Sk,
‖b‖∞ ≤ 1.

(2.22)

We say that (xk, sk) is an infeasible stationary point if c(xk, sk) 6= 0 and πvk = 0.
The procedure for the calculation of normal step is given in the algorithm below.

Algorithm 2.1: NormalStep(xk, sk, π
v
k, π

f
k−1, vk, v

max
k)

Step 1: If c(xk, sk) 6= 0 and πvk = 0, STOP (infeasible stationary point).

Step 2: If k = 0 or if (2.21) holds, compute a normal step nk by solving (2.7). Otherwise, set nk = 0.

If the solution of (2.19) is rk = 0, then by (2.18) we have πfk = 0. In this case, the computation of

the tangent step is skipped, and we simply set tk = 0. If πfk is unsubstantial compared to the current
infeasibility, i.e. for a given a monotonic bounding function ωt, the condition

πfk > ωt(‖c(xk, sk)‖) (2.23)

fails, then the current iterate is still too far from feasibility to worry about optimality, and we again
skip the tangent step computation by setting tk = 0.

While (2.23) and (2.21) together provide considerable flexibility in our algorithm in that a normal
or tangent step is only computed when relevant, our setting also produces the possibility that both
these conditions fail. In this case, we have that dk = nk+tk is identically zero, and the sole computation
in the iteration is that of the new Lagrange multipliers (2.20). Finally, we may evaluate the usefulness
of the tangent step tk after (or during) its computation, in the sense that we would like a relatively
large tangent step to cause a clear decrease in the model (2.11) of the objective function. We therefore
check whether the conditions

‖tk‖ > κCS‖nk‖ (2.24)

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 8

and

δfk
def
= δf,tk + δf,nk ≥ κδδf,tk , (2.25)

where

δf,tk
def
= ψk((xk, sk) + nk)− ψk((xk, sk) + nk + tk) (2.26)

and

δf,nk
def
= ψk(xk, sk)− ψk((xk, sk) + nk), (2.27)

are satisfied for some κCS > 1 and for κδ ∈ (0, 1). The inequality (2.25) indicates that the predicted
improvement in the objective function obtained in the tangent step is not negligible compared to the
predicted change in f resulting from the normal step. If (2.24) holds but (2.25) fails, the tangent step
is not useful in the sense just discussed, and we choose to ignore it by resetting tk = 0.

The computation of the tangent step is described algorithmically as follows.

Algorithm 2.2: TangentStep(xk, sk, nk)

Step 1: If (2.16) holds, then

Step 1.1: select a vector µ̂k and define Bk as in (2.10);

Step 1.2: compute µk by solving (2.20);

Step 1.3: compute the modified Cauchy direction rk by solving (2.19) and define πfk as (2.18);

Step 1.4: if (2.23) holds, compute a tangent step tk by solving (2.17).

Step 2: If (2.16) fails, set µk = µk−1. In this case, or if (2.23) fails, or if (2.24) holds but (2.25) fails,
set tk = 0 and dk = nk.

Step 3: Define (x+k , s
+
k) = (xk, sk) + dk.

2.5 Iterations types

Once we have computed the step dk and the trial point

(x+k , s
+
k)

def
= (xk, sk) + dk, (2.28)

we are left with the task of accepting or rejecting it. If nk = tk = 0, iteration k is said to be a
µ-iteration because the only computation potentially performed is that of a new vector of Lagrange
multiplier estimates. We will say that iteration k is an f -iteration if tk 6= 0, (2.25) holds, and

v(x+k , s
+
k) ≤ vmax

k . (2.29)

Condition (2.29) ensures that the step maintains feasibility within reasonable bounds. Thus the
iteration’s expected major achievement is, in this case, a decrease in the value of the objective function
f , hence its name. If iteration k is neither a µ-iteration nor a f -iteration, then it is said to be a c-
iteration. If (2.25) fails, then the expected major achievement (or failure) of iteration k is, a contrario,
to improve feasibility, which is also the case when the step only contains its normal component.

The main idea behind the technique for accepting the trial point is to measure whether the major
expected achievement of the iteration has been realized.

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 9

• If iteration k is a µ-iteration, we do not have any other choice than to restart with (xk+1, sk+1) =
(xk, sk) using the new multipliers. We then define

∆f
k+1 = ∆f

k and ∆c
k+1 = ∆c

k (2.30)

and keep the current value of the maximal infeasibility vmax
k+1 = vmax

k .

• If iteration k is an f -iteration, we accept the trial point (i.e. (xk+1, sk+1) = (x+k , s
+
k)) if

ρfk
def
=

f(xk, sk)− f(x+k , s
+
k)

δfk
≥ η1, (2.31)

and reject it (i.e. (xk+1, sk+1) = (xk, sk)), otherwise. The value of the maximal infeasibility

measure is left unchanged, that is vmax
k+1 = vmax

k . Note that δfk > 0 (because of (2.26) and (2.25))
unless (xk, sk) is first-order critical, and hence that condition (2.31) is well-defined.

• If iteration k is a c-iteration, we accept the trial point if the improvement in feasibility is com-
parable to its predicted value

δck
def
= 1

2
‖c(xk, sk)‖2 − 1

2
‖c(xk, sk) + J(xk, sk)dk‖2,

and the latter is itself comparable to its predicted decrease along the normal step, that is

nk 6= 0, δck ≥ κcnδ
c,n
k and ρck

def
=

v(xk, sk)− v(x+k , s
+
k)

δck
≥ η1, (2.32)

for some κcn ∈ (0, 1− κtg] and where

δc,nk
def
= 1

2
‖c(xk, sk)‖2 − 1

2
‖c(xk, sk) + J(xk, sk)nk‖2. (2.33)

If (2.32) fails, the trial point is rejected. We update the value of the maximal infeasibility by

vmax
k+1 =

{
max

[
κtx1v

max
k , v(x+k , s

+
k) + κtx2(v(xk, sk)− v(x+k , s

+
k))
]

if (2.32) hold,
vmax
k otherwise,

(2.34)

for some κtx1 ∈ (0, 1) and κtx2 ∈ (0, 1).

Note that we only check the third condition in (2.32) after the first two conditions have been verified.
Assuming that nk 6= 0, the Cauchy condition (2.33) and c(xk, sk) 6= 0 ensure that δc,nk > 0 provided
πvk 6= 0. Thus the third condition is well defined, unless (xk, sk) is an infeasible stationary point, in
which case the algorithm is terminated.

3 Application to derivative-free optimization

Our algorithm makes use of surrogate models mf (x) and mc(x) = (mc
1(x),mc

2(x), . . . ,mc
m(x)) built

from polynomial interpolation over a set of sample points Y = {y0, y1, . . . , yp} that replace the functions
f(x) and c(x) = (c1(x), c2(x), . . . , cm(x)). Therefore, at each iteration k, the following interpolation
conditions are satisfied

mf (yi) = f(yi),

mc
j(y

i) = cj(y
i),

(3.35)

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 10

for all yi ∈ Yk.
Whenever Yk changes, the models mc

k and mf
k are updated to satisfy the interpolation conditions

(3.35) for the new set Yk+1, thereby implying that new function evaluations of f and c are carried out
for the additional points obtained at iteration k.

The algorithm developed in this work employs the now standard idea of starting with incomplete
interpolation models with linear accuracy and then enhancing them with curvature information, which
provides an actual accuracy at least as good as that for linear models and, hopefully, better. We thus
consider underdetermined quadratic interpolation — i.e. n+ 1 ≤ |Y| ≤ (n+ 1)(n+ 2)/2 — with initial
sample sets that are poised for linear interpolation.

As there are many possibilities for building underdetermined quadratic interpolation-based models,
we consider three distinct ways whose complete descriptions are available in Conn, Scheinberg and Vi-
cente [6], namely: subbasis selection approach, minimum `2-norm or Euclidian norm models (referred
to as minimum-norm interpolating polynomials in Section 5.1 of [6]), whose coefficients vector associ-
ated to the natural basis is the minimum Euclidian norm solution of the linear system resulting from
the interpolation conditions, and minimum Frobenius norm models where the coefficients related to
the quadratic part of the natural basis are minimized (see the optimization problem (5.6) in [6]), which
is equivalent to the minimization of the Frobenius norm of the Hessian of the models. In addition, we
also consider least-squares regression for the construction of quadratic models, in which case one has
n+ 1 ≤ |Y| ≤ (n+ 1)(n+ 2), giving the user a total of four possibilities for model building.

For any function f : IRn → IR and set Y = {y0, . . . , yp} ⊂ IRn, there exists an unique polynomial
m(x) that interpolates f(x) on Y such that m(x) =

∑p
i=0 f(yi)`i(x), where {`i(x)}pi=0 is the basis of

Lagrange polynomials, if Y satisfies a property of nonsingularity called poisedness (see Definition 3.1,
page 37, in [6]). Before going further into details of the algorithm, we first introduce a condition to the
interpolation set that is used to measure the error between the original functions and the interpolation
models as well as their derivatives.

Definition 3.1. Let Y = {y0, y1, . . . , yp} be a poised interpolation set and Pdn be a space of polynomials
of degree less than or equal to d on IRn. Let Λ > 0 and {`0(x), `1(x), . . . , `p(x)} be the basis of Lagrange
polynomials associated with Y. Then, the set Y is said to be Λ-poised in B for Pdn (in the interpolation
sense) if and only if

max
0≤i≤p

max
x∈B
|`i(x)| ≤ Λ.

As it is shown in [6], the error bounds for at most fully quadratic models depend linearly on the
constant Λ; the smaller it is, the better the interpolation models approximate the original functions.
We also note that the error bounds for undetermined quadratic interpolation models are linear in the
diameter of the smallest ball B(Y) containing Y for the first derivatives and quadratic for the function
values.

3.1 Recursive call in subspaces

As pointed out before, by reducing the dimension of the problem we attempt to diminish the
chances of a possible degeneration of the interpolation set when the sample points become too close to
each other and thus affinely dependent. Such case might happen, for instance, as the optimal solution
is approached.

In our algorithm, we apply the recursive approach found in the derivative-free method proposed
by Gratton et al. [12] for bound-constrained optimization problems. Once the subspace Sk has
been defined at iteration k, the algorithm calls itself recursively and the dimension of the problem is
then reduced to n̂ = n − |Lk ∪ Uk|, where n denotes here the dimension of IRn. A new well-poised

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 11

interpolation set Zk is then constructed from a suitable choice of points in Xk ∩Sk, where Xk is the set
of all points obtained up to iteration k. In order to save function evaluations in the building process
of the new interpolation set, all the points in Xk that are nearly but not in Sk are projected onto Sk
and used to build Zk with their model values instead of their real function values. In a more formal
description, we define the set of the points that are close to (but not on) the active bounds at xk as

Ak
def
=

{
y ∈ Xk

∣∣∣∣∣ 0 ≤ | [y]i − [lx]i | ≤ εb for i ∈ Lk and
0 ≤ | [ux]i − [y]i | ≤ εb for i ∈ Uk

}
,

where, for at least one i, the strict inequality

0 < | [y]i − [lx]i |, i ∈ Lk,

or
0 < | [ux]i − [y]i |, i ∈ Uk,

must hold. We then project all the points y ∈ Ak onto Sk, obtaining new “dummy” points ys that are
added to Xk with associated values mf

k(ys) and mc
k(ys) rather than the values of the original functions.

As it is shown in Section 3.3, these dummy points are progressively replaced by other points with
true function values with high priority during the minimization in Sk. We denote by Dumk the set of
dummy points at iteration k.

Convergence in a subspace is only declared if the interpolation set contains no dummy points. If
a solution has been found for a subspace and there are still dummy points in the interpolation set,
evaluations of the original functions f(x) and c(x) at such points are carried out and the interpolating
models are recomputed from the original function values. Once convergence has been declared in a
subspace Sk, the |Lk ∪ Uk| fixed components xi associated with the active bounds and the component
x of the approximate solution found in Sk of dimension n̂ = n− |Lk ∪ Uk| are assembled to compose
a full-dimensional vector x∗S in IRn. The algorithm then checks whether (x∗S , s

∗
S) is optimal for the

full-dimensional problem or not. Firstly, a full-space interpolation set of degree n + 1 is built in an
ε-neighborhood around the point x∗S . Subsequently, the corresponding interpolating models mf

k and

mc
k are recomputed and the f -criticality measure πfk−1 is calculated anew using information of the

updated models. Finally, the criticality step in the full space is then entered.
The following algorithm gives a full description of the ideas explained above.

Algorithm 3.1: SubspaceMinimization(Xk, Yk, xk, sk, ∆f
k, ∆c

k, v
max
k)

Step 1: Check for (nearly) active bounds at xk and define Sk. If there is no (nearly) active bound or
if Sk has already been explored, go to Step 6. If all bounds are active, go to Step 5.

Step 2: Project points in Xk which lie close to the (nearly) active bounds on Sk and associate with
them suitable function values estimates. Add new dummy points to Dumk, if any.

Step 3: Build a new interpolation set Zk in Sk including the projected points, if any.

Step 4: Call recursively DEFT-FUNNEL(Sk, Xk, Zk, xk, sk, ∆f
k , ∆c

k, v
max
k) and let (x∗S , s

∗
S) be the

solution of the subspace problem after adding the fixed components.

Step 5: If dim(Sk) < n, return (x∗S , s
∗
S). Otherwise, reset (xk, sk) = (x∗S , s

∗
S), construct new set Yk

around xk, build mf
k and mc

k and recompute πfk−1.

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 12

Step 6: If Sk has already been explored, set (xk+1, sk+1) = (xk, sk), reduce the trust regions radii

∆f
k+1 = γ∆f

k and ∆c
k+1 = γ∆c

k, set ∆k+1 = min[∆f
k+1,∆

c
k+1] and build a new poised set Yk+1 in

B(xk+1; ∆k+1).

3.2 Criticality step

Convergence is declared when both feasibility and optimality have been achieved and the error
between the real functions and the models is expected to be sufficiently small. As it was mentioned
before, this error is directly linked to the Λ-poisedness measure given in Definition 3.1. The criticality
step in DEFT-FUNNEL is described in the next algorithm.

Algorithm 3.2: CriticalityStep(Yk, πfk−1, εi)

Step 1: Define m̂f
i = mf

k , m̂c
i = mc

k and π̂fi = πfk−1.

Step 2: If ‖c(xk, sk)‖ ≤ εi and π̂fi ≤ εi, set εi+1 = max
[
α‖c(xk, sk)‖, απ̂fi , ε

]
and modify Yk as needed

to ensure it is Λ-poised in B(xk, εi+1). If Yk was modified, compute new models m̂f
i and m̂c

i ,

calculate r̂i and π̂fi and increment i by one. If ‖c(xk, sk)‖ ≤ ε and π̂fi ≤ ε, return (xk, sk);
otherwise, start Step 2 again;

Step 3: Set mf
k = m̂f

i , mc
k = m̂c

i , π
f
k−1 = π̂fi , ∆k = βmax

[
‖c(xk, sk)‖, πfk−1

]
and define ϑi = xk if a

new model has been computed.

3.3 Maintenance of the interpolation set and trust-region updating strategy

Many derivative-based trust-regions methods decrease the trust region radius at unsuccessful it-
erations to converge. However, in derivative-free optimization, unsuccessful iterations in trust-region
methods might be due to a bad quality of the interpolating model rather than a large trust region
size. In order to maintain the quality of the surrogate models without resorting to costly model im-
provement steps at unsuccessful iterations, which might require another optimization problem to be
globally solved, we apply a self-correcting geometry scheme proposed by Scheinberg and Toint [23] for
the management of the geometry of the interpolation set. Such scheme is based upon the idea that
unsuccessful trial points can still be useful as they may improve the geometry of the interpolation set.
At such iterations, the trust region radii are reduced only if the algorithm fails to improve the geometry
of the interpolation set by replacing one of its points by the trial point, thereby implying that there is
no lack of poisedness in this case. Firstly, an interpolation point that is far from the current point xk
is sought to be replaced by the trial point x+k . If there is no such a far point, one tries to replace an
interpolation point yk,j whose associated Lagrange polynomial value at x+k in absolute value, |`k,j(x+k)|,
is bigger than a predefined threshold Λ. By doing that, one attempts to obtain a Λ-poised set Yk+1,
or, since at most one interpolation point is replaced by iteration, improve its poisedness, at least. If
no interpolation point is replaced, the trust regions are then shrunk.

A slight modification on the scheme is used on DEFT-FUNNEL. Following the idea proposed in [12],
the trust region radii can also be reduced in cases where it is possible to improve poisedness. The

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 13

number of reductions of ∆f
k and ∆c

k allowed in such cases, however, is limited by constants νmax
f > 0

and νmax
c > 0 predefined by the user as a means to prevent the trust regions from becoming too small.

The management of the interpolation set in DEFT-FUNNEL is described in the next algorithm. It
depends on the criterion used to define successful iterations, which is passed to the algorithm through
the parameter criterion.

Algorithm 3.3: UpdateInterpolationSet(Yk, xk, x+k , ∆k, εi, criterion)

Step 1: Augment the interpolation set. If |Yk| < pmax, then define Yk+1 = Yk ∪ {x+k }.

Step 2: Replace a dummy interpolation point. If |Yk| = pmax and the set

Dk
def
= {yk,j ∈ Dumk ∩ Yk} (3.36)

is non-empty, then define Yk+1 = Yk \ {yk,r} ∪ {x+k } where `k,r(x
+
k) 6= 0 and r is an index of any

point in Dk such that

r = arg max
j
‖yk,j − x+k ‖

2|`k,j(x+k)|. (3.37)

Step 3: Successful iteration. If |Yk| = pmax, Dk = ∅, and criterion holds, then define Yk+1 =
Yk \ {yk,r} ∪ {x+k } for

yk,r = arg max
yk,j∈Yk

‖yk,j − x+k ‖
2|`k,j(x+k)|. (3.38)

Step 4: Replace a far interpolation point. If |Yk| = pmax, Dk = ∅, criterion fails, either xk 6= ϑi
or ∆k ≤ εi, and the set

Fk
def
= {yk,j ∈ Yk such that ‖yk,j − xk | > ζ∆ and `k,j(x

+
k) 6= 0} (3.39)

is non-empty, then define Yk+1 = Yk \ {yk,r} ∪ {x+k }, where

yk,r = arg max
yk,j∈Fk

‖yk,j − x+k ‖
2|`k,j(x+k)|. (3.40)

Step 5: Replace a close interpolation point. If |Yk| = pmax, criterion fails, either xk 6= ϑi or
∆k ≤ εi, the set Dk ∪ Fk is empty, and the set

Ck
def
= {yk,j ∈ Yk such that ‖yk,j − xk‖ ≤ ζ∆ and |`k,j(x+k)| > Λ} (3.41)

is non-empty, then define Yk+1 = Yk \ {yk,r} ∪ {x+k }, where

yk,r = arg max
yk,j∈Ck

‖yk,j − x+k ‖
2|`k,j(x+k)|. (3.42)

Step 6: No replacements. If |Yk| = pmax, criterion fails and either [xk = ϑi and ∆k > εi] or
Dk ∪ Fk ∪ Ck = ∅, then define Yk+1 = Yk.

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 14

We now give the details of the procedures related to f - and c-iterations, starting with the former.
The operations involved in such procedures concern the acceptance of the trial point and the update
of the trust regions radii. The relation between the trust region updating strategy at unsuccessful
iterations and the management of the interpolation set discussed above is now formally described.

Algorithm 3.4: f-iteration(xk, sk, x
+
k , s+k , ∆f

k, ∆c
k)

Step 1: Successful iteration. If ρfk ≥ η1, set (xk+1, sk+1) = (x+k , s
+
k) and νf = 0.

If ρfk ≥ η2, set ∆f
k+1 = min[max[γ2‖dk‖,∆f

k],∆max]; otherwise, set ∆f
k+1 = ∆f

k .

If v(x+k , s
+
k) < η3 v

max
k , set ∆c

k+1 = min[max[γ2‖nk‖,∆c
k],∆

max]; otherwise, set ∆c
k+1 = ∆c

k.

Step 2: Unsuccessful iteration. If ρfk < η1, set (xk+1, sk+1) = (xk, sk) and ∆c
k+1 = ∆c

k.

If Yk+1 6= Yk, set ∆f
k+1 = γ1‖dk‖ and νf = νf + 1 if νf ≤ νmax

f or ∆f
k+1 = ∆f

k otherwise.

If Yk+1 = Yk, set ∆f
k+1 = γ1‖dk‖.

The operations related to c-iterations follow below.

Algorithm 3.5: c-iteration(xk, sk, x
+
k , s+k , ∆f

k, ∆c
k)

Step 1: Successful iteration. If (2.32) holds, set (xk+1, sk+1) = (x+k , s
+
k), ∆f

k+1 = ∆f
k and νc = 0.

If ρck ≥ η2, set ∆c
k+1 = min[max[γ2‖nk‖,∆c

k],∆
max]; otherwise, set ∆c

k+1 = ∆c
k.

Step 2: Unsuccessful iteration. If (2.32) fails, set (xk+1, sk+1) = (xk, sk) and ∆f
k+1 = ∆f

k .

If Yk+1 6= Yk and νc ≤ νmax
c , set ∆c

k+1 = γ1‖nk‖ if ‖nk‖ 6= 0, or ∆c
k+1 = γ1∆

c
k otherwise

(‖nk‖ = 0). If νc > νmax
c , set ∆c

k+1 = ∆c
k. If νc ≤ νmax

c , update νc = νc + 1.

If Yk+1 = Yk, set ∆c
k+1 = γ1‖nk‖ if ‖nk‖ 6= 0, or ∆c

k+1 = γ1∆
c
k otherwise (‖nk‖ = 0).

4 The algorithm

We now provide a formal description of our complete algorithm for solving nonlinear optimization
problems with general nonlinear constraints without derivatives.

Algorithm 4.1: DEFT-FUNNEL(S, X , Y, x, s, ∆f , ∆c, vmax)

Step 0: Initialization. Choose an initial vector of Lagrange multipliers µ−1 and parameters ε > 0,
ε0 > 0, ∆f

0 > 0, ∆c
0 > 0, α ∈ (0, 1), 0 < γ1 < 1 < γ2, ζ ≥ 1, 0 < η1 < η2 < 1, Λ > 1,

β > 0, η3 > 0. Define ∆0 = min[∆f
0 ,∆

c
0] ≤ ∆max. Initialize Y0, with x0 ∈ Y0 ⊂ B(x0,∆0) and

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 15

|Y0| ≥ n+ 1, as well as the maximum number of interpolation points pmax ≥ |Y0|. Compute the

associated models mf
0 and mc

0 around x0 and Lagrange polynomials {l0,j}pj=0. Define vmax
0 =

max[κca, κcrv(x0, s0)], where κca > 0 and κcr > 1. Compute r−1 by solving (2.19) with normal

step n−1 = 0 and define πf−1 as in (2.18). Define νmax
f > 0 and νmax

c > 0 and set νf = νc = 0.
Set k = 0 and i = 0.

Step 1: SubspaceMinimization(Xk, Yk, xk, sk, ∆f
k , ∆c

k, v
max
k).

Step 2: CriticalityStep(Yk, πfk−1, εi).

Step 3: NormalStep(xk, sk, π
v
k, πfk−1, vk, v

max
k).

Step 4: TangentStep(xk, sk, nk).

Step 5: Conclude a µ-iteration. If nk = tk = 0, then

Step 5.1: set (xk+1, sk+1) = (xk, sk), ∆f
k+1 = ∆f

k and ∆c
k+1 = ∆c

k;

Step 5.2: set ∆k+1 = min[∆f
k+1,∆

c
k+1], v

max
k+1 = vmax

k and Yk+1 = Yk.

Step 6: Conclude an f-iteration. If tk 6= 0 and (2.25) and (2.29) hold,

Step 6.1: UpdateInterpolationSet(Yk ,xk, x
+
k , ∆k, εi, ‘ρfk ≥ η1’);

Step 6.2: f -iteration(xk, sk, x
+
k , s+k , ∆f

k , ∆c
k);

Step 6.3: Set ∆k+1 = min[∆f
k+1,∆

c
k+1] and vmax

k+1 = vmax
k .

Step 7: Conclude a c-iteration. If either nk 6= 0 and tk = 0, or either one of (2.25) or (2.29) fails,

Step 7.1: UpdateInterpolationSet(Yk ,xk, x
+
k , ∆k, εi, ‘(2.32)’);

Step 7.2: c-iteration(xk, sk, x
+
k , s+k , ∆f

k , ∆c
k);

Step 7.3: Set ∆k+1 = min[∆f
k+1,∆

c
k+1] and update vmax

k using (2.34).

Step 8: Update the models and the Lagrange polynomials. If Yk+1 6= Yk, compute the inter-
polation models mf

k+1 and mc
k+1 around xk+1 using Yk+1 and the associated Lagrange polyno-

mials {lk+1,j}pj=0. Increment k by one and go to Step 1.

5 Numerical experiments

We implemented DEFT-FUNNEL in Matlab and tested it first on a set of 80 small-scale constrained
problems from the CUTEst [9] collection. The problems contain at least one equality or inequality
constraint, many of them containing both types and some containing simple bounds as well. 63 of the
problems in our experiments are in the range of the first 113 test examples from the Hock-Schittowski
collection [13], while the remaining are nonlinearly constrained optimization problems found in [3].

For the calculation of the normal step and the approximate Lagrange multipliers, we used a Matlab
code named BLLS developed in collaboration with Anke Tröltzsch for solving bound-constrained linear
least-squares problems. This method is intended for small-dimensional problems and is an active-set
algorithm where the unconstrained problem is solved at each iteration in the subspace defined by the
currently active bounds, which are determined by a projected Cauchy step. As for the computation of

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 16

the tangent step, we used a nonmonotone spectral projected gradient method [2] to solve the (possibly)
indefinite quadratic subproblems (2.17). Finally, we define the bounding functions ωn(t) and ωt(t) as

ωn(t)
def
= 0.01 min[1, t] and ωt(t)

def
= 0.01 min[1, t2]. (5.43)

We compare the results of the four variants of our method with regard to the way of building
the interpolating models — subbasis selection, mininum Frobenius norm, minimum `2-norm and re-
gression — to those obtained with the popular Fortran code COBYLA [19], a trust-region method
for constrained problems that models the objective and constraint functions by linear interpolation.
The only criterion for comparison is the number of calls on the routine that evaluates the objective
function and the constraints at the same time at the required points, which is motivated by the fact
that these costs very often dominate those of all other algorithmic computations. Therefore, we do
not count evaluations of the objective function and the constraints separately, but rather the number
of calls to the single routine that calculates both simultaneously. Comparisons of the computational
results obtained by DEFT-FUNNEL for equality-constrained problems only also have been made with
another method named CDFO, a derivative-free filter-SQP algorithm proposed in [4]. The results are
reported in [22] and show that DEFT-FUNNEL was superior to CDFO in our tests.

The threshold ε for declaring convergence in the criticality step in DEFT-FUNNEL is set to
ε = 10−4. The stopping criterion used in COBYLA is based on the trust region radius ρ from the
interval [ρend, ρbeg], where ρbeg and ρend are constants predefined by the user. The parameter ρ is
decreased by a constant factor during the execution of the algorithm and is never increased. The
algorithm stops when ρ = ρend. Therefore, ρend should have the magnitude of the required accuracy
in the final values of the variables. In our experiments, we set ρend = 10−4.

In DEFT-FUNNEL, we fixed the trust-region parameters to ∆0 = 1, η1 = 0.0001, η2 = 0.9,
η3 = 0.5, γ1 = 0.5, γ2 = 2.5 and ∆max = 1010. The parameter ζ used in the definition of the sets
Fk and Ck of far points and close points, respectively, is set to ζ = 1. For the limit number of times
to reduce the trust regions sizes when a far or close interpolation point is replaced at unsuccessful
iterations, we choose νmax

f = νmax
c = 10. We set pmax = (n + 1)(n + 2)/2 for the subbasis, minimum

Frobenius norm and minimum `2-norm approaches, and pmax = (n+ 1)(n+ 2) for the regression case.
Finally, we set ε0 = 0.01 as the initial value for the loop in the criticality step, α = 0.1 and β = 1.

The performance of the methods are first compared by means of their performance profiles [8].
Denote the set of solvers by S, and the set of problems by P. We compare the performance on
problem p ∈ P by solver s ∈ S with the best performance by any solver on this problem; that is, we
use the performance ratio

rp,s
def
=

tp,s
min{tp,s : s ∈ S}

,

where tp,s is the number of function evaluations required to solve problem p by solver s. If we define

ρs(τ)
def
=

1

|P|
|{p ∈ P : rp,s ≤ τ}|,

then ρs(τ) is an approximation to the probability for solver s ∈ S that a performance ratio rp,s is
within a factor τ ∈ IR of the best possible ratio.

In Figure 5.1, we provide the performance profiles of the four variants of DEFT-FUNNEL, whereas,
in Figure 5.2, we compare the performance of each variant of our method to COBYLA’s individually.
As it can be seen, DEFT-FUNNEL has shown superior results on the set of test problems when
the interpolating models are built from subbasis selection, minimum Frobenius norm and minimum
`2-norm approaches. For the regression variant, Figure 5.2d reveals that COBYLA was faster than
DEFT-FUNNEL in most of the problems, although the latter was able to solve more problems than
the former for large values of τ .

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 17

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

Subbasis

Min. Frobenius norm
Min. l

2
−norm

Regression

Figure 5.1: Log2-scaled performance profiles of DEFT-FUNNEL with different approaches to build
the models on a set of 80 problems from CUTEst.

We also compare the methods by using data profiles. Such profiles were proposed by Moré and
Wild [18] as a means to provide the user an accurate view of the performance of derivative-free solvers
when the computational budget is limited. Let tp,s be the number of function evaluations required to
solve problem p by solver s as before and denote by np the dimension of the vector x in the problem
p. The data profile of solver s ∈ S is defined by

ds(τ)
def
=

1

|P|

∣∣∣∣{p ∈ P :
tp,s

np + 1
≤ τ

}∣∣∣∣ .
Because of the scaling choice of dividing by np+1, we may interpret ds(τ) as the percentage of problems
that can be solved with τ simplex gradient estimates.

In Figure 5.3, the data profiles show that the subbasis, minimum Frobenius norm and minimum
`2-norm variants have similar performance to COBYLA when the computational budget is limited to a
value between 0 and 20. In particular, when only 20 simplex gradient estimates are allowed, they solve
roughly 80% of the problems. However, as the budget limit increases, the difference in the performance
between these three variants and COBYLA becomes progressively larger, revealing the superiority of
DEFT-FUNNEL. For the regression variant, it is difficult to tell which method wins from Figure 5.3d.
For a very small budget (up to ∼ 17 simplex gradient estimates), both solve approximately the same
amount of problems. For a budget of k simplex gradients where κ ∈ (17, 35], COBYLA solves more
problems than DEFT-FUNNEL, while for larger values of κ DEFT-FUNNEL solves more problems.

We also tested DEFT-FUNNEL on a set of 20 small-scale linearly constrained optimization prob-
lems from CUTEst and compared its results with those of the software LINCOA, a newly developed
trust-region method by Powell [21] for linearly constrained optimization without derivatives. His soft-
ware combines active-set methods with truncated conjugate gradients and uses quadratic interpolation
models for the objective function. The user is required to provide the Jacobian matrix and the vector
of constants in the right side of the constraints as inputs, as well as a feasible starting point. Since
many of CUTEst problems provide an infeasible starting point, we chose a feasible one instead for the
sake of comparison. The stopping criterion used in LINCOA is the same found in COBYLA, i.e. the
algorithm stops when the trust region radius ρ ∈ [ρend, ρbeg] reaches the smallest value allowed ρend.

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 18

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

DEFT−FUNNEL/Subbasis

COBYLA

(a) Subbasis

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

DEFT−FUNNEL/Min. Frobenius norm

COBYLA

(b) Min. Frobenius norm

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

DEFT−FUNNEL/Min. l
2
−norm

COBYLA

(c) Min. `2-norm

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

DEFT−FUNNEL/Regression

COBYLA

(d) Regression

Figure 5.2: Log2-scaled performance profiles of the methods DEFT-FUNNEL (with different ap-
proaches to build the models) and COBYLA on a set of 80 problems from CUTEst.

In our experiments, we set ρend = 10−4. Regarding the parameter setting in DEFT-FUNNEL, the
same values were kept for comparison with LINCOA.

In Figure 5.4, we provide the performance profiles of the four variants of DEFT-FUNNEL for
the 20 linearly constrained problems, whereas, in Figure 5.5, we compare the performance of each
variant of our method to LINCOA’s individually. All the variants of DEFT-FUNNEL except the
minimum `2-norm approach have solved all the 20 linearly constrained problems. The results reported
in Figures 5.5a and 5.5b reveal a superior performance of LINCOA over DEFT-FUNNEL/Subbasis
and DEFT-FUNNEL/Frobenius. On the other hand, Figure 5.5c shows that DEFT-FUNNEL/Min.
`2-norm was faster than LINCOA and, in Figure 5.5d, it can be seen that DEFT-FUNNEL/Regression
also was slightly faster, although the latter presented superior performance for large values of τ , which
indicates more robustness.

Data profiles of DEFT-FUNNEL and LINCOA are presented in Figure 5.6 and show that, for
very small budgets (less than 10 simplex gradient estimates), DEFT-FUNNEL was able to solve more

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 19

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

d
s
(τ
)

Data Profile on Subset of CUTEst

DEFT−FUNNEL/Subbasis

COBYLA

(a) Subbasis

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

d
s
(τ
)

Data Profile on Subset of CUTEst

DEFT−FUNNEL/Min. Frobenius norm

COBYLA

(b) Min. Frobenius norm

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

d
s
(τ
)

Data Profile on Subset of CUTEst

DEFT−FUNNEL/Min. l
2
−norm

COBYLA

(c) Min. `2-norm

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

d
s
(τ
)

Data Profile on Subset of CUTEst

DEFT−FUNNEL/Regression

COBYLA

(d) Regression

Figure 5.3: Data profiles of the methods DEFT-FUNNEL (with different approaches to build the
models) and COBYLA on a set of 80 problems from CUTEst.

problems than LINCOA, while the latter performed better than the former for larger budgets.
We conclude this section by noticing that the performance profiles in the Figures 5.2 and 5.5

and the data profiles in the Figures 5.3 and 5.6 give clear indication that DEFT-FUNNEL provides
encouraging results for small-scale nonlinear optimization problems with general nonlinear constraints.
For the case where the user knows that the constraint functions are linear and he is able to provide
their gradients, it might be interesting to the handle those constraints separately rather than lumping
them and other general nonlinear constraints together in c(x). The number of function evaluations
required by each method to converge in our numerical experiments are reported in the appendix.

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

Subbasis

Min. Frobenius norm
Min. l

2
−norm

Regression

Figure 5.4: Log2-scaled performance profiles of DEFT-FUNNEL with different approaches to build
the models on a set of 20 linearly constrained problems from CUTEst.

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 21

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

DEFT−FUNNEL/Subbasis

LINCOA

(a) Subbasis

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

DEFT−FUNNEL/Min. Frobenius norm

LINCOA

(b) Min. Frobenius norm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

DEFT−FUNNEL/Min. l
2
−norm

LINCOA

(c) Min. `2-norm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

DEFT−FUNNEL/Regression

LINCOA

(d) Regression

Figure 5.5: Log2-scaled performance profiles of the methods DEFT-FUNNEL (with different ap-
proaches to build the models) and LINCOA a set of 20 linearly constrained problems from CUTEst.

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 22

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

d
s
(τ
)

Data Profile on Subset of CUTEst

DEFT−FUNNEL/Subbasis

LINCOA

(a) Subbasis

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

d
s
(τ
)

Data Profile on Subset of CUTEst

DEFT−FUNNEL/Min. Frobenius norm

LINCOA

(b) Min. Frobenius norm

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

d
s
(τ
)

Data Profile on Subset of CUTEst

DEFT−FUNNEL/Min. l
2
−norm

LINCOA

(c) Min. `2-norm

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

d
s
(τ
)

Data Profile on Subset of CUTEst

DEFT−FUNNEL/Regression

LINCOA

(d) Regression

Figure 5.6: Data profiles of the methods DEFT-FUNNEL (with different approaches to build the
models) and LINCOA on a set of 20 linearly constrained problems from CUTEst.

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 23

6 Conclusions

We have presented a SQP algorithm for solving nonlinear optimization problems with general
nonlinear constraints. It extends the one introduced by Gould and Toint [11] for problems with
equality constraints only. When simple bounds are given, the algorithm makes use of an active-set
approach to perform minimization on the subspaces defined by the active bounds.

We also applied our algorithm to the field of derivative-free optimization by employing an ensemble
of underlying techniques such as multivariate polynomial interpolation for the construction of surro-
gate models, a self-correcting geometry mechanism for the maintenance of interpolation set and the
reduction of the dimension of the problem when entering the subspaces by using a recursive subspace
minimization approach proposed in Gratton et al. [12]. The final method, named DEFT-FUNNEL,
extends the one proposed by Sampaio and Toint [22] and makes use of neither the derivatives of the
objective function nor the derivatives of the constraints. It also considers both the objective and
constraints as black-box functions. Numerical experiments on a set of 80 small-scale nonlinear opti-
mization problems with general nonlinear constraints and on a set of 20 small-scale linearly constrained
optimization problems were performed and revealed good results of the new algorithm in practice.

For future research, we plan to consider the possibility of having two different interpolations sets for
the objective function and the constraints and analyze its performance for cases where the constraints
are linear, while the objective function is of higher degree. Convergence results are also of interest and
are left as a development line for future work.

Acknowledgements

The first author gratefully acknowledges a CERUNA-UNamur scholarship.

References

[1] C. Audet and J. E. Dennis. A pattern search filter method for nonlinear programming without derivatives.
SIAM Journal on Optimization, 14(4):980–1010, 2004.

[2] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected gradient methods on convex
sets. SIAM Journal on Optimization, 10(4):1196–1211, 2000.

[3] P. T. Boggs and J. W. Tolle. A strategy for global convergence in a sequential quadratic programming
algorithm. SIAM Journal on Numerical Analysis, 26(3):600–623, 1989.

[4] B. Colson. Trust-Region Algorithms for Derivative-Free Optimization and Nonlinear Bilevel Programming.
PhD thesis, Department of Mathematics, FUNDP - University of Namur, Namur, Belgium, 2004.

[5] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MOS-SIAM Series on Optimization,
Philadelphia, 2000.

[6] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to derivative-free optimization. MPS-SIAM
Book Series on Optimization, Philadelphia, 2009.

[7] F. Curtis, N. I. M. Gould, D. Robinson, and Ph. L. Toint. An interior-point trust-funnel algorithm for non-
linear optimization. Technical Report naXys-02-2014, Department of Mathematics, University of Namur,
2014.

[8] E. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Mathematical
Programming, 91(2):201–13, 2002.

[9] N. I. M. Gould, D. Orban, and Ph. L. Toint. Cutest: a constrained and unconstrained testing environment
with safe threads for mathematical optimization. Computational Optimization and Applications, pages
1–13, 2014.

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 24

[10] N. I. M. Gould, D. P. Robinson, and Ph. L. Toint. Corrigendum: Nonlinear programming without a penalty
function or a filter. Technical report, Namur Centre for Complex Systems (naXys), University of Namur,
Namur, Belgium, 2011.

[11] N. I. M. Gould and Ph. L. Toint. Nonlinear programming without a penalty function or a filter. Mathematical
Programming, 122(1):155–196, 2010.

[12] S. Gratton, Ph. L. Toint, and A. Tröltzsch. An active-set trust-region method for bound-constrained
nonlinear optimization without derivatives. Optimization Methods and Software, 26(4-5):875–896, 2011.

[13] W. Hock and K. Schittkowski. Test example for nonlinear programming codes. Journal of Optimization
Theory and Applications, 30(1):127–129, 1980.

[14] R. M. Lewis and V. Torczon. Pattern search algorithms for linearly constrained minimization. SIAM
Journal on Optimization, 10:917–941, 2000.

[15] R. M. Lewis and V. Torczon. A globally convergent augmented langragian pattern search algorithm for
optimization with general constraints and simple bounds. SIAM Journal on Optimization, 12(4):1075–1089,
2002.

[16] R. M. Lewis and V. Torczon. Active set identification for linearly constrained minimization without explicit
derivatives. SIAM Journal on Optimization, 20(3):1378–1405, 2009.

[17] S. Lucidi, M. Sciandrone, and P. Tseng. Objective-derivative-free methods for constrained optimization.
Mathematical Programming, Series A, 92:37–59, 2002.

[18] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM Journal on
Optimization, 20(1):172–191, 2009.

[19] M. J. D. Powell. A direct search optimization method that models the objective and constraint functions
by linear interpolation. In Advances in Optimization and Numerical Analysis, Proceedings of the Sixth
Workshop on Optimization and Numerical Analysis, Oaxaca, Mexico, volume 275, pages 51–67, Dordrecht,
The Netherlands, 1994. Kluwer Academic Publishers.

[20] M. J. D. Powell. Direct search algorithms for optimization calculations. Acta Numerica, 7:287–336, 1998.

[21] M. J. D. Powell. On fast trust region methods for quadratic models with linear constraints. Technical
Report DAMTP 2014/NA02, Department of Applied Mathematics and Theoretical Physics, Cambridge
University, Cambridge, England, 2014.

[22] Ph. R. Sampaio and Ph. L. Toint. A derivative-free trust-funnel method for equality-constrained nonlinear
optimization. Computational Optimization and Applications, 61(1):25–49, 2015.

[23] K. Scheinberg and Ph. L. Toint. Self-correcting geometry in model-based algorithms for derivative-free
unconstrained optimization. SIAM Journal on Optimization, 20(6):3512–3532, 2010.

[24] W.-C. Yu and Y.-X. Li. A direct search method by the local positive basis for the nonlinearly constrained
optimization. Chinese Annals of Mathematics, 2:269–280, 1981.

A Appendix

The number of function evaluations required by DEFT-FUNNEL, COBYLA and LINCOA to
converge in our numerical experiments are reported here. We denote by n the number of variables
in the problem and by mB, mEQ and mIQ the number of constraints of the type bound, equality
and inequality, respectively. We indicate by “NaN” (standing for not a number) the problems where
convergence to a solution was not achieved.

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 25

Table 1.2: Number of function evaluations required by DEFT-FUNNEL and COBYLA to converge on
a set of 80 problems with general nonlinear constraints.

Problem n mB mEQ mIQ Subbasis Min. Frobenius norm Min. `2-norm Regression COBYLA

HS6 2 0 1 0 21 27 27 32 24
HS7 2 0 1 0 31 23 25 49 32
HS8 2 0 2 0 13 13 13 15 18
HS9 2 0 1 0 24 24 57 45 8
HS10 2 0 0 1 34 34 32 25 61
HS11 2 0 0 1 26 26 26 18 53
HS12 2 0 0 1 64 59 64 47 35
HS13 2 2 0 1 36 47 32 48 50
HS14 2 0 1 1 18 17 17 18 18
HS15 2 1 0 2 40 39 28 99 122
HS16 2 3 0 2 13 13 9 9 17
HS17 2 3 0 2 34 32 51 70 30
HS18 2 4 0 2 15 77 15 95 51
HS19 2 4 0 2 17 21 17 23 28
HS20 2 2 0 3 17 17 12 15 18
HS21 2 4 0 1 14 19 61 33 25
HS22 2 0 0 2 34 28 19 16 18
HS23 2 4 0 5 36 36 43 16 18
HS24 2 2 0 3 14 14 18 21 14
HS26 3 0 1 0 109 85 98 140 30
HS27 3 0 1 0 61 79 57 116 NaN
HS28 3 0 1 0 31 29 30 31 30
HS29 3 0 0 1 59 68 77 77 69
HS30 3 6 0 1 14 16 34 46 60
HS31 3 6 0 1 63 67 63 40 56
HS32 3 3 1 1 55 36 28 28 21
HS33 3 4 0 2 17 21 40 40 25
HS34 3 6 0 2 38 38 36 40 NaN
HS35 3 3 0 1 84 101 82 71 51
HS36 3 6 0 1 18 27 20 20 31
HS37 3 6 0 2 76 87 66 117 67
HS39 4 0 2 0 58 63 59 87 38
HS40 4 0 3 0 50 43 42 43 47
HS41 4 8 1 0 66 71 35 38 NaN
HS42 4 0 2 0 32 31 31 33 46
HS43 4 0 0 3 79 94 77 36 86
HS44 4 4 0 6 54 60 33 33 33
HS46 5 0 2 0 164 122 197 275 37
HS47 5 0 3 0 125 103 169 211 266
HS48 5 0 2 0 29 47 80 81 32
HS49 5 0 2 0 272 215 208 421 51
HS50 5 0 3 0 122 114 111 202 60
HS51 5 0 3 0 65 43 53 53 32
HS52 5 0 3 0 44 43 34 34 142
HS53 5 10 3 0 29 43 58 58 85
HS55 6 8 6 0 134 115 178 160 NaN
HS56 7 0 4 0 148 224 221 349 262
HS60 3 6 1 0 81 88 86 85 50
HS61 3 0 2 0 23 22 65 47 NaN
HS62 3 6 1 0 82 96 NaN NaN NaN
HS63 3 3 2 0 30 21 86 88 57
HS64 3 3 0 1 160 153 174 274 355
HS65 3 6 0 1 120 110 111 120 66
HS66 3 6 0 2 60 45 97 126 58
HS71 4 8 1 1 104 99 73 109 62

Sampaio, Toint: A derivative-free trust-funnel method for constrained nonlinear optimization 26

Table 1.3: Number of function evaluations required by DEFT-FUNNEL and COBYLA to converge on
a set of 80 problems with general nonlinear constraints. (Continued)

Problem n mB mEQ mIQ Subbasis Min. Frobenius norm Min. `2-norm Regression COBYLA

HS73 4 4 1 2 35 40 80 180 41
HS76 4 4 0 3 45 50 34 39 57
HS77 5 0 2 0 166 141 168 171 132
HS78 5 0 3 0 66 67 62 62 102
HS79 5 0 3 0 106 76 74 149 93
HS80 5 10 3 0 59 67 91 113 100
HS81 5 10 3 0 116 257 342 NaN 156
HS93 6 6 0 2 302 313 240 284 834
HS100LNP 7 0 2 0 174 236 NaN NaN 133
HS106 8 16 0 6 NaN NaN NaN 985 NaN
HS108 9 1 0 13 146 176 200 201 161
HS113 10 0 0 8 225 342 323 257 203
BT1 2 0 1 0 NaN 86 NaN NaN 18
BT2 3 0 1 0 118 124 129 198 223
BT3 5 0 3 0 40 86 62 63 74
BT4 3 0 2 0 32 31 22 49 31
BT5 3 0 2 0 30 21 20 21 NaN
BT6 5 0 2 0 203 163 176 238 51
BT7 5 0 3 0 86 86 83 166 139
BT8 5 0 2 0 63 88 69 106 56
BT9 4 0 2 0 58 63 59 87 77
BT10 2 0 2 0 7 7 19 24 17
BT11 5 0 3 0 89 92 127 220 118
BT12 5 0 3 0 65 115 129 48 563
BT13 5 1 1 0 NaN 161 158 40 637

Table 1.4: Number of function evaluations required by DEFT-FUNNEL and LINCOA to converge on
a set of 20 linearly constrained problems.

Problem n mB mEQ mIQ Subbasis Min. Frobenius norm Min. `2-norm Regression LINCOA

HS9 2 0 1 0 24 24 57 45 31
HS21 2 4 0 1 13 16 13 15 25
HS24 2 2 0 3 14 14 18 21 22
HS28 3 0 1 0 31 29 30 31 43
HS35 3 3 0 1 84 101 82 71 32
HS36 3 6 0 1 18 27 20 20 33
HS37 3 6 0 2 76 87 66 117 44
HS44 4 4 0 6 54 60 33 33 39
HS48 5 0 2 0 29 47 80 81 45
HS49 5 0 2 0 272 215 208 421 152
HS50 5 0 3 0 122 114 111 202 117
HS51 5 0 3 0 65 43 53 53 53
HS52 5 0 3 0 56 88 34 34 35
HS53 5 10 3 0 40 43 31 31 36
HS62 3 6 1 0 82 96 NaN 109 53
HS76 4 4 0 3 45 50 34 39 38
BT3 5 0 3 0 40 43 31 31 36
HATFLDH 4 8 0 13 34 46 35 35 38
STANCMIN 3 3 0 2 47 34 40 33 32
SIMPLLPA 2 2 0 2 15 15 9 9 25

