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Abstract

We present an interior-point trust-funnel algorithm for solving large-scale nonlinear optimiza-
tion problems. The method is based on an approach proposed by Gould and Toint (Math. Prog.,
122(1):155-196, 2010) that focused on solving equality constrained problems. Our method is similar
in that it achieves global convergence guarantees by combining a trust-region methodology with a
funnel mechanism, but has the additional capability that it solves problems with both equality and
inequality constraints. The prominent features of our algorithm are that (i) the subproblems that
define each search direction may be solved approximately, (ii) criticality measures for feasibility and
optimality aid in determining which subset of computations will be performed during each iteration,
(iii) no merit function or filter is used, (iv) inexact sequential quadratic optimization steps may be
utilized when advantageous, and (v) it may be implemented matrix-free so that derivative matrices
need not be formed or factorized so long as matrix-vector products with them can be performed.

Keywords: nonlinear optimization constrained optimization large-scale optimization interior-point
methods trust-region methods funnel mechanism sequential quadratic optimization.

AMS Classification: 49J52, 49M37, 65F22, 65K05, 90C26, 90C30, 90C55.

1 Introduction

In this paper, we introduce a method for solving optimization problems of the form

minimize
x∈RN

f(x) subject to c(x) ≤ 0, (NP)

where f : R
N → R and c : R

N → R
M are twice continuously differentiable. (Our method can also be

applied when equality constraints are present, but, for simplicity in our discussion, they are suppressed
in our algorithm development and analysis; see §5 for further discussion.) Our algorithm is designed to
solve large-scale instances of (NP). In particular, it is designed to be matrix-free in the sense that an
implementation of it only requires matrix-vector products with the constraint Jacobian, its transpose,
symmetric approximations of the Hessian of the Lagrangian, and corresponding preconditioners. That
is, iterative methods may be used to approximately solve each subproblem arising in the algorithm.

The method we propose utilizes components of both interior-point (IP) and sequential quadratic
optimization (commonly known as SQP) methods. Algorithms of this type are often referred to as
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barrier-SQP methods. The interior-point aspects of our algorithm allow us to avoid the combinatorial
explosion that may occur within, say, an active-set approach. The efficiency of interior-point methods
for solving linear and convex quadratic optimization problems has been well-established [1, 7, 12, 13,
14, 25, 29, 32, 18, 31]. Extending these methods for solving nonlinear problems has been the subject of
research for decades [3, 4, 6, 15, 33, 35, 34, 36, 37] and numerical evidence illustrates strong performance.
We follow an approach similar to Byrd et. al. [3, 4] and solve a sequence of so-called barrier subproblems
for decreasing values of the barrier parameter. This means that we must solve a sequence of equality
constrained subproblems, and these may be solved efficiently with an SQP-based method. It is well
known that traditional SQP methods are very efficient for solving small- to medium-sized optimization
problems [8, 17, 16, 9], while more recently proposed SQP methods utilize exact second derivatives
and are, in theory, capable of solving large problems [20, 21, 22, 30]. Preliminary results when solving
small- to medium-sized problems is promising, but their effectiveness on large problems has not yet been
confirmed. There have, however, been several proposed SQP strategies that have proved capable of
solving large equality constrained problems [2, 24, 28].

In this paper, we use the trust-funnel approach originally described in [24], and then corrected
in [23], as the basis for solving a sequence of equality constrained barrier subproblems that arise in an
interior-point framework. We note, however, that a näıve implementation of the SQP method described
in [24, 23] within an interior-point paradigm may result in a method for which the establishment of
convergence guarantees is elusive. This is a consequence of the fact that interior-point methods—as
their name suggests—require the algorithm iterates to remain in the strict interior of the feasible region
associated with the inequality constraints, while the method in [24, 23] does not innately possess the
mechanisms necessary to avoid the boundary of the feasible region in this context. In this paper, we
describe modifications of this trust-funnel method that are appropriate for our interior-point setting.
These modifications include imposing explicit constraints in the trust-region subproblems to ensure that
the iterates remain in the strict interior of the feasible region, and the incorporation of scaled trust-region
constraints and optimality measures. Scalings of these types have been used previously in interior-point
methods; e.g., see [3, 6].

The paper is organized as follows. In Section 2, we introduce our trust-funnel algorithm for solving the
barrier subproblem in an interior-point approach. In Section 3, we prove that our trust-funnel algorithm
will terminate finitely with arbitrarily small positive tolerances on the criticality measures. In Section 4,
we consider convergence of the barrier subproblem solutions for a decreasing sequence of the barrier
parameter. Finally, conclusions are provided in Section 5.

Notation

The gradient and Hessian of f at x are written as g(x) and ∇xxf(x) respectively. The M × N matrix
J(x) represents the Jacobian of the constraint function c evaluated at x, with its jth row being ∇cj(x)T .
The matrix ∇xxcj(x) is the Hessian of cj evaluated at x. We let e denote the vector of all ones and I
denote the identity matrix, both of whose dimensions are determined by the context in which they are
used. Given a vector s ∈ R

M , [s]j is the jth element of s and S := diag([s]1, [s]2, . . . , [s]M ). A forcing
function ω : [0,∞) → [0,∞) is defined as any continuous and strictly increasing function that satisfies
ω(0) = 0.

Preliminaries

We make the following assumption throughout the paper.

Assumption 1.1 The functions f and c are twice continuously differentiable.

Problem (NP) is not solved directly by our algorithm. Rather, we introduce a vector of slack variables
s ∈ R

M and solve the equivalent optimization problem

minimize
x∈RN ,s∈RM

f(x) subject to c(x, s) := c(x) + s = 0, s ≥ 0. (NPs)

The following definition gives first-order stationarity conditions for (NPs) [26, 27].
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Definition 1.1 (First-order KKT point for problem (NPs)) The vector triple (x, s, y) is a first-
order KKT point for problem (NPs) if it satisfies g(x) + J(x)Ty = 0, c(x, s) = 0, Sy = 0 and (s, y) ≥ 0.

To solve (NPs), we compute a sequence of (approximate) minimizers of the barrier subproblem

minimize
x∈RN ,s∈RM

f(x, s) subject to c(x, s) = 0, s > 0, (1.1)

where for each fixed value of µ > 0 we define the barrier function

f(x, s) := f(x) − µ

M
∑

i=1

ln([s]i). (1.2)

Given a Lagrange multiplier estimate vector y for the constraint c(x, s) = 0, the Lagrangian function
associated with (1.1) and its gradient with respect to (x, s) are given by

L(x, s, y) := f(x, s) + c(x, s)Ty and ∇(x,s)L(x, s, y) := ∇f(x, s) + J(x, s)Ty,

where we define J(x, s) := ∇c(x, s) =
(

J(x) I
)

to represent the Jacobian of c(x, s) with respect to
(x, s). A primal-dual point (x, s, y) is called a first-order KKT point of the barrier problem (1.1) if it
satisfies ∇(x,s)L(x, s, y) = 0, c(x, s) = 0 and (s, y) > 0. Multiplying the second block of the first equation
by S leads to the following equivalent definition.

Definition 1.2 (First-order KKT point for the barrier subproblem (1.1)) The vector triple (x, s, y)
is a first-order KKT-point for the barrier subproblem (1.1) if it satisfies g(x) + J(x)Ty = 0, c(x, s) = 0,
Sy = µe and (s, y) > 0.

A comparison of Definitions 1.1 and 1.2 suggests that KKT points of the barrier subproblem become
increasingly accurate solutions to problem (NPs) for decreasing values of the barrier parameter µ.

2 A Trust-Funnel Algorithm for Solving the Barrier

Subproblem

In this section, we present our trust-funnel algorithm for (approximately) solving the barrier subprob-
lem (1.1) for a fixed value of the barrier parameter µ > 0. As µ is fixed for a particular instance of (1.1),
the dependence on µ of certain quantities in this section is ignored. However, these dependences—in
particular, with respect to criticality tolerances that are employed in the algorithm—will be a central
focus in §4 that addresses the “outer” algorithm for solving problem (NPs).

2.1 Algorithm overview

Our method generates a sequence {(xk, sk, yk)} of primal, slack, and dual variables. In addition, defining
the measure of constraint violation

v(x, s) := ‖c(x, s)‖2, (2.1)

our method maintains a monotonically decreasing sequence of positive scalars {vmax

k } such that

sk > 0, c(xk, sk) ≥ 0, vk := v(xk, sk) ≤ vmax

k , and vmax

k+1 ≤ vmax

k for all k ≥ 0. (2.2)

We require s0 > 0, and the restriction that sk > 0 is maintained via explicit constraints imposed on
all search direction calculations. Additionally, we ensure that c(xk, sk) ≥ 0 holds at the beginning of
iteration k by incorporating a slack reset procedure that sets

[sk]i ←

{

[sk]i if [c(xk, sk)]i ≥ 0,

−[c(xk)]i otherwise.
(2.3)

If we let sprior

k denote the value of sk prior to the slack reset in iteration k, then it follows that

vk ≤ v(xk, sprior

k ), sprior

k ≤ sk, and f(xk, sk) ≤ f(xk, sprior

k ). (2.4)
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That is, both the barrier function and constraint violation decrease as a result of the (trivial) slack reset
computation (2.3). We explicitly enforce vk ≤ vmax

k with the updating strategy discussed in Section 2.4.
Finally, the sequence {vmax

k } is positive and monotonically decreasing by construction and guides the
iterates toward feasibility; the set of points permitted by the gradually narrowing region defined by
v(x, s) ≤ vmax

k is called the funnel [24, 23]. Overall, the claims in (2.2) are formally established in
Section 2.6.

Given the current estimate (xk, sk) of a solution of (1.1), a trial step dk := (dx
k, ds

k) is computed as
the sum of a “normal” step nk := (nx

k, ns
k) and a “tangential” step tk := (txk, tsk), i.e.,

dk =

(

dx
k

ds
k

)

=

(

nx
k

ns
k

)

+

(

txk
tsk

)

= nk + tk.

The normal step is computed to (approximately) minimize a Gauss-Newton model of v at (xk, sk); thus,
it has the purpose of reducing linearized infeasibility. The tangential step tk is intended to reduce the
barrier function (1.2) and is calculated as an (approximate) minimizer of a quadratic model of the barrier
function within an appropriate subspace that does not undo the improvement in reducing linearized
infeasibility achieved by nk. Once dk = nk + tk is computed, an attempt to decrease the constraint
violation and/or barrier function is made, where the decision of which to consider is based on quantities
that reflect the overall merit of the constituent steps. We discuss these details in turn in the following
subsections.

2.2 The normal step

The normal step is designed to predict a reduction in constraint violation as measured by v defined
in (2.1). To achieve this goal, we compute the normal step nk := (nx

k, ns
k) as an approximate solution of

minimize
n=(nx,ns)

mv
k(n) subject to ‖P−1

k n‖2 ≤ δv
k , sk + ns ≥ κfbnsk, (2.5)

κfbn ∈ (0, 1) is a constant, δv
k > 0 is a dynamic algorithm parameter, and we define

mv
k(n) := ‖c(xk, sk) + J(xk, sk)n‖2 and Pk :=

(

I 0
0 Sk

)

(2.6)

along with the “v-criticality” measures

πv
k := πv(xk, sk) := ‖PkJ(xk, sk)T c(xk, sk)‖2 and χv

k := χv(xk, sk) :=

{

πv
k/vk if vk 6= 0,

0 otherwise.
(2.7)

The quantities πv
k and χv

k serve as criticality measures at (xk, sk) for minimizing v subject to the slacks
being nonnegative. The scaling matrix Pk is important in the trust region constraint since it assists in
keeping the iterates within the nonnegative orthant; it restricts [ns

k]j to be relatively small when [sk]j
is close to zero. Overall, problem (2.5) involves the local minimization of the norm of a Gauss-Newton
approximation of v at (xk, sk) subject to a trust-region constraint and a fraction-to-the-boundary rule.

It is not necessarily prudent to compute a normal step in every iteration. Indeed, computing a normal
step may be wasteful if the current iterate is nearly feasible and computational efforts may be better
spent on computing a new Lagrange multiplier estimate or tangential step. In our algorithm, we only
require a normal step to be computed when either our v-criticality measure πv

k is sufficiently large relative

to our previous “f -criticality” measure πf
k−1 (defined in (2.25) in the next subsection), or when vk is

sufficiently large relative to vmax

k (see (2.2)). Specifically, for some κvv ∈ (0, 1) and forcing function ωn

(and with πf
−1 := 0), we require the computation of a normal step if either

πv
k > ωn(πf

k−1) or vk ≥ κvvv
max

k . (2.8)

(If (2.8) does not hold, but πv
k > 0, then one may still consider computing a normal step since the fact

that πv
k > 0 implies that the computation would be well-defined. However, in such cases, a normal step

is not necessary for our convergence analysis.) When a normal step is not computed, we set nk ← 0.
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By an approximate solution to (2.5), we mean that nk := (nx
k, ns

k)—when it is computed—should
be feasible for (2.5) and yield a decrease in mv

k no less than that achieved along a scaled steepest
descent direction for (mv

k)2. The scaled steepest descent direction that we employ for this comparison is
derived in the following manner. Performing the change of variables nP := P−1

k n so that the trust-region
constraint becomes ‖nP‖2 ≤ δv

k , the transformed problem for minimizing (mv
k)2 has the conventional ℓ2-

norm steepest descent direction −PkJ(xk, sk)Tc(xk, sk). Returning to the original space gives the scaled
steepest descent direction −P 2

k J(xk, sk)Tc(xk, sk). For (2.5), we define the Cauchy step nC

k = (nC

k
x, nC

k
s)

as the minimizer of the objective of (2.5) in this scaled steepest descent direction, i.e.,

nC

k := nC

k(αC

N
), where nC

k(α) :=

(

nC

k
x(α)

nC

k
s(α)

)

:= −αP 2
k J(xk, sk)T c(xk, sk) (2.9)

and αC

N
is the solution to

minimize
α≥0

mv
k(nC

k(α)) subject to ‖P−1
k nC

k(α)‖2 ≤ δv
k , sk + nC

k
s(α) ≥ κfbnsk. (2.10)

We show in Lemma 2.3 that the decrease in mv
k obtained by nC

k is positive. Overall, when (2.8) holds,
we require a normal step nk satisfying the constraints of (2.5), i.e.,

‖P−1
k nk‖2 ≤ δv

k , sk + ns
k ≥ κfbnsk, (2.11)

along with
∆mv,n

k := mv
k(0) − mv

k(nk) ≥ mv
k(0) − mv

k(nC

k) (2.12)

and
P−1

k nk belongs to the range space of PkJ(xk, sk)T . (2.13)

Many steps satisfy (2.11) – (2.13) with the simplest choice being nk = nC

k . In particular, (2.13) is
automatically guaranteed by Krylov-type methods for minimizing mv

k(n). For future reference, we also
define

α∗
N := arg min

α≥0
mv

k(nC

k(α)) and n∗
k := nC

k(α∗
N ), (2.14)

the “unrestricted” Cauchy step that would be obtained if its length were not constrained. Note that α∗
N

is unique whenever πv
k > 0.

2.3 Lagrange multipliers and the tangential step

Having dealt with the normal step, we now consider computing estimates of an optimal Lagrange mul-
tiplier vector and/or a tangential step. The multiplier estimates, if computed, are intended to (ap-
proximately) minimize a measure of criticality for the barrier subproblem (1.1) that takes into account
changes in the problem function values that are predicted by the normal step. The tangential step, if
computed, is designed to reduce the barrier function without having too adverse an effect on the reduction
in linearized infeasibility predicted by the normal step. Since the conditions imposed on the multiplier
estimates and tangential step are intertwined—e.g., the computed multiplier estimates are required to
have a well-defined Cauchy point for the tangential step subproblem—we consider their computations
together in this subsection. Our motivation in this section is to compute quantities related to those in a
traditional SQP approach applied to subproblem (1.1).

Given the kth estimate yk of an optimal Lagrange multiplier vector, a traditional SQP trial step
associated with the barrier subproblem (1.1) is defined as the solution (when it exists) of

minimize
d=(dx,ds)

f(xk, sk)+∇f(xk, sk)T d+ 1
2dT∇(x,s)(x,s)L(xk, sk, yk)d subject to c(xk, sk)+J(xk, sk)d = 0.

It may be verified that a solution d = (dx, ds) of this subproblem (when it exists) satisfies





∇xxL(xk, yk) J(xk)T 0
J(xk) 0 I

0 Sk µS−1
k









dx

y
ds



 = −





g(xk)
c(xk, sk)
−µe



 , (2.15)
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where y is an estimate of an optimal Lagrange multiplier vector for the constraint c(xk, sk)+J(xk, sk)d =
0. The SQP step generated in this fashion is often called a primal step since the dual vector yk does
not appear in (2.15) other than in the Hessian ∇xxL. We can instead compute a primal-dual step by
applying Newton’s Method to the conditions in Definition 1.2, which leads to





∇xxL(xk, yk) J(xk)T 0
J(xk) 0 I

0 Sk Yk









dx

y
ds



 = −





g(xk)
c(xk, sk)
−µe



 . (2.16)

This system is identical to (2.15), except that the (3, 3)-block now contains dual information. It is also
easily verified that a solution of (2.16) is a KKT point for

minimize
d=(dx,ds)

f(xk, sk) + ∇f(xk, sk)T d + 1
2dT H(xk, sk, yk)d subject to c(xk, sk) + J(xk, sk)d = 0,

where

H(xk, sk, yk) :=

(

∇xxL(xk, yk) 0
0 YkS−1

k

)

.

The previous paragraph, along with the widely accepted view that the primal-dual approach is gen-
erally superior to the primal approach in practice, motivates us to approximate the barrier function (1.2)
with

mf
k(d) := f(xk, sk) + ∇f(xk, sk)Td + 1

2dTGkd, (2.17)

where, for all k, we define

Gk :=

(

∇xxL(xk, yB

k ) 0
0 Dk

)

(2.18)

with yB

k a (bounded) Lagrange multiplier vector satisfying

[yB

k ]i > 0 for all i ∈ {1, 2, . . . ,M} and ‖yB

k‖2 ≤ κy for some scalar κy > 0, (2.19)

and choose Dk ≈ YkS−1
k as a positive-definite diagonal matrix satisfying

‖Dk‖2 ≤ κD for some scalar κD > 0. (2.20)

Overall, our goal is to compute a tangential step tk that satisfies mf
k(nk + tk) ≤ mf

k(nk) and lies
approximately in the null space of the constraint Jacobian J(xk, sk) so as not to undo the predicted gain
in linearized feasibility provided by the normal step. This latter requirement implies that improvement in
the barrier function should be sought within the trust-region {d : ‖P−1

k d‖2 ≤ δv
k}, since it is only within

this region that the linearized constraint model is believed to be trustworthy. In addition, we assume
that the barrier function model mf

k may be trusted as a faithful representation within the trust-region

{d : ‖P−1
k d‖2 ≤ δf

k} for a given tangential trust-region radius δf
k > 0. Consequently, we use

‖P−1
k nk‖2 ≤ κB min{δv

k , δf
k} with κB ∈ (0, 1) (2.21)

as a necessary condition for computing a tangential step. If (2.21) is satisfied, then we require the
computation of a new Lagrange multiplier estimate and, potentially, a tangential step. Otherwise, we
set yk ← yk−1 and tk ← 0 since the cost of computing new multipliers and a tangential step may be
wasteful.

When (2.21) is satisfied, we seek an approximate solution of the tangential step subproblem

minimize
t=(tx,ts)

mf
k(nk + t)

subject to J(xk, sk)t = 0, ‖P−1
k (nk + t)‖2 ≤ min{δv

k , δf
k}, sk + ns

k + ts ≥ κfbt(sk + ns
k)

(2.22)

for some κfbt ∈ (0, 1). Observing the change of variables tP = P−1
k t, this subproblem is equivalent to

minimize
tP=(tPx,tPs)

mf
k(nk + PktP)

subject to J(xk, sk)PktP = 0, ‖P−1
k nk + tP‖2 ≤ min{δv

k , δf
k}, tPs ≥ (κfbt − 1)(e + S−1

k ns
k).
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To define an appropriate Cauchy point, we first compute approximate least-squares multipliers corre-
sponding to the scaled subproblem at tP = 0, i.e., we compute yk as an approximate solution of

minimize
y∈RM

mL
k (y), where mL

k (y) := 1
2‖Pk(∇mf

k(nk) + J(xk, sk)T y)‖2
2. (2.23)

Scaling the resulting (approximate) projected gradient back into the original space, we obtain the (ap-
proximate) oblique projected gradient

rk := rk(yk) := P 2
k (∇mf

k(nk) + J(xk, sk)T yk) (2.24)

and the related f -criticality measures

πf
k := πf

k (yk) := ‖Pk(∇mf
k(nk) + J(xk, sk)Tyk)‖2 and χf

k := χf
k(yk) :=

∇mf
k(nk)Trk(yk)

πf
k (yk)

(2.25)

associated with minimizing the barrier function. In this computation, we require that yk and the resulting
rk, πf

k , and χf
k satisfy at least one of the following three sets of conditions:

πf
k ≤ ǫπ and vk ≤ ǫv; (2.26a)

πf
k ≤ ωt(π

v
k); (2.26b)

χf
k ≥ κχπf

k . (2.26c)

Here, {ǫπ, ǫv} > 0 and κχ ∈ (0, 1) are constants and ωt is a forcing function. For technical reasons (in
the proof of Lemma 2.1(vii)), we require that the functions ωn and ωt (see (2.8) and (2.26b)) satisfy

ωt(ωn(τ)) ≤ κωτ for all τ ≥ 0 and for some κω ∈ (0, 1). (2.27)

The presence of Pk in (2.23) forces components of the approximate projected gradient in (2.24) to be
large when the corresponding components of sk are small. Thus, this scaling matrix helps prevent slack
variables from approaching zero, just as it did in the formulation of the normal step subproblem (2.5).
Later, Lemma 2.5 shows that we can always satisfy one of the three sets of conditions in (2.26), and thus

this strategy for computing yk (and the related quantities rk, πf
k , and χf

k) is well-posed.
If (2.26a) is satisfied, then (xk, sk, yk) is an approximate first-order KKT point for the barrier sub-

problem for the tolerances {ǫπ, ǫv} > 0, so we terminate the algorithm for solving (1.1). However,

if (2.26a) is not satisfied, but (2.26b) holds, then the f -criticality measure πf
k is insubstantial compared

to the v-criticality measure πv
k . In this case, the computation of a tangential step is skipped, i.e., we

simply set tk ← 0. Otherwise, when (2.26a) and (2.26b) do not hold (and necessarily (2.26c) holds),
we proceed to compute a tangential step. In this case, it follows from the definition (2.25), the condi-

tion (2.26c) and the fact that πf
k > 0 (since otherwise (2.26b) would have held) that rk is a direction of

strict ascent for mf
k(·) at nk. This property allows us to compute a tangential step tk satisfying one of

two sets of conditions as outlined in the following two subsections. Our choice of which set of conditions
to satisfy depends on whether a normal step is computed. Specifically, if nk 6= 0, then we require the
computation of what we call a relaxed SQP tangential step. Otherwise, if nk = 0, then we are still free
to attempt to compute a relaxed SQP tangential step, but we may instead compute what we call a very
relaxed SQP tangential step. In such a case, this latter option may be preferable as it involves a weaker
restriction on linearized infeasibility of the step.

2.3.1 A relaxed SQP tangential step

Given constants κfbt ∈ (0, 1) and κtg ∈ (0, 1), a relaxed SQP tangential step is defined as follows.

Definition 2.1 (Relaxed SQP tangential step) Define the Cauchy point

tCk := tCk(αC

T
), where tCk(α) :=

(

tCk
x(α)

tCk
s(α)

)

:= −α

(

rx
k

rs
k

)

= −αrk (2.28)
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and αC

T
is the minimizer of

minimize
α≥0

mf
k

(

nk + tCk(α)
)

subject to ‖P−1
k

(

nk + tCk(α)
)

‖2 ≤ min{δv
k , δf

k}, sk + ns
k + tCk

s(α) ≥ κfbt(sk + ns
k).

(2.29)

Then, tk is a relaxed SQP tangential step if

∆mf,t
k := mf

k(nk) − mf
k(nk + tk) ≥ mf

k(nk) − mf
k(nk + tCk), (2.30a)

sk + ns
k + tsk ≥ κfbt(sk + ns

k), (2.30b)

‖P−1
k (nk + tk)‖2 ≤ min{δv

k , δf
k}, and (2.30c)

mv
k(nk + tk) ≤ κtgm

v
k(0) + (1 − κtg)m

v
k(nk). (2.30d)

Condition (2.30a) ensures that the model of the barrier function is decreased at least as much as by
the Cauchy point tCk , (2.30b) is a fraction-to-the-boundary constraint, (2.30c) is a trust-region constraint,
and (2.30d) is a relaxation of the traditional SQP constraint that c(xk, sk) + J(xk, sk)(nk + tk) = 0 that
ensures that linearized constraint infeasibility is sufficiently reduced.

If a relaxed SQP tangential step satisfying (2.30) is computed, then we must evaluate its usefulness
in the sense that we must ensure that a relatively large tangential step results in a sufficient decrease in
the model mf

k of the barrier function. With this in mind, we check whether the conditions

‖P−1
k tk‖2 > κVS‖P

−1
k nk‖2 for some κVS > 1 (2.31)

and

∆mf,d
k := ∆mf,n

k + ∆mf,t
k ≥ κδ∆mf,t

k for some κδ ∈ (0, 1) with ∆mf,n
k := mf

k(0) − mf
k(nk) (2.32)

are satisfied. The inequality (2.32) indicates that the predicted decrease in the barrier function obtained
from the tangential step is substantial when compared to the possible increase resulting from the normal
step. If the step tk satisfies (2.31) but violates (2.32), it does not serve its role so we reset it to zero.

2.3.2 A very relaxed SQP tangential step

Condition (2.30) may be too restrictive in certain cases. Specifically, if vk = 0, then the algorithm will
set nk = 0, from which it follows that (2.30d) requires tk to be in the null space of J(xk, sk). This is an
unreasonable requirement in matrix-free settings; indeed (2.30d) may be unreasonable in any situation
when nk = 0. Thus, to avoid such a requirement, we allow for the computation of an alternative
tangential step. Given the constant κfbt ∈ (0, 1) employed in (2.30b), a constant κv ∈ (1,∞), and a
constant κtt ∈ (κvv, 1) (with κvv ∈ (0, 1) defined for (2.8)), the salient feature of our alternative is that
it involves a relaxed condition on the linearized infeasibility of the step. We emphasize that we are
only allowed to compute a tangential step of this type when nk = 0, though we incorporate nk into the
conditions in the following definition so that one may more easily compare them to the conditions in
Definition 2.1.

Definition 2.2 (Very relaxed SQP tangential step) Define the Cauchy point

tCk = tCk(αC

T
), where tCk(α) :=

(

tCk
x(α)

tCk
s(α)

)

:= −α

(

rx
k

rs
k

)

= −αrk (2.33)

and αC

T
is the minimizer of

minimize
α≥0

mf
k

(

nk + tCk(α)
)

subject to ‖P−1
k

(

nk + tCk(α)
)

‖2 ≤ min{δv
k , δf

k , κvv
max

k }, sk + ns
k + tCk

s(α) ≥ κfbt(sk + ns
k).

(2.34)

Then, tk is a very relaxed SQP tangential step if

∆mf,t
k := mf

k(nk) − mf
k(nk + tk) ≥ mf

k(nk) − mf
k(nk + tCk), (2.35a)

sk + ns
k + tsk ≥ κfbt(sk + ns

k), (2.35b)

‖P−1
k (nk + tk)‖2 ≤ min{δv

k , δf
k , κvv

max

k }, and (2.35c)

mv
k(nk + tk) ≤ κttv

max

k . (2.35d)
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Conditions (2.35a)–(2.35c) resemble and play the same role as conditions (2.30a)–(2.30c). However,
we emphasize that since the Cauchy point defined by (2.33)–(2.34) involves a potentially smaller trust-
region radius than that defined in (2.29), the bound imposed in (2.35a) may be different from that
imposed in (2.30a), and this difference in the trust-region radii is matched in (2.35c) (c.f., (2.30c)). The
name “very relaxed SQP tangential step” has been chosen because of condition (2.35d), which merely
requires that the predicted constraint violation be sufficiently less than a fraction of the upper bound
vmax

k rather than a fraction of the current violation (c.f., (2.30d)). In fact, the smaller trust-region radii
in (2.34) and (2.35c) (as compared to those in (2.29) and (2.30c)) have been chosen to compensate for
this relaxation.

2.4 Iteration type, step acceptance, and updating strategy

As in other trust-region methods, once we have computed the trial step dk := nk + tk and the trial point

(x+
k , s+

k ) := (xk, sk) + dk,

we are left with the task of accepting or rejecting them. Our proposal for making this choice is based
on the distinction between y-iterations, f-iterations and v-iterations in the spirit of [9, 10, 11]. This
characterization is made based on model values computed with the trial step, and the type of iteration
influences the updates performed for various algorithmic quantities.

2.4.1 A y-iteration

A y-iteration is any iteration satisfying the following definition.

Definition 2.3 (y-iteration) The kth iteration is a y-iteration if dk = 0.

Note that a y-iteration will occur when nk and tk are both set to zero, but could (in theory) occur if
nk = −tk and some components are nonzero. (This latter case is ruled out by Lemma 2.1(vi).) During
a y-iteration, we perform the updates

(xk+1, sk+1) ← (xk, sk), δf
k+1 ← δf

k , δv
k+1 ← δv

k , and vmax
k+1 ← vmax

k . (2.36)

Since a y-iteration is defined by a zero primal step, the only computation of interest is that of a new
vector of Lagrange multiplier estimates. Therefore, the updates in (2.36) leave the trust-region radii and
bound on the maximum allowed infeasibility unchanged for the subsequent iteration.

2.4.2 An f-iteration

The primary goal of an f -iteration is to reduce the barrier function.

Definition 2.4 (f-iteration) The kth iteration is an f-iteration if tk 6= 0, (2.32) holds, and

v(x+
k , s+

k ) ≤ vmax

k . (2.37)

Condition (2.37) ensures that, at the trial point (x+
k , s+

k ), the constraint violation remains within the
upper bound imposed by vmax

k . Combining this with the fact that (2.32) holds, it follows that the main
achievement of interest is a predicted decrease in the value of the barrier function (1.2).

Our updating strategy for f -iterations is based on the quantity

ρf
k :=

f(xk, sk) − f(x+
k , s+

k )

∆mf,d
k

, (2.38)
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that measures the ratio of actual-to-predicted decrease in the barrier function. Specifically, if ρf
k ≥ η1,

we set

(xk+1, sk+1) ← (x+
k , s+

k ) (2.39)

[sk+1]i ←

{

[sk+1]i if [c(xk+1, sk+1)]i ≥ 0,

−[c(xk+1)]i otherwise,
(2.40)

δf
k+1

{

∈ [δf
k ,∞) if ρf

k ≥ η2,

∈ [γ2δ
f
k , δf

k ] otherwise,
(2.41)

δv
k+1 ≥ δv

k (2.42)

Otherwise (i.e., if ρf
k < η1), we set

(xk+1, sk+1) ← (xk, sk), (2.43)

δf
k+1 ∈ [γ1δ

f
k , γ2δ

f
k ], (2.44)

δv
k+1 ← δv

k (2.45)

In both cases, we set

vmax

k+1 ← vmax

k . (2.46)

In (2.39)–(2.46), the constants should be chosen to satisfy 0 < η1 ≤ η2 < 1 and0 < γ1 ≤ γ2 < 1. Overall,
we accept the trial point (x+

k , s+
k ) if the achieved decrease in the barrier function is comparable to the

predicted decrease (and reject it otherwise), update δf
k+1 using a typical trust-region updating strategy,

possibly increase the normal step trust-region radius, and leave the infeasibility limit unchanged (since
the success or failure of an f -iteration depends only on whether the barrier function was substantially
reduced).

We also add an important safeguard. Because (2.39) alters the current iterate, a (sequence of) f -

iteration(s) with ρf
k ≥ η1 may make the information on the adequacy of the model mv

k(·) and δv
k gathered

during previous iterations irrelevant. In order to avoid resulting excessively small normal steps at future
iterations, the trust-region radius δv

k may be increased during the course of the normal step computation

for iteration k following an f-iteration for which ρf
k−1 ≥ η1 so that at least a multiple of the “unrestricted”

Cauchy step of length ‖P−1
k n∗

k‖ is always acceptable. Thus we impose the inequality

δv
k ≥ κn‖P

−1
k n∗

k‖2. (2.47)

for such iterations, where κn > 0 is a constant. This requirement can be easily implemented by setting a
flag at each such f -iteration, which is then used (and reset) at the next normal step computation. Note
that ‖P−1

k n∗
k‖2 is a by-product of the computation of the constrained Cauchy step nC

k from (2.10).

2.4.3 A v-iteration

When the conditions that define a y- and an f -iteration are not satisfied, the iteration type defaults to
that of a v-iteration. As we shall see in the convergence analysis of our algorithm, the main achievement
of interest in such an iteration is a reduction in constraint violation.

Definition 2.5 (v-iteration) The kth iteration is a v-iteration if it is not a y- or an f-iteration, i.e.,
if dk 6= 0 and either tk = 0, (2.32) does not hold, or (2.37) does not hold.

A measure of decrease one might expect in v from the trial step dk is

∆mv,d
k := mv

k(0) − mv
k(dk). (2.48)

Indeed, our updating strategy in a v-iteration is based on the conditions

nk 6= 0 and ∆mv,d
k ≥ κcd∆mv,n

k (2.49)
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for some constant κcd ∈ (0, 1 − κtg] ⊂ (0, 1) with κtg defined in (2.30d), and the quantity

ρv
k :=

vk − v(x+
k , s+

k )

∆mv,d
k

(2.50)

that measures the ratio of actual-to-predicted decrease in the constraint violation. Using these conditions
and quantities, if (2.49) holds and ρv

k ≥ η1, we set

(xk+1, sk+1) ← (x+
k , s+

k ) (2.51)

[sk+1]i ←

{

[sk+1]i if [c(xk+1, sk+1)]i ≥ 0,

−[c(xk+1)]i otherwise,
(2.52)

δv
k+1

{

≥ δv
k if ρv

k ≥ η2,

= δv
k otherwise,

(2.53)

vmax

k+1 ← max{κt1v
max

k , v(xk+1, sk+1) + κt2

(

vk − v(xk+1, sk+1)
)

}. (2.54)

Otherwise (i.e., if (2.49) does not hold or ρv
k < η1), we set

(xk+1, sk+1) ← (xk, sk), (2.55)

δv
k+1 ∈ [γ1δ

v
k , γ2δ

v
k ], (2.56)

vmax

k+1 ← vmax

k . (2.57)

In both cases, we set

δf
k+1 ← δf

k . (2.58)

In (2.51)–(2.58), the constants should be chosen to satisfy {κt1, κt2} ⊂ (0, 1). In this manner, the
trial point is accepted if the normal step is nonzero and the improvement in linearized feasibility is
comparable to its predicted value, which is itself comparable to the improvement yielded by the normal
step. Moreover, the radius δv

k+1 is set by a standard trust-region radius updating strategy, but the radius

δf
k+1 is left unchanged. Finally, we decrease the upper bound vmax

k when the trial step is accepted. It will
be shown in our convergence analysis that the amount that this bound is decreased is nontrivial, but it
is modest enough so that the funnel does not contract too quickly.

2.5 The trust-funnel algorithm

We formally state our trust-funnel method as Algorithm 1 on page 12.
For convenience in our convergence analysis, we define several sets that classify each iteration, as well

as the types of computations performed in them. The first group of sets distinguishes between y-, f -,
and v-iterations, respectively:

Y := {k ∈ N : dk = 0}, F := {k ∈ N : tk 6= 0 and (2.32) and (2.37) hold}, and V := N \ (Y ∪ F).

As can be seen by the results in Lemma 2.1 below, these sets are mutually exclusive and exhaustive.
Our next collection of index sets distinguishes iterations for which the normal and/or tangential steps

satisfy various conditions, and whether the tangential step was reset to zero:

N := {k ∈ N : nk was computed to satisfy (2.11) – (2.13)};

T := {k ∈ N : tk was computed to satisfy either (2.30) or (2.35)};

TD := {k ∈ T : the computed tk satisfied (2.30)};

T0 := {k ∈ TD : the computed tk satisfied (2.30) and (2.31), but not (2.32), and was reset to zero}.

Furthermore the set of iterations for which dk satisfies the linearized constraint contraction condi-
tion (2.30d) plays an important role in our analysis. Thus, in addition to the sets above, we define

D := {k ∈ N : the step dk = nk + tk satisfies (2.30d)}.
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Algorithm 1 Trust-funnel algorithm for minimizing the barrier problem (1.1).

1: Input: (x0, s0, y−1, µ) and (ǫπ, ǫv) with (s0, y−1, µ) > 0 and (ǫπ, ǫv) > 0, respectively.

2: Choose {δf
0 , δv

0 , κca, κy, κD, κn} ⊂ (0,∞), {κcr, κVS , κv} ⊂ (1,∞), 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1,
{κtt, κδ, κtg, κω, κχ, κB, κvv, κfbn, κfbt, κt1, κt2} ⊂ (0, 1), κcd ∈ (0, 1 − κtg] and set the flag τ .

3: Perform a slack reset to s0 as given by (2.3).

4: Set vmax

0 ← max{κca, κcrv(x0, s0)}, and πf
−1 ← 0.

5: for k = 0, 1, . . . do
6: Compute vk from (2.2) and πv

k and χv
k from (2.7).

7: if χv
k = 0 and vk > 0 then

8: Return the infeasible stationary point (xk, sk).

9: if (2.8) holds, or at least πv
k > 0 then

10: Compute n∗
k satisfying (2.14).

11: If the flag τ is set, unset it and possibly redefine δv
k to ensure (2.47).

12: Then compute nk satisfying (2.11) – (2.13). [k ∈ N ]
13: else
14: Set nk ← 0.

15: Choose yB

k satisfying (2.19) and Dk satisfying (2.20), and then set Gk by (2.18).
16: if (2.21) holds then

17: Compute yk, rk, πf
k , and χf

k from (2.23)–(2.25) to satisfy (2.26a), (2.26b), or (2.26c).
18: if (2.26a) holds then
19: Return the (approximate) first-order KKT point (xk, sk, yk) for the barrier problem (1.1).

20: else if (2.26b) holds then
21: Set tk ← 0.
22: else
23: if k ∈ N then
24: Compute tk so that (2.30) is satisfied. [k ∈ T ]
25: else
26: Compute tk so that either (2.30) or (2.35) is satisfied. [k ∈ T ]

27: if (2.30) holds then
28: Add iteration k to the set TD. [k ∈ TD]
29: if (2.31) is satisfied but (2.32) fails then
30: Set tk ← 0. [k ∈ T0]

31: else
32: Set yk ← yk−1 and tk ← 0, and then set rk, πf

k , and χf
k by (2.24)–(2.25).

33: if (2.26a) holds then
34: Return the (approximate) first-order KKT point (xk, sk, yk) for the barrier problem (1.1).

35: if (2.30d) holds then
36: Add iteration k to the set D. [k ∈ D]

37: Set the trial step dk ← nk + tk and trial iterate (x+
k , s+

k ) ← (xk, sk) + dk.
38: if dk = 0 then
39: Perform the y-iteration updates given by (2.36). [k ∈ Y]
40: else if tk 6= 0 and both (2.32) and (2.37) hold then

41: Perform the f -iteration updates given by (2.39)–(2.46). If ρf
k ≥ η1, set the flag τ . [k ∈ F ]

42: else
43: Perform the v-iteration updates given by (2.51)–(2.58). [k ∈ V]
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Our last collection of sets distinguishes iterations that produce a change in the primal space. In
particular, if ρf

k ≥ η1 holds during an f -iteration, or if (2.49) holds and ρv
k ≥ η1 during a v-iteration,

then iteration k is called successful. The following sets capture these types of iterations:

Sf := {k ∈ F : ρf
k ≥ η1}; Sv := {k ∈ V : (2.49) holds and ρv

k ≥ η1}; S := Sf ∪ Sv.

When a tangential step is computed, the size of the step is restricted by a trust-region radius (see
(2.30c) and (2.35c)). For convenience, we capture these radii by defining δt

−1 := 1 and, for k ≥ 0,

δt
k :=











δt
k−1 if k /∈ T ,

min{δv
k , δf

k} if k ∈ T ∩ TD,

min{δv
k , δf

k , κvv
max

k } if k ∈ T \ TD.

(2.59)

As a guide to the salient properties of the various types of iterations we have defined, we provide the
following lemma regarding basic facts that may be deduced from the design of our algorithm. Unless
stated otherwise, reference to the tangential step tk corresponds to the value used in Step 37 of Algo-
rithm 1, i.e., the value after the possible reset in Step 30. For the purposes of this lemma, we assume
that if the algorithm does not terminate during iteration k, then all steps of the algorithm during the
iteration are well-defined. We prove this fact formally in the next subsection.

Lemma 2.1 If Algorithm 1 does not terminate during the kth iteration, then the following hold.

(i) If k ∈ N , then χv
k > 0, πv

k > 0, mv
k(0) − mv

k(nC

k) > 0, mv
k(0) − mv

k(nk) > 0, and nk 6= 0.

(ii) If nk 6= 0, then k ∈ N .

(iii) If k ∈ T , then χf
k ≥ κχπf

k > 0 and mf
k(nk) − mf

k(nk + tCk) > 0.

(iv) If k ∈ T \ T0, then tk 6= 0 and mf
k(nk) − mf

k(nk + tk) > 0, while if k ∈ T0, then tk = 0 and (2.21)
holds.

(v) If tk 6= 0, then k ∈ T \ T0.

(vi) k ∈ Y if and only if nk = tk = 0.

(vii) If k ∈ Y, then k ∈ D and πf
k ≤ κωπf

k−1 with κω ∈ (0, 1) defined as in (2.27).

(viii) If k /∈ D, then k ∈ T \ TD and (2.35) holds.

(ix) If k ∈ D, then the inequality in (2.49) holds.

(x) TD ⊆ D.

(xi) If k ∈ T \ TD, then nk = 0 and k /∈ N .

Proof. To prove part (i), let k ∈ N , in which case we have that the conditions in Step 9 held true.

This could occur only if πv
k > 0, or if in (2.8) we had πv

k > ωn(πf
k−1) ≥ 0 or vk ≥ κvvv

max

k . Thus,
to prove that k ∈ N implies πv

k > 0, all that remains is to investigate the case when vk ≥ κvvv
max

k .
Since vmax

k > 0 by construction, this inequality implies vk > 0. If πv
k = 0 (which, since vk > 0, implies

χv
k = 0), then the algorithm would have terminated in Step 8 with an infeasible stationary point.

Thus, we may again conclude that πv
k > 0, which establishes this strict inequality for all k ∈ N . In

turn, by (2.7) and the fact that vk > 0 when πv
k > 0, we must have χv

k > 0 for all k ∈ N . Now, since
πv

k > 0, it follows that −P 2
k J(xk, sk)T c(xk, sk) is a direction of strict decrease for mv

k at n = 0, from
which it follows by (2.9) that mv

k(0)−mv
k(nC

k) > 0. In turn, (2.12) implies the remainder of part (i).

Part (ii) follows since if nk 6= 0, then the conditions in Step 9 must have held (or else the algorithm
would have set nk ← 0), in which case k ∈ N .

Next, we prove part (iii). If k ∈ T , then it follows from Steps 17–26 of the algorithm that after the
computation of yk (and all dependent quantities) both (2.26a) and (2.26b) did not hold (implying
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that πf
k > 0), but (2.26c) did. Combining (2.26c) and the fact that πf

k > 0 yields ∇mf
k(nk)Trk ≥

κχ(πf
k )2 > 0 (as desired), which implies that rk is a direction of strict ascent for mf

k at nk. Combining

this fact with (2.28)/(2.33) and (2.29)/(2.34) yields mf
k(nk) − mf

k(nk + tCk) > 0, as desired.

Building on the proof of part (iii), we next prove part (iv). If we have k ∈ T \T0, then we may combine

mf
k(nk)−mf

k(nk+tCk) > 0 with (2.30a)/(2.35a) to conclude that tk 6= 0 and mf
k(nk)−mf

k(nk+tk) > 0,
as desired. (Since k /∈ T0, this tangential step was not reset to zero, so we have maintained tk 6= 0
in Step 37.) Finally, if k ∈ T0, it follows from Steps 16–30 that (2.21) holds, but that the algorithm
reset tk ← 0.

To prove part (v), we first note that if tk 6= 0, then a tangential step was computed and thus k ∈ T .
Moreover, since tk 6= 0, we know that k /∈ T0, which means k ∈ T \ T0, as desired.

We now prove part (vi). If nk = tk = 0, then dk = 0 and we have k ∈ Y by the definition of Y; this
proves one direction. For the other direction, in order to derive a contradiction, suppose that k ∈ Y
(so that dk = nk + tk = 0), but that nk 6= 0 and/or tk 6= 0. Indeed, since nk + tk = 0, we must have
nk 6= 0 and tk 6= 0. It then follows from parts (ii) and (v) that k ∈ Y ∩N ∩ (T \ T0). Consequently,
from part (i) we have that mv

k(0) > mv
k(nk). This fact and the equation nk + tk = 0 imply that

(2.30d) must not be satisfied. However, according to Steps 23–24 of the algorithm, since k ∈ N we
compute tk to satisfy (2.30), a contradiction.

To prove part (vii), suppose k ∈ Y. It follows from part (vi) that nk = tk = 0 so that (2.30d)
holds (which means k ∈ D, as desired), and then from part (i) that k /∈ N . Hence, from Step 9
of the algorithm, it follows that (2.8) must be violated. Moreover, since nk = 0, we also know
that (2.21) holds and thus an oblique projected gradient rk was computed (as stipulated in Step 17)
to satisfy at least one of (2.26a), (2.26b) and (2.26c). In fact, under the conditions of this lemma,
it follows that (2.26a) must not have held, so we know that either (2.26b) or (2.26c) is satisfied as
a result of this calculation. Suppose that (2.26c) holds so that the algorithm would have proceeded
to compute a tangential step and k ∈ T . If k /∈ T0, then it would follow from part (iv) that tk 6= 0,
which by part (vi) contradicts the fact that k ∈ Y. Thus, we must have k ∈ T0, i.e., we reset
tk ← 0 because the computed tangential step satisfied (2.31), but not (2.32). This is a contradiction
because (2.32) would have been satisfied trivially since nk = 0. Thus (2.26c) must not hold, which
implies that (2.26b) must hold. Since we have shown that (2.26b) holds and (2.8) does not hold, we

conclude that πf
k ≤ ωt(π

v
k) ≤ ωt(ωn(πf

k−1)) ≤ κωπf
k−1, where we have used the monotonicity of ωt

and (2.27).

To establish part (viii), let k /∈ D. It follows from part (vii) that k /∈ Y. Now, suppose that tk = 0.
Combining this with the fact that k /∈ Y implies from part (vi) that nk 6= 0, which may then be
combined with part (ii) to deduce that k ∈ N . This fact along with part (i) and the fact that tk = 0
implies that mv

k(nk + tk) ≤ κtgm
v
k(0) + (1 − κtg)m

v
k(nk) (c.f., (2.30d)), and hence k ∈ D, which is a

contradiction. Therefore, we must have tk 6= 0, which from part (v) implies that k ∈ T \ T0 and that
the computed tangential step was not reset to zero. Thus, tk satisfies either (2.30) or (2.35). In fact,
since k /∈ D so that (2.30d) is not satisfied, we conclude that k /∈ TD and (2.35) must be satisfied.

To prove part (ix), suppose k ∈ D so that (2.30d) holds. It follows that

∆mv,d
k = mv

k(0) − mv
k(dk)

≥ mv
k(0) − κtgm

v
k(0) − (1 − κtg)m

v
k(nk)

= (1 − κtg)
(

mv
k(0) − mv

k(nk)
)

= (1 − κtg)∆mv,n
k , (2.60)

which, since κcd ∈ (0, 1 − κtg], means that the inequality in (2.49) holds, as desired.

To prove (x), let k ∈ TD. It follows that a relaxed SQP tangential step tk was computed to sat-
isfy (2.30). Thus, if tk is not reset to zero, we know that (2.30d) holds. However, if tk was reset to
zero, then (2.30d) holds trivially when nk = 0 and from parts (i) and (ii) when nk 6= 0. We have
shown in all cases that (2.30d) holds, and therefore k ∈ D.

Finally, to prove part (xi), let k ∈ T \ TD. By Steps 23–30 of the algorithm, it follows that (2.35)
holds and k /∈ N for all k ∈ T \ TD. It then follows from part (ii) that nk = 0. ¤
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2.6 Well-posedness

The purpose of this section is to prove that Algorithm 1 is well-posed in the sense that if iteration k is
reached, then in a reasonable implementation of the algorithm, all computations within iteration k will
terminate finitely. Our first result shows important consequences of the slack reset procedure.

Lemma 2.2 The slack reset (2.40) and (2.52) in Steps 41 and 43 yields sk such that (xk, sk) satisfies
sk > 0 and c(xk, sk) ≥ 0.

Proof. The fact that sk > 0 follows from the choice s0 > 0, the fact that the slack reset (2.40)
and (2.52) only possibly increases the slack variables (as shown in (2.4)), and the fact that the
fraction-to-the-boundary rules in (2.11) and (2.30b)/(2.35b) hold when normal and tangential steps
are computed.

We now prove that c(xk, sk) ≥ 0 holds. Prior to the slack reset performed in Steps 41 and 43,
if [c(xk, sk)]i ≥ 0, then (2.40) and (2.52) leave [sk]i unchanged so that [c(xk, sk)]i ≥ 0 still holds.
Otherwise, if [c(xk, sk)]i < 0, then after the slack reset (2.40) and (2.52) we have that [c(xk)+sk]i = 0,
which completes the proof. ¤

Next, we prove that the Cauchy step for the normal step subproblem is well-defined.

Lemma 2.3 If k ∈ N , then the Cauchy step nC

k defined by (2.9)–(2.10) is computed and satisfies

mv
k(0) − mv

k(nC

k) ≥ κcn

k χv
k min {πv

k , δv
k , 1 − κfbn} > 0, (2.61)

where

κcn

k :=
1

1 + ‖J(xk, sk)Pk‖2
2

∈ (0, 1]. (2.62)

Proof. Since k ∈ N , we may observe from part (i) of Lemma 2.1 that πv
k > 0 and χv

k > 0, and
hence vk > 0. We now show that nC

k(α) (recall (2.9)) is feasible for (2.10) during any iteration k ∈ N
when

0 ≤ α ≤
1

πv
k

min{δv
k , (1 − κfbn)} =: αB. (2.63)

Indeed, consider any α ∈ [0, αB]. It then follows from the definitions of nC

k(α) and πv
k that

‖P−1
k nC

k(α)‖2 = ‖αPkJ(xk, sk)Tc(xk, sk)‖2 = απv
k ≤ δv

k .

It also follows from the definitions of nC

k
s(α) and Lemma 2.2 that

[−nC

k
s(α)]i = α[Sk]2ii[c(xk, sk)]i ≤ α[sk]i‖PkJ(xk, sk)Tc(xk, sk)‖2

= απv
k [sk]i ≤ (1 − κfbn)[sk]i for i = 1, 2, . . . M ,

which implies that sk+nC

k
s(α) ≥ κfbnsk. Overall, nC

k(α) is feasible for problem (2.5) for all α ∈ [0, αB].

Now, observe that the minimizer αC

N
defined by (2.10) yields mv

k(nC

k) = mv
k(nC

k(αC

N
)) ≤ mv

k(nC

k(α))
for all α ∈ [0, αB]. It then follows from [3, Lemma 1] with the quantities

“t” := αB, “a” := 2‖J(xk, sk)P 2
k J(xk, sk)Tc(xk, sk)‖2

2, “b” := 2(πv
k)2 > 0,

the fact that

“a” ≤ 2‖J(xk, sk)Pk‖
2
2‖PkJ(xk, sk)Tc(xk, sk)‖2

2 = 2‖J(xk, sk)Pk‖
2
2(π

v
k)2

and the definition of πv
k that

(

mv
k(0)

)2
−

(

mv
k(nC

k)
)2

≥ “b” min

{

“b”

“a”
, “t”

}

≥ 2(πv
k)2 min

{

1

‖J(xk, sk)Pk‖2
2

,
δv
k

πv
k

,
1 − κfbn

πv
k

}

= 2πv
k min

{

πv
k

1 + ‖J(xk, sk)Pk‖2
2

, δv
k , 1 − κfbn

}

= 2vkχv
k min

{

πv
k

1 + ‖J(xk, sk)Pk‖2
2

, δv
k , 1 − κfbn

}

> 0. (2.64)
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Hence, mv
k(nC

k) < mv
k(0), and therefore

mv
k(0) − mv

k(nC

k) =
(mv

k(0))2 − (mv
k(nC

k))2

mv
k(0) + mv

k(nC

k)
≥

(mv
k(0))2 − (mv

k(nC

k))2

2mv
k(0)

=
(mv

k(0))2 − (mv
k(nC

k))2

2vk

.

The inequality (2.61) follows from this inequality, (2.64), and the fact that 1 + ‖J(xk, sk)Pk‖
2
2 ≥ 1.

¤

Next we establish the remaining claims made in (2.2). (We remark that certain bounds established in
the proof of this lemma are specified in more detail in Lemma 3.12.)

Lemma 2.4 The slack reset (2.40) and (2.52) in Steps 41 and 43 yields sk such that the pair (xk, sk)
satisfies vk ≤ vmax

k and, at the end of iteration k, we have vmax

k+1 ≤ vmax

k .

Proof. Our proof is by induction. We have v0 ≤ vmax

0 by the initialization of vmax

0 . Now suppose
that vi ≤ vmax

i for i = 0, . . . , k − 1 for k ≥ 1, and in particular that vk−1 ≤ vmax

k−1 at the start of
the (k − 1)-st iteration. The slack reset in Steps 41 and 43 cannot increase the constraint violation
(recall (2.4)), so vk−1 ≤ vmax

k−1 holds following the slack reset. It is also clear from (2.36) and (2.37)
that for k − 1 ∈ Y ∪ F the inequality vk ≤ vmax

k continues to hold at the start of iteration k. Hence,
it remains to consider k − 1 ∈ V. If ρv

k−1 < η1 or (2.49) (with k replaced by k − 1) does not hold,
then the step is rejected, so vk ≤ vmax

k holds at the start of iteration k as a consequence of (2.55) and

(2.57). Otherwise, it follows from Lemma 2.3, (2.12) and (2.49) that ∆mv,d
k−1 > 0 and thus vk < vk−1

from ρv
k−1 ≥ η1, (2.50), and (2.51). Since κt2 ∈ (0, 1) in (2.54), this implies

vk < vk + κt2

(

vk−1 − vk) < vk−1 ≤ vmax

k−1 (2.65)

and hence from (2.54) we have vmax

k ≤ vmax

k−1. Combining (2.54) and (2.65), we have that vmax

k ≥

vk + κt2

(

vk−1 − vk) > vk. Thus, in all cases, we have vk ≤ vmax

k ; the induction is complete.

To establish that vmax

k+1 ≤ vmax

k , note that if k /∈ V, then vmax

k+1 ← vmax

k , so all that remains is to consider
k ∈ V. Observing (2.54), we see again that vmax

k+1 ← vmax

k if either (2.49) is violated or ρv
k < η1. By

contrast, if (2.49) holds and ρv
k ≥ η1, then we must have nk 6= 0 and from part (ii) of Lemma 2.1

that k ∈ N . Moreover, it follows from (2.51), (2.50), (2.49), (2.12) and Lemma 2.3 as above that
vk+1 < vk. Thus, if the maximum value in (2.54) is the second term, it follows that vmax

k+1 < vk ≤ vmax

k .
Otherwise, if the maximum value in (2.54) is the first term, then vmax

k+1 < vmax

k trivially follows since
κt1 ∈ (0, 1). ¤

We now show that the computation of the least-squares multipliers yk—along with the accompanying
quantities rk, πf

k , and χf
k—is well-defined. We prove this result under the following reasonable assump-

tion.

Assumption 2.1 If (2.21) holds and the iterative solver employed to solve (2.23) is allowed to run for
an infinite number of iterations, then it produces a bounded sequence {y(i)} with y(0) = 0 such that

lim
i→∞

∇mL
k (y(i)) = 0. (2.66)

Lemma 2.5 If (2.21) holds and {y(i)} is produced by an iterative solver employed to solve (2.23) that

satisfies Assumption 2.1, then for some (finite) index i the vector yk ← y(i) yields rk, πf
k , and χf

k

satisfying (2.26a), (2.26b), or (2.26c).

Proof. For the purpose of deriving a contradiction, suppose that the iterative solver applied to
solve (2.23) runs for an infinite number of iterations without satisfying (2.26a), (2.26b), or (2.26c).
Under Assumption 2.1, the sequence {y(i)} is bounded, so with (2.66) we have that it has a limit
point y∞ satisfying

0 = ∇mL
k (y∞) = J(xk, sk)rk(y∞). (2.67)

Suppose πf
k (y∞) = 0. If vk ≤ ǫv, then this implies that there exists some smallest index i such that

with yk ← y(i) condition (2.26a) will be satisfied, which is a contradiction. Otherwise, if vk > ǫv, then
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χv
k > 0 or else Algorithm 1 would have terminated in Step 8. Since this implies that πv

k > 0 (recall

vk > ǫv), it follows from πf
k (y∞) = 0 that there exists a smallest index i such that with yk ← y(i)

condition (2.26b) will be satisfied, which is a contradiction. We have shown that πf
k (y∞) > 0, which

combined with (2.67) and

∇mf
k(nk) = P−2

k rk(y∞) − J(xk, sk)Ty∞

shows that

χf
k(y∞) =

rk(y∞)T∇mf
k(nk)

πf
k (y∞)

=
rk(y∞)T (P−2

k rk(y∞) − J(xk, sk)Ty∞)

πf
k (y∞)

=
(πf

k (y∞))2

πf
k (y∞)

= πf
k (y∞).

(2.68)
If ∇mL

k (0) = 0, then we have with (2.68) that yk ← y(0) = 0 satisfies (2.26c), which is a contradiction.
By contrast, if ∇mL

k (0) 6= 0, then since κχ ∈ (0, 1) we have from (2.68) and (2.66) that there is a
smallest index i for which yk ← y(i) satisfies condition (2.26c), which is another contradiction.

We have arrived at a contradiction in all cases, so the iterative solver must terminate finitely. ¤

We now give a bound on the decrease in our barrier model provided by the Cauchy step tCk .

Lemma 2.6 If k ∈ T , then the Cauchy step tCk defined by (2.28)–(2.29) or (2.33)–(2.34) is computed
and satisfies

mf
k(nk) − mf

k(nk + tCk) ≥ κct

k πf
k min

{

πf
k , (1 − κB)δt

k, (1 − κfbt)κfbn

}

> 0,

where

κct

k :=
κ2

χ

2(1 + ‖PkGkPk‖2)
∈ (0, 1/2).

Proof. We first consider the case when k ∈ TD, i.e., when the Cauchy step tCk is computed from

(2.28)–(2.29) with the trust region radius δt
k = min{δv

k , δf
k} (see (2.59)). It follows from part (iii) of

Lemma 2.1 that χf
k ≥ κχπf

k > 0 so that ∇mf
k(nk)Trk ≥ κχ(πf

k )2 > 0. We now show that tCk(α) (recall
(2.28)) is feasible for (2.29) during iteration k ∈ TD when

0 ≤ α ≤
1

πf
k

min
{

(1 − κB)δt
k, (1 − κfbt)κfbn

}

=: αB.

Indeed, consider any α ∈ [0, αB]. It follows from the definitions of tCk(α), rk, and αB that

‖P−1
k tCk(α)‖2 = ‖P−1

k αrk‖2 = α‖P−1
k rk‖2 = απf

k ≤ (1 − κB)δt
k. (2.69)

Using the triangle inequality, (2.21) (which must hold since k ∈ TD ⊆ T ), (2.59), and (2.69), we then
have

‖P−1
k

(

nk + tCk(α)
)

‖2 ≤ ‖P−1
k nk‖2 + ‖P−1

k tCk(α)‖2 ≤ κBδt
k + (1 − κB)δt

k ≤ δt
k = min{δv

k , δf
k}, (2.70)

which shows that tCk(α) satisfies the first constraint in problem (2.29). To show that tCk
s(α) also

satisfies the second constraint in problem (2.29), first observe that if [tCk
s(α)]i = [−αrs

k]i ≥ 0, then
[sk + ns

k + tCk
s(α)]i ≥ [sk + ns

k]i ≥ κfbt[sk + ns
k]i ≥ 0 since κfbt ∈ (0, 1). Thus it suffices to consider

i such that [rs
k]i > 0. It follows from the definitions of αB and πf

k , (2.24), the fact that [rs
k]i > 0,

Lemma 2.2, and (2.11) that

α ≤ αB ≤
(1 − κfbt)κfbn

πf
k

≤
(1 − κfbt)κfbn

‖S−1
k rs

k‖2

≤
(1 − κfbt)κfbn

|[rs
k]i/[Sk]ii|

=
(1 − κfbt)κfbn[sk]i

[rs
k]i

≤
(1 − κfbt)[sk + ns

k]i
[rs

k]i
.
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Using the definition of tCk
s(α) and the previous inequality leads to

[−tCk
s(α)]i = α[rs

k]i ≤ (1 − κfbt)[sk + ns
k]i

from which we may conclude overall that [sk +ns
k + tCk

s(α)]i ≥ κfbt[sk +ns
k]i for i = 1, 2, . . . ,M . This

proves that tCk
s(α) satisfies the second constraint in problem (2.29), and completes the proof that

tCk(α) is feasible for problem (2.29) for all α ∈ [0, αB].

We now observe that the minimizer αC

T
of (2.29) yields mf

k(nk + tCk) ≡ mf
k(nk + tCk(αC

T
)) ≤ mf

k(nk +
tCk(α)) for all α ∈ [0, αB]. We also have from the Cauchy-Schwarz and standard norm inequalities
that

|rT
kGkrk| =

∣

∣

∣

(

∇mf
k(nk) + J(xk, sk)Tyk

)T
P 2

k GkP 2
k

(

∇mf
k(nk) + J(xk, sk)Tyk

)T
∣

∣

∣
≤ (πf

k )2‖PkGkPk‖2.

It then follows from [3, Lemma 1] with the quantities

“t” := αB, “a” := |rT
k Gkrk|, “b” := ∇mf

k(nk)T rk > 0,

(the strict inequality was shown earlier in this proof) that

mf
k(nk) − mf

k(nk + tCk) ≥
“b”

2
min

{

“b”

“a”
, “t”

}

≥
∇mf

k(nk)Trk

2
min

{

∇mf
k(nk)Trk

(πf
k )2‖PkGkPk‖2

,
(1 − κB)δt

k

πf
k

,
(1 − κfbt)κfbn

πf
k

}

=
∇mf

k(nk)Trk

2πf
k

min

{

∇mf
k(nk)Trk

πf
k (1 + ‖PkGkPk‖2)

, (1 − κB)δt
k, (1 − κfbt)κfbn

}

=
χf

k

2
min

{

χf
k

(1 + ‖PkGkPk‖2)
, (1 − κB)δt

k, (1 − κfbt)κfbn

}

≥
κ2

χ
πf

k

2(1 + ‖PkGkPk‖2)
min

{

πf
k , (1 − κB)δt

k, (1 − κfbt)κfbn

}

,

where we have used 1 + ‖PkGkPk‖2 ≥ 1 and χf
k ≥ κχπf

k with κχ ∈ (0, 1) for the last inequality.

The proof for the case k ∈ T \ TD is similar, but uses δt
k = min{δv

k , δf
k , κvv

max

k }, (2.33) instead of
(2.28), (2.34) instead of (2.29), and (by Lemma 2.1(xi)) the fact that nk = 0 for k ∈ T \ TD. ¤

Because we impose (2.47) on certain iterations, we also derive a useful lower bound on the right-hand
side of this inequality.

Lemma 2.7 If k ∈ N then
‖P−1

k n∗
k‖2 ≥ κcn

k πv
k .

where κcn

k is defined in (2.62).

Proof. The unconstrained minimizer n∗
k = nC

k (α∗
N )) of [mv

k(nC
k (α))]2 (and thus mv

k(nC
k (α)))

satisfies the equation

P−1
k n∗

k = −
‖wk‖2

2

‖J(xk, sk)Pkwk‖2
2

PkJ(xk, sk)T c(xk, sk), where wk = PkJ(xk, sk)T c(xk, sk),

and therefore the sub-multiplicative norm inequality yields

‖P−1
k n∗

k‖2 =
‖wk‖2

2

‖J(xk, sk)Pkwk‖2
2

πv
k ≥

πv
k

‖J(xk, sk)Pk‖2
2

and the desired bound follows from (2.62). ¤
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Finally, we turn our attention to the tangential step computation. The following result shows one way
to find a tangential step tk that satisfies the required conditions described in Section 2.3.

Lemma 2.8 If (2.21) holds and {y(i)} is produced by an iterative solver employed to solve (2.23) that
satisfies Assumption 2.1, then for some (finite) index i the vector yk ← y(i) yields rk such that either

(i) the Cauchy point tCk defined by (2.28)–(2.29) satisfies (2.30), or

(ii) the Cauchy point tCk defined by (2.33)–(2.34) satisfies (2.35).

Proof. As in the proof of Lemma 2.5, in order to derive contradictions, suppose that the iterative
solver employed to solve (2.23) runs for an infinite number of iterations without yielding the desired
result, in which case we have under Assumption 2.1 that the sequence {y(i)} has a limit point y∞

satisfying (2.67). That is, as i → ∞, we have rk(y(i)) → rk(y∞) ∈ Null(J(xk, sk)). We introduce
the notation tCr

k (i) := tCk when tCk is the Cauchy point defined by (2.28)–(2.29) with rk = rk(y(i))
associated with the relaxed SQP tangential subproblem, and tCv

k (i) := tCk when tCk is the Cauchy
point defined by (2.33)–(2.34) with rk = rk(y(i)) associated with the very relaxed SQP tangential
subproblem. We observe from (2.28) and (2.33), the constraints of (2.29) and (2.34), and the fact
that rk(y∞) ∈ Null(J(xk, sk)) that there exist vectors tCr

k (∞) and tCv

k (∞) such that tCr

k (i) → tCr

k (∞) ∈
Null(J(xk, sk)) and tCv

k (i) → tCv

k (∞) ∈ Null(J(xk, sk)).

By definition, the Cauchy point tCr

k (i) satisfies (2.30a)–(2.30c) for all i. Similarly, the Cauchy point
tCv

k (i) satisfies (2.35a)–(2.35c) for all i. Thus, to reach contradictions, we need only show that for
sufficiently large i either tCr

k (i) satisfies (2.30d) or tCv

k satisfies (2.35d).

Suppose that nk 6= 0, in which case part (ii) of Lemma 2.1 implies that k ∈ N . It then follows
from part (i) of Lemma 2.1 that mv

k(nk) < mv
k(0), and thus the right-hand side of (2.30d) is strictly

greater than mv
k(nk). Therefore, since tCr

k (∞) ∈ Null(J(xk, sk)), there exists some smallest index i
such that tCr

k (i) satisfies (2.30d), which is to say that statement (i) holds, which is a contradiction.

Now suppose that nk = 0, in which case part (i) of Lemma 2.1 implies that k /∈ N . By virtue of (2.8),
this must mean that vk < κvvv

max

k . It follows from the facts that nk = 0, vk < κvvv
max

k , κtt ∈ (κvv, 1),
and tCv

k (i) → tCv

k (∞) ∈ Null(J(xk, sk)) that tCv

k (i) satisfies (2.35d) for all sufficiently large i. We have
reached the contradiction that statement (ii) holds. ¤

3 Convergence of the Trust-Funnel Algorithm for Solving the

Barrier Subproblem

Our analysis requires the following assumption that is assumed to hold for the remainder of the paper.

Assumption 3.1 The sequence of iterates {xk} is contained in a compact set.

The following is an immediate consequence of Assumptions 1.1 and 3.1.

Lemma 3.1 There exists a constant κH ≥ 1 such that we have

max
k≥0

{

1, ‖g(xk)‖2, ‖c(xk)‖2, ‖J(xk)‖2, ‖∇xxf(xk)‖2, max
1≤i≤M

‖∇xxci(xk)‖2

}

≤ κH.

We may now prove that important sequences related to our method are uniformly bounded.

Lemma 3.2 There exists a constant κub ≥ κH such that we have

max
k≥0

{

vk, ‖sk‖2, ‖J(xk, sk)Tc(xk, sk)‖2, π
v
k , ‖PkJ(xk, sk)T ‖2, χ

v
k, ‖PkGkPk‖2, ‖Pk∇f(xk, sk)‖2,

}

≤ κub.
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Proof. The result is clearly true if the algorithm terminates finitely. Otherwise, it follows from
Lemma 2.4 that vk ≤ vmax

k ≤ vmax

0 for all k, which proves that {vk} can be bounded as claimed.
Combining this with the reverse triangle inequality yields

‖sk‖2 − ‖c(xk)‖2 ≤ ‖c(xk) + sk‖2 = ‖c(xk, sk)‖2 ≤ vmax

0 for all k.

We may deduce from this bound and Lemma 3.1 that {‖sk‖2} can be bounded as claimed. It then
follows from the triangle inequality that

‖J(xk, sk)Tc(xk, sk)‖2 ≤

∥

∥

∥

∥

(

J(xk)Tc(xk, sk)
0

)∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

0
c(xk, sk)

)∥

∥

∥

∥

2

,

which may then be combined with the Cauchy-Schwarz inequality, Lemma 3.1, and the bounded-
ness of {vk} to conclude that {‖J(xk, sk)Tc(xk, sk)‖2} can be bounded as claimed. The bounded-
ness of {πv

k} follows from that of {‖sk‖2} and {‖J(xk, sk)Tc(xk, sk)‖2}. It then follows from the
boundedness of {‖sk‖2} and, by Lemma 3.1, that of {‖J(xk)‖2} that {‖PkJ(xk, sk)T ‖2} can be
bounded as claimed. This, along with the Cauchy-Schwarz inequality, implies that {χv

k} can be
bounded as claimed. The boundedness of ‖PkGkPk‖2 follows from the boundedness of {‖sk‖2},
(2.18), (2.19), Assumptions 1.1 and 3.1, and (2.20). Finally, it follows from Lemma 3.1 and the fact
that Pk∇f(xk, sk) = (g(xk),−µe) that {‖Pk∇f(xk, sk)‖2} can be bounded as claimed. ¤

Using Lemma 3.2, we may now improve the Cauchy decrease bounds provided in Lemmas 2.3, 2.6 as
well as the result of Lemma 2.7 by making the leading constants independent of the iteration number k.

Lemma 3.3 For all k, the following hold:

(i) If k ∈ N , then the Cauchy step nC

k defined by (2.9)–(2.10) is computed and satisfies

mv
k(0) − mv

k(nC

k) ≥ κcnχ
v
k min{πv

k , δv
k , 1 − κfbn} > 0

for some constant κcn ∈ (0, 1] independent of k.

(ii) If k ∈ T , then the Cauchy step tCk defined by (2.28)–(2.29) or (2.33)–(2.34) is computed and satisfies

mf
k(nk) − mf

k(nk + tCk) ≥ κctπ
f
k min{πf

k , (1 − κB)δt
k, (1 − κfbt)κfbn} > 0

for some constant κct ∈ (0, 1/2] independent of k.

(iii) If k ∈ N then
‖P−1

k n∗
k‖2 ≥ κnκcnπ

v
k .

for some constant κub independent of k.

Proof. The results follow from Lemmas 2.3, 2.6 and 2.7 along with Lemma 3.2. ¤

We require the next lemma that bounds the size of the trial step in different scenarios.

Lemma 3.4 If Algorithm 1 does not terminate during iteration k, then the following holds:

‖P−1
k dk‖2











= ‖P−1
k nk‖2 ≤ δv

k if k /∈ T ,

= ‖P−1
k nk‖2 ≤ min{δv

k , δf
k} if k ∈ T0,

≤ δt
k if k ∈ T \ T0.

In particular, for all k, we have ‖P−1
k dk‖2 ≤ δv

k.

Proof. Let k /∈ T , from which we have that tk ← 0 and dk = nk. If nk = 0, then the result holds
trivially. Conversely, if nk 6= 0, then part (ii) of Lemma 2.1 implies that k ∈ N and the result follows
from (2.11).
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Next, let k ∈ T . First, if k ∈ T0, then it follows from part (iv) of Lemma 2.1 that tk = 0 and (2.21)
holds. Combining this with dk = nk + tk = nk, (2.11), and the fact that κB ∈ (0, 1) shows that

‖P−1
k dk‖2 = ‖P−1

k nk‖2 ≤ min{κB min{δv
k , δf

k}, δ
v
k} ≤ min{δv

k , δf
k},

as desired. Second, if k ∈ TD \ T0, then the result follows from (2.30c) and the definition (2.59).
Third, if k ∈ T \ TD, then the result follows from (2.35c) and the definition (2.59). ¤

We now bound the discrepancies between the problem functions and their corresponding models.

Lemma 3.5 The following hold:

(i) There exists a constant κG > 0 independent of k such that

|f(xk + dx
k, sk + ds

k) − mf
k(dk)| ≤ κG‖P

−1
k dk‖

2
2 for all k. (3.1)

(ii) There exists a constant κC > 0 independent of k such that

|v(xk + dx
k, sk + ds

k) − mv
k(dk)| ≤ κC‖P

−1
k dk‖

2
2 for all k. (3.2)

Proof. We first prove part (i). By the triangle inequality, we have

|f(xk + dx
k, sk + ds

k) − mf
k(dk)|

≤ |f(xk + dx
k) − f(xk) −∇f(xk)T dx

k − 1
2dx

k
T∇xxL(xk, yB

k )dx
k|

+

∣

∣

∣

∣

∣

−µ

M
∑

i=1

ln([sk + ds
k]i) + µ

M
∑

i=1

ln([sk]i) + µeT S−1
k ds

k − 1
2ds

k
T Dkds

k

∣

∣

∣

∣

∣

.

(3.3)

Under Assumptions 1.1 and 3.1, and by (2.19), there exists a constant κG1 > 0 such that

|f(xk + dx
k) − f(xk) −∇f(xk)T dx

k − 1
2dx

k
T∇xxL(xk, yB

k )dx
k| ≤ κG1‖d

x
k‖

2
2. (3.4)

Moreover, note that for each i ∈ {1, . . . ,M}, we have by (2.11) and (2.30b)/(2.35b) that [sk]i+[ds
k]i ≥

κfbtκfbn[sk]i > 0 for all k regardless of whether a tangential step tk was computed. The Mean Value
Theorem yields ln([sk]i +[ds

k]i)− ln[sk]i = [ds
k]i/ξi, where ξi lies between [sk]i and [sk]i +[ds

k]i. Hence

∣

∣

∣

∣

ln([sk]i + [ds
k]i) − ln[sk]i −

[ds
k]i

[sk]i

∣

∣

∣

∣

≤ sup
ξ∈[[sk]i,[sk]i+[ds

k
]i]

∣

∣

∣

∣

[ds
k]i
ξ

−
[ds

k]i
[sk]i

∣

∣

∣

∣

=
[sk]i

[sk]i + [ds
k]i

(

[ds
k]i

[sk]i

)2

≤
1

κfbtκfbn

(

[ds
k]i

[sk]i

)2

,

where in the middle equation we have used the fact that the sup occurs at ξ = [sk]i + [ds
k]i. Hence,

by (2.20) and Lemma 3.2, we have that

∣

∣

∣

∣

∣

−µ
M
∑

i=1

ln([sk + ds
k]i) + µ

M
∑

i=1

ln([sk]i) + µeT S−1
k ds

k − 1
2ds

k
T Dkds

k

∣

∣

∣

∣

∣

≤
1

κfbtκfbn

ds
k

T (µS−2
k )ds

k + 1
2 |d

s
k

T Dkds
k| ≤ κG2‖S

−1
k ds

k‖
2
2.

(3.5)

where κG2 = µ/κfbtκfbn + 1
2κ2

ub
κD > 0. The result now follows from (3.3)–(3.5), and Lemma 3.4 with

κG := κG1 + κG2.

We now prove part (ii). By Lemma 3.1, Taylor’s expansion theorem yields

c(xk + dx
k, sk + ds

k) = c(xk, sk) + J(xk, sk)dk + wk where [wk]i = 1
2dxT

k ∇xxci(ξik)dx
k
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for some scalars ξik ∈ [xk, xk + dx
k]. As a consequence, we obtain with the reverse triangle inequality

that there exists a constant κC > 0 so that

|v(xk + dx
k, sk + ds

k) − mv
k(dk)| = |‖c(xk + dx

k, sk + ds
k)‖2 − ‖c(xk, sk) + J(xk, sk)dk‖2|

≤ ‖wk‖2 ≤ κC‖d
x
k‖

2
2 ≤ κC‖P

−1
k dk‖

2
2,

where we have used Lemma 3.1 and the Cauchy-Schwarz inequality. The desired result follows. ¤

We now prove an important fact about v-iterations; namely, if k ∈ V and the trust region radii or vmax

k

are sufficiently small, then k ∈ D.

Lemma 3.6 If k ∈ V and

min{δv
k , δf

k , κvv
max

k } ≤
(1 − κtt)

κCκv

=: κV , (3.6)

then k ∈ D.

Proof. For a proof by contradiction, suppose that (3.6) holds while k ∈ V \ D. We show that all
of the conditions of an f -iteration are satisfied, implying that k ∈ F , contradicting the supposition
that k ∈ V.

Since k /∈ D, we have from part (viii) of Lemma 2.1 that k ∈ T \ TD and (2.35) holds. Then, since
T0 ⊆ TD, it follows that k ∈ T \T0, so by part (iv) of Lemma 2.1 we have tk 6= 0. Moreover, k ∈ T \T0

implies by Lemma 3.4 that ‖P−1
k dk‖2 ≤ δt

k, which along with the fact that k ∈ T \ TD and (2.59)
implies

‖P−1
k dk‖2 ≤ min{δv

k , δf
k , κvv

max

k } ≤ κvv
max

k . (3.7)

Combining this fact with (3.2), the reverse triangle inequality, (2.35d), (3.7), and (3.6), we have that

v(xk + dx
k, sk + ds

k) ≤ κttv
max

k + κC‖P
−1
k dk‖

2
2 ≤ κttv

max

k + κCκvv
max

k min{δv
k , δf

k , κvv
max

k } ≤ vmax

k

so (2.37) holds. We have also argued (see the discussion after equation (2.37)) that (2.32) holds
whenever (2.35) is satisfied. Thus, all of the conditions of an f -iteration are satisfied, so the result
follows. ¤

Lemmas 3.4 and 3.6 have the following useful consequence.

Lemma 3.7 There exists a constant κn∆2 ∈ (0, 1] such that, if k ∈ V and

min{δv
k , δf

k} ≤ min{1, κV , κn∆2π
v
k}, (3.8)

then k ∈ N ∩ D.

Proof. We first note that, by Lemma 3.2, we have χv
k ≤ κub for all k. Then, with

κn∆2 := min

{

1,
κv

κub

}

> 0, (3.9)

we have with Lemma 2.4 that

κn∆2π
v
k = κn∆2χ

v
kvk ≤ κn∆2κubvk ≤ κvvk ≤ κvv

max

k . (3.10)

Let k ∈ V and (3.8) hold. Then, along with (3.10) we have that

min{δv
k , δf

k , κvv
max

k } = min{δv
k , δf

k} ≤ κV .

Then, by Lemma 3.6, we have k ∈ D (as desired), so k ∈ V∩D. Now, in order to derive a contradiction
to the claim that k ∈ N , suppose that k ∈ (V ∩ D) \ N . Since k /∈ N , we have from part (ii) of
Lemma 2.1 that nk = 0 (so that (2.32) holds). Then, since k ∈ V, we must have tk 6= 0 (since
otherwise part (vi) of Lemma 2.1 would imply that k ∈ Y, which is a contradiction). Thus, we have
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that k ∈ T \T0. At the same time, k /∈ N implies that (2.8) does not hold, so vk < κvvv
max

k < κttv
max

k .
This bound, (3.2), the reverse triangle inequality, (2.30d), the fact that nk = 0, Lemma 2.4, the fact
that k ∈ T \ T0, Lemma 3.4, (2.59), (3.10) and (3.8) imply

v(xk + dx
k, sk + ds

k) < κttv
max

k + κC(min{δv
k , δf

k})
2 ≤ κttv

max

k + κCκvv
max

k min{δv
k , δf

k},

which, when combined with (3.8) and (3.6), yields

v(xk + dx
k, sk + ds

k) ≤ κttv
max

k + (1 − κtt)v
max

k = vmax

k

so that (2.37) holds. Combining this with the fact that tk 6= 0 and the observation that (2.32) holds,
shows that k ∈ F , which is a contradiction. Thus, we must conclude that k ∈ N . ¤

We now prove a relationship between the trust-region radii and a guarantee of a successful iteration.

Lemma 3.8 The following hold:

(i) If k ∈ F and

δt
k ≤ min

{

(1 − κfbt)κfbn

1 − κB

,
πf

k

1 − κB

,
κδκct(1 − κB)(1 − η2)π

f
k

κG

}

=: min{κ∆f1, κ∆f2π
f
k} (3.11)

then ρf
k ≥ η2, k ∈ Sf , and δf

k+1 ≥ δf
k .

(ii) If k ∈ V and

δv
k ≤ min

{

κV , 1 − κfbn, κn∆2π
v
k ,

κcdκcnχ
v
k(1 − η2)

κC

,

}

=: min{κ∆c1, κ∆c2π
v
k , κ∆c3χ

v
k}, (3.12)

then k ∈ N ∩ D ∩ Sv, ρv
k ≥ η2, and δv

k+1 ≥ δv
k.

Proof. For part (i), the proof that ρf
k ≥ η2, which implies that k ∈ Sf , is the same as for [5,

Theorem 6.4.2] and uses (2.38), (2.32) (which holds since k ∈ F), (2.30a)/(2.35a), part (ii) of

Lemma 3.3, (3.11), (3.1), the fact that tk 6= 0, and Lemma 3.4. The fact that δf
k+1 ≥ δf

k then follows
from (2.41) and (2.44).

To prove part (ii), we first observe from (3.12) that πv
k > 0 and χv

k > 0 since δv
k > 0 by construction in

the algorithm. Moreover, (3.12) and Lemma 3.7 imply that k ∈ N ∩D. We now conclude from part
(ix) of Lemma 2.1 that (2.49) holds. Thus, using (3.2), Lemma 3.4, (2.49), (2.12), and Lemma 3.3(i),
we have

|ρv
k − 1| =

∣

∣

∣

∣

∣

v(xk + dx
k, sk + ds

k) − mv
k(dk)

∆mv,d
k

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

κC(δv
k)2

κcd∆mv,n
k

∣

∣

∣

∣

≤
κC(δv

k)2

κcdκcnχv
k min{πv

k , δv
k , 1 − κfbn}

.

In fact, we have from (3.12) and the fact that κn∆2 ∈ (0, 1] that δv
k ≤ min{πv

k , δv
k , 1 − κfbn} and

|ρv
k − 1| ≤

κCδv
k

κcdκcnχv
k

≤ 1 − η2.

Thus, ρv
k ≥ η2 ≥ η1, which means that k ∈ Sv and, by (2.53), δv

k+1 ≥ δv
k , as desired. ¤

We now provide uniform lower bounds on the tangential and normal trust-region radii when our criticality
measures πf

k and min{vk, χv
k} remain bounded away from zero on f - or v-iterates, respectively.

Lemma 3.9 If there exists a constant ǫf > 0 such that

πf
k ≥ ǫf for all k ∈ F , (3.13)

then, for some constant ǫF > 0, we have

δf
k ≥ ǫF for all k. (3.14)
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Proof. The statement follows from part (i) of Lemma 3.8, (2.59), the fact that F ⊆ T \ T0, and

the fact that δf
k+1 ← δf

k for k /∈ F . ¤

Lemma 3.10 If there exists a constant ǫθ > 0 such that

min{vk, χv
k} ≥ ǫθ for all k ∈ V, (3.15)

then
δv
k ≥ min

{

κ∆c4, κ∆c5ǫ
2
θ, κ∆c6ǫθ

}

=: ǫC for all k. (3.16)

Proof. With γ1 ∈ (0, 1) defined for (2.44), we prove by induction that

δv
k ≥ γ1 min

{

δv
0 , κ∆c1, κ∆c2

[

min
j=0,...,k

πv
j

]

, κ∆c3

[

min
j=0,...,k

χv
j

]}

for all k. (3.17)

This inequality holds trivially for k = 0, so supposing that it holds for iteration k, we prove that it
holds for iteration k + 1. First, suppose that k ∈ Y ∪ (F \ Sf ). Since δv

k+1 ← δv
k and (xk+1, sk+1) ←

(xk, sk) for such iterations, we conclude that (3.17) holds at iteration k + 1. Second, if k ∈ Sf ∪ Sv,
then the fact that δv

k+1 ≥ δv
k ensure that (3.17) holds at iteration k + 1. Finally, suppose that

k ∈ V \ Sv. In this case, Lemma 3.8(ii) implies that δv
k > min{κ∆c1, κ∆c2π

v
k , κ∆c3χ

v
k}. This may

then be combined with (2.56) and the fact that (xk+1, sk+1) ← (xk, sk) to deduce that δv
k+1 ≥

γ1 min{κ∆c1, κ∆c2π
v
k , κ∆c3χ

v
k} so that (3.17) again holds at iteration k + 1. The bound (3.16) then

directly follows from (3.17), (3.15), (2.7), and the observation that δv
k is never decreased for k ∈ Y∪F .

¤

We now give our first main result, namely that if there are finitely many successful iterations, then
Algorithm 1 terminates finitely.

Theorem 3.11 If |S| < ∞, then Algorithm 1 terminates finitely.

Proof. To derive a contradiction, suppose that Algorithm 1 does not terminate finitely. It then
follows from the fact that |S| < ∞, (2.36), (2.43), (2.46), (2.55), and (2.57) that for some x∗ ∈ R

N ,
s∗ ∈ R

M , and {v∗, vmax

∗ , πv
∗ , χv

∗} ⊂ R there exists an integer ks such that

(xk, sk) = (x∗, s∗), vk = v∗, vmax

k = vmax

∗ , πv
k = πv

∗ , χv
k = χv

∗, and k /∈ S for all k ≥ ks. (3.18)

Also, the fact that |S| < ∞ and Lemma 2.2 ensure that s∗ > 0.

First, we prove that |V| < ∞. In order to derive a contradiction, suppose that |V| = ∞. Then, by
(3.18) (in particular, the fact that k /∈ S for k ≥ ks), it follows that (2.56) sets δv

k+1 ≤ γ2δ
v
k for all

k ∈ V with k ≥ ks. Combining this with the fact that (2.36) and (2.45) set δv
k+1 ← δv

k for all k ∈ Y∪F
with k ≥ ks, it follows that {δv

k} → 0. We also have from part (ii) of Lemma 3.8 and the facts that
|V| = ∞ and |S| < ∞ that we must have 0 = limk∈V min{πv

k , χv
k} = limk∈V min{χv

kvk, χv
k} =

min{χv
∗v∗, χ

v
∗}. If v∗ > 0, then this implies that χv

∗ = 0. However, this implies that for k = ks the
algorithm would terminate finitely in Step 8, which contradicts the supposition of the proof. Thus,
we must have that v∗ = 0. Since v∗ = 0, it follows from the conditions of Step 9 that nk = 0 for all
k ≥ ks. This implies that (2.21) will be satisfied for all k ≥ ks, which in turn implies by Step 16 of the

algorithm that yk, rk, πf
k , and χf

k will be computed to satisfy (2.26a), (2.26b), or (2.26c). If (2.26a)
were to hold, then the algorithm would terminate finitely, which is a contradiction. Thus, we know
that (2.26a) does not hold for all k ≥ ks, which combined with the fact that v∗ = 0 implies that

πf
k > ǫπ > 0 for all k ≥ ks. It follows from this fact, part (i) of Lemma 3.8, the fact that {δv

k} → 0,
(2.59), Lemma 3.4, and the fact that |S| < ∞ that we must have |F| < ∞. Next, it follows from the
facts that v∗ = 0 and {δv

k} → 0, Lemma 3.4, and (3.18) that (2.37) will be satisfied for all sufficiently
large k. We may also deduce from the fact that nk = 0 for all k ≥ ks that (2.32) holds for all k ≥ ks.
Since we have shown that |F| < ∞ and that both (2.32) and (2.37) hold for sufficiently large k, we
may conclude that tk = 0 for all sufficiently large k. Therefore, since we have shown that nk = tk = 0
for all sufficiently large k, we have from part (vi) of Lemma 2.1 that k ∈ Y for all sufficiently large
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k, which combined with part (vii) of Lemma 2.1 implies that {πf
k} → 0. However, this contradicts

our earlier conclusion that πf
k ≥ ǫπ > 0 for all k ≥ ks. Overall, we have contradicted the supposition

that |V| = ∞.

Next, suppose that |F| < ∞. Combining this with the fact that |V| < ∞ ensures that k ∈ Y for

all sufficiently large k. It follows from this fact and part (vii) of Lemma 2.1 that {πf
k} → 0, and

that yk, rk, πf
k , and χf

k will be computed to satisfy (2.26a), (2.26b), or (2.26c) for all sufficiently
large k. During the computation of these quantities, (2.26a) can never be satisfied, since in that case
the algorithm would terminate finitely, which contradicts the supposition of the proof. Hence, since
(2.26a) is never satisfied and {πf

k} → 0, we may deduce that v∗ > ǫv > 0. It then follows that χv
∗ > 0

(and from (2.7) that πv
∗ > 0), or else for k = ks the algorithm would terminate in Step 8, which is

a contradiction. Thus, min{χv
∗, π

v
∗ , v∗} > 0, which with (3.18), the fact that {πf

k} → 0, and (2.8)
implies that k ∈ N for all sufficiently large k. Thus, by Lemma 2.1(i), we have nk 6= 0, which by
Lemma 2.1(vi) contradicts our earlier conclusion that k ∈ Y. Overall, we have proven that we cannot
have |F| < ∞, so we must have |F| = ∞.

Since |F| = ∞, |V| < ∞, and |S| < ∞, we know from (2.36) and (2.44) that {δf
k} → 0, which

when combined with (2.59), the fact that F ⊆ T \ T0, and part (i) of Lemma 3.8 implies that

{πf
k}k∈F → 0. Since (2.26a), (2.26b), or (2.26c) holds for k ∈ F ⊆ T \ T0, and since the algorithm

does not terminate finitely, we know that (2.26a) must not hold for all k ∈ F . Combining this

with the fact that {πf
k}k∈F → 0 implies that vk > ǫv for all sufficiently large k ∈ F . Hence, since

|F| = ∞, it follows from (3.18) that v∗ > ǫv > 0. We then must conclude that min{v∗, χ
v
∗} > 0, or

else for k = ks the algorithm would terminate finitely in Step 8, which is a contradiction. Also, from
χv
∗ > 0 and (2.7), it follows that πv

∗ > 0. Since {πf
k}k∈F → 0, it follows that (2.26b) will be satisfied

for all sufficiently large k ∈ F , which implies that tk = 0 and thus k /∈ F , which once again is a
contradiction.

Overall, in all cases, we have reached contradictions of our supposition that Algorithm 1 does not
terminate finitely, so the result is proved. ¤

We next prove a technical result about the violation decrease following a successful v-iteration.

Lemma 3.12 There exist constants {κvπ1, κvπ2, κvπ3} ⊂ (0,∞) such that if k ∈ Sv, then

vk+1 ≤ vk − χv
k min{κ

vπ1
, κ

vπ2
πv

k , κ
vπ3

δv
k}, and (3.19a)

vmax

k+1 ≤ max{κ
t1
vmax

k , vk − (1 − κt2)χ
v
k min{κ

vπ1
, κ

vπ2
πv

k , κ
vπ3

δv
k}}, (3.19b)

while (2.31) does not hold.

Proof. Let k ∈ Sv, which by the definition of Sv means that (2.49) holds. In particular, we have
nk 6= 0. Combining this fact with part (ii) of Lemma 2.1 means that k ∈ Sv ∩ N . It follows from
this fact, (2.51), (2.50), (2.49), (2.12), Lemma 3.3(i), Lemma 3.2, (2.52) and (2.4) that there exist
constants {κvπ1, κvπ2, κvπ3} ⊂ (0,∞) such that (3.19a) holds, which in turn implies with (2.54) that
(3.19b) holds. Note that (3.19a) and Lemma 2.4 imply that (2.37) holds.

We now prove that (2.31) does not hold. To reach a contradiction, suppose that (2.31) holds, which
immediately implies that tk 6= 0. Part (iv) of Lemma 2.1 then implies that k ∈ T \T0, which combined
with the fact that (2.31) is assumed to hold shows that (2.32) holds. Thus all the conditions of an
f -iteration are satisfied so that k ∈ F , which, since V ∩F = ∅, contradicts the fact that k ∈ Sv ⊆ V.
¤

We now show that, if there are infinitely many iterations, then the v-criticality measure min{vk, χv
k}

converges to zero, at least along a subsequence of iterates.

Lemma 3.13 If Algorithm 1 does not terminate finitely, then

0 =







lim inf
k∈Sv

min{vk, χv
k} if |Sv| = ∞,

lim inf
k∈Sf

min{vk, χv
k} if |Sv| < ∞.

(3.20)
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Proof. Lemma 2.4 shows that {vmax

k } is monotonically decreasing and bounded below by zero.
Therefore, if |Sv| = ∞ and the update (2.54) sets vmax

k+1 ≤ κt1v
max

k infinitely often, then {vmax

k } → 0,
which implies by Lemma 2.4 that {vk} → 0, so the first limit of (3.20) holds. Otherwise, if |Sv| = ∞
and the update (2.54) sets vmax

k+1 > κt1v
max

k for all sufficiently large k, then by Lemmas 3.12 and 2.4
we have that

vmax

k+1 ≤ vk−(1−κt2)χ
v
k min{κ

vπ1
, κ

vπ2
πv

k , κ
vπ3

δv
k} ≤ vmax

k −(1−κt2)χ
v
k min{κ

vπ1
, κ

vπ2
πv

k , κ
vπ3

δv
k} (3.21)

for k ∈ Sv. If there is a subsequence of Sv along which {χv
k} converges to zero, then the first limit

of (3.20) follows. Assume therefore that {χv
k}k∈Sv

is bounded away from zero. Then the fact that
{vmax

k } is monotonically decreasing and bounded below implies that {vmax

k − vmax

k+1} → 0 and hence
(3.21) gives that

{min{πv
k , δv

k}}k∈Sv
→ 0. (3.22)

Consider first the subcase where |Sf | < ∞ and let k0 be the index of the last iteration in Sf . Thus all
successful iterations are v-iterations for k ≥ k0. As a consequence, for k ≥ k0, δv

k is only increased at
iterations in Sv and only decreased at iterations in V \Sv. Consider an arbitrary k ∈ Sv with k ≥ k0

and define ku(k) ∈ V \ Sv to be the index of the last unsuccessful v-iteration before iteration k (we
set ku(k) = k0 if (V \ Sv) ∩ {k | k ≥ k0} = ∅). Note that δv

k and the current iterate are not modified
between iterations ku(k) + 1 and k. This, (2.56) and Lemma 3.8 (ii) imply that, for k sufficiently
large,

δv
k = δv

ku(k)+1

≥ γ1δ
v
ku(k)

≥ γ1 min{κ∆c1, κ∆c2π
v
ku(k), κ∆c3χ

v
ku(k)}

= γ1 min{κ∆c1, κ∆c2π
v
k , κ∆c3χ

v
k}

= γ1κ∆c2π
v
k ,

(3.23)

where we have used (3.22) and the fact that {χv
k}k∈Sv

is bounded away from zero to deduce the last
equality. The limit (3.22) then immediately implies that {πv

k}k∈Sv
→ 0.

Consider next the subcase where |Sf | = ∞. Then successful f - and v-iterations interlace infinitely
often and there must exist an infinite subsequence K1 ⊆ Sv such that, for k ∈ K1 sufficiently large,

(xkp(k)+1, skp(k)+1) = (xkp(k)+2, skp(k)+2) = · · · = (xk, sk)

where kp(k) ∈ Sf and iterations of index kp(k) + 1, . . . , k − 1 either belong to Y or are unsuccessful.
Thus πv

kp(k)+1 = πv
kp(k)+2 = · · · = πv

k . If, on one hand, none of the iterations of index kp(k) +

1, . . . , k−1 belong to V, we have that the only possible modification of δv
k is its potential redefinition

to ensure (2.47) at the first iteration in kp(k)+ 1, . . . , k whose index, kn(k) say, belongs to N . (Note
that k ∈ Sv ⊆ N and hence, necessarily, kn(k) = k if no normal step is computed before iteration
k.) Thus, using Lemma 3.3 (iii),

δv
k = δkn(k) ≥ κnκcnπ

v
kn(k) = κnκcnπ

v
k (3.24)

for k ∈ K1 sufficiently large. On the other hand, if there are unsuccessful v-iterations among those
of index kp(k) + 1, . . . , k − 1, we define, as in the first subcase, ku(k) ∈ V \ Sv to be the index
of the last unsuccessful v-iteration before iteration k, and use the same reasoning to conclude that
δv
k ≥ γ1κ∆c2π

v
k (see (3.23)) for large enough k ∈ K1. This last inequality and (3.24) then gives that

δv
k ≥ min{κnκcn, γ1κ∆c2}π

v
k , for k ∈ K1 ⊆ Sv sufficiently large, and hence, because of (3.22), that

{πv
k}k∈K1

→ 0.

Thus we have obtained from the two above subcases that there exists an infinite subsequence K2 ⊆ Sv

with {πv
k}k∈K2

→ 0, irrespective of the cardinality of Sf . The fact that {χv
k}k∈Sv

is bounded away
from zero and (2.7) then imply that {vk}k∈K2

→ 0, finally ensuring the first limit of (3.20).

It remains to consider when |Sv| < ∞, in which case, by the fact that vmax

k+1 < vmax

k only when k ∈ Sv,
there exists a constant vmax

∞ > 0 such that vmax

k = vmax

∞ for all sufficiently large k. By Theorem 3.11,
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the conditions of this lemma, and the fact that |Sv| < ∞, it follows that |Sf | = ∞. Now, to derive a
contradiction, suppose that there exists a constant φmin > 0 such that

min{vk, χv
k} ≥ φmin > 0 for all sufficiently large k. (3.25)

Since |Sv| < ∞, we know from (2.36) for k ∈ Y, from (2.39) and (2.43) for k ∈ F , from (2.55)
for k ∈ V \ Sv, and the fact that the slack reset only possibly decreases the barrier function that
{f(xk, sk)} is monotonically decreasing. Moreover, it follows from Assumptions 1.1 and 3.1 and
Lemma 3.2 that {f(xk, sk)} is bounded below, so overall we have that {f(xk, sk)} → flow for some
flow > −∞. It follows from this fact, the fact that |Sf | = ∞, (2.38), (2.39), (2.32) (which holds for

k ∈ F), (2.30a)/(2.35a), and part (ii) of Lemma 3.3 that limk∈Sf
min{πf

k , δt
k} = 0. Suppose that for

some infinite index set K3 ⊆ Sf and scalar πf
min > 0 we have πf

k ≥ πf
min for all k ∈ K3. It follows

that {δt
k}k∈K3

→ 0. However, from Lemma 3.10 and (3.25), it follows that {δv
k}k∈V is bounded away

from zero for all k. Combining this with the facts that {δt
k}k∈K3

→ 0 and vmax

k = vmax

∞ > 0 for all

sufficiently large k implies that {δf
k}k∈K3

→ 0. It then follows from Lemma 3.9 that there exists

an infinite index set K4 ⊆ F such that {πf
k}k∈K4

→ 0. Since K4 ⊆ F ⊆ T \ T0, we know that
(2.26a), (2.26b), or (2.26c) is satisfied for all k ∈ K4. However, we also know that (2.26a) cannot
be satisfied since Algorithm 1 is assumed not to terminate finitely. It does, however, follow from
{πf

k}k∈K4
→ 0 and (3.25) that (2.26b) will be satisfied for all sufficiently large k ∈ K4 so that tk = 0

for all sufficiently large k ∈ K4 ⊆ F ⊆ T \ T0, which is a contradiction. Thus, we conclude that the

set K3 cannot exist, so that limk∈Sf
πf

k = 0. It follows from this fact, (3.25), the definition of χv
k

given in (2.7), the fact that (2.26a), (2.26b), or (2.26c) is satisfied for all k ∈ F ⊆ T \ T0, and since
the algorithm does not terminate finitely that (2.26b) will be satisfied (and hence tk = 0) for all
sufficiently large k ∈ F ⊆ T \ T0, which again is a contradiction. Thus, our supposition that (3.25)
held must be incorrect and therefore there is a subsequence K5 such that limk∈K5

min{vk, χv
k} = 0.

Moreover, since |Sv| < ∞ and |Sf | = ∞, we conclude that (3.20) holds. ¤

To proceed further, we define the active and inactive slack variable sets

A(s) := {i ∈ {1, 2, . . . ,M} : [s]i = 0} and I(s) := {1, 2, . . . M} \ A(s) (3.26)

at s ∈ R
M , and denote these sets at a point x∗ by

A∗ := A(s∗) and I∗ := I(s∗).

We also define σmin(x, s) to be the smallest singular value of the matrix (J(x) S)T = (J(x, s)P )T with
P := diag(I, S).

Lemma 3.14 If Algorithm 1 does not terminate finitely and there exists an infinite index set K such
that limk∈K min{vk, χv

k} → 0, then for an arbitrary limit point (x∗, s∗) of {(xk, sk)}k∈K it follows that
either v(x∗, s∗) = 0 so that (x∗, s∗) is feasible for problem (NPs), or χv(x∗, s∗) = 0 and x∗ is an infeasible
point at which the Jacobian of active constraints JA∗

(x∗) has linearly dependent rows.

Proof. We first partition K into two disjoint index sets, call them K1 and K2, such that

lim
k∈K1

vk = 0 and lim
k∈K2

χv
k = 0, (3.27)

and such that vk is bounded away from zero on K2. Any limit point (x∗, s∗) of the sequence
{(xk, sk)}k∈K1

yields v(x∗, s∗) = 0 so that (x∗, s∗) is feasible for problem (NPs), as desired.

Consider now a limit point of the sequence {(xk, sk)}k∈K2
, call it (x∗, s∗). By our definition of K2 and

slack reset procedure (c.f., (2.3)), it follows that (x∗, s∗) is infeasible for problem (NPs). Moreover,
since vk is bounded away from zero on K2, the second limit in (3.27) implies

0 = lim
k∈K2

χv
k = lim

k∈K2

‖PkJ(xk, sk)T c(xk, sk)‖2

‖c(xk, sk)‖2
≥ lim

k∈K2

σmin(xk, sk) = σmin(x∗, s∗).
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Thus, we deduce that (J(x∗) S∗) = J(x∗, s∗)P∗ (where P∗ := diag(I, S∗)) must have a subset
of linearly dependent rows. Due to the structure of this matrix, we may assume without loss of
generality that the subset does not contain row i when [s∗]i > 0; it only contains rows indexed by
A∗, and thus JA∗

(x∗) has linearly dependent rows. ¤

We now make the following assumption throughout the rest of the paper.

Assumption 3.2 If Algorithm 1 does not terminate finitely and K is an infinite index set such that
{πv

k}k∈K → 0, then for an arbitrary limit point (x∗, s∗) of {(xk, sk)}k∈K it follows that A∗ = ∅
or JA∗

(x∗) has full row rank (i.e., σmin(x∗, s∗) > 0), which implies that (x∗, s∗) is not an infeasible
stationary point for problem (NPs).

Our claim in this assumption—i.e., that due to full row rank of the scaled constraint Jacobian, the
property {πv

k}k∈K → 0 implies that the algorithm avoids infeasible stationary points over K—is formally
proved in the following lemma. This lemma represents a strengthening of Lemma 3.14.

Lemma 3.15 If Algorithm 1 does not terminate finitely and K is an infinite index set such that {πv
k}k∈K →

0, then for an arbitrary limit point (x∗, s∗) of {(xk, sk)}k∈K it follows that v(x∗, s∗) = 0 so that (x∗, s∗)
is feasible for problem (NPs).

Proof. Let us define the feasibility problem

minimize
x,s

1
2v(x, s)2 subject to s ≥ 0

for which we have the first-order KKT conditions

min{s, c(x, s)} = 0 and J(x)Tc(x, s) = 0. (3.28)

For an arbitrary limit point (x∗, s∗) of {(xk, sk)}k∈K, it follows from Lemma 2.2 and {πv
k}k∈K → 0

that
s∗ ≥ 0, c(x∗, s∗) ≥ 0, S∗c(x∗, s∗) = 0, and J(x∗)

Tc(x∗, s∗) = 0. (3.29)

In particular, using the definitions in (3.26) and (3.29), we have

[s∗]I∗
> 0 and cI∗

(x∗) < cI∗
(x∗, s∗) = 0; (3.30a)

[s∗]A∗
= 0 and cA∗

(x∗) = cA∗
(x∗, s∗) ≥ 0. (3.30b)

Hence, from (3.29) and (3.30), we have that (x∗, s∗) satisfies (3.28). Now, if A∗ = 0, then by (3.30a)
we have that v(x∗, s∗) = 0 and c(x∗) ≤ 0, as desired. Otherwise, by (3.29) and (3.30a), we have

0 = J(x∗)
Tc(x∗, s∗) = JA(x∗)

TcA(x∗, s∗) = JA(x∗)
TcA(x∗).

Under Assumption 3.2, we have that JA(x∗) has full row rank, so the above implies that 0 = cA(x∗) =
cA(x∗, s∗). Combining this with (3.30a) again yields v(x∗, s∗) = 0 and c(x∗) ≤ 0, as desired. ¤

We now prove a useful fact about our employed infeasibility measures.

Lemma 3.16 For any infinite index set K, we have

lim
k∈K

min{vk, χv
k} = 0 if and only if lim

k∈K
πv

k = 0. (3.31)

Proof. First, suppose that {min{vk, χv
k}}k∈K → 0. Then, as in the proof of Lemma 3.14, we can

partition K into disjoint subsets K1 and K2 such that (3.27) holds and vk is bounded away from
zero on K2. By Lemma 3.2, it then follows that {πv

k}k∈K1
→ 0, and by (2.7) we must also have

{πv
k}k∈K2

→ 0. Consequently, {πv
k}k∈K → 0, as desired. Second, suppose that {πv

k}k∈K → 0 and, to
obtain a contradiction, that there exists some ǫ > 0 such that the set Kǫ := {k ∈ K : min{vk, χv

k} ≥ ǫ}
is infinite. It then follows from the definition of χv

k in (2.7) that the infinite sequence {πv
k}k∈Kǫ

is
bounded away from zero, which is a contradiction. Hence, {min{vk, χv

k}}k∈K → 0, as desired. ¤
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We now prove a crucial property of certain steps resulting in an improvement in feasibility.

Lemma 3.17 Let k ∈ N and vk ≤ κc and assume that ak is a general step such that

mv,P
k (ak) < mv,P

k (0) = vk and ak belongs to the range of PkJ(xk, sk)T . (3.32)

Then

‖ak‖2 ≤
2

σmin(xk, sk)2
πv

k , (3.33)

and, in particular,

‖P−1
k nk‖2 ≤

2

σmin(xk, sk)2
πv

k . (3.34)

Proof. Let k ∈ N , define mv,P
k (d) := ‖c(xk, sk)+J(xk, sk)Pkd‖2 and consider the quadratic model

(mv,P
k (·))2. Observe that

∇xx(m
v,P
k (0))2 = PT

k J(xk, sk)TJ(xk, sk)Pk.

By definition, we have that σmin(xk, sk) is the smallest eigenvalue of this matrix on the range space
of PkJ(xk, sk)T . Therefore the second part of (3.32) yields

aT
k ∇xx(m

v,P
k (0))2ak ≥ σmin(xk, sk)2‖ak‖

2
2 > 0. (3.35)

Let
t∗ := arg min

t≥0
(mv,P

k (t ak))2.

Because of the symmetry of a strictly convex quadratic function with respect to its minimum (see
[5, Lemma 6.5.1]) and the first part of (3.32), we deduce that

1
2 < t∗ =

aT
k ∇x(mv,P

k (0))2

aT
k ∇xx(m

v,P
k (0))2ak

≤
‖ak‖2 πv

k

aT
k ∇xx(m

v,P
k (0))2ak

≤
πv

k

σmin(xk, sk)2‖ak‖2

where we used the Cauchy-Schwartz inequality to deduce the second inequality and (3.35) to deduce
the third. Thus we obtain (3.33). The inequality (3.34) then follows by choosing ak = P−1

k nk, which is

possible because of (2.13) and the observation that mv,P
k (P−1

k nk) = mv
k(nk) < mv

k(0) = vk = mv,P
k (0).

¤

We next prove a result illustrating the importance of the sequence {πf
k}. In particular, the result

establishes that πf
k is a valid criticality measure for (1.1).

Lemma 3.18 If K is any subsequence and (x∗, s∗) is any point such that limk∈K(xk, sk) = (x∗, s∗) with

v(x∗, s∗) = 0 and limk∈K πf
k = 0, then limk∈K yk = y∗ where (x∗, s∗, y∗) is a KKT point for problem (1.1).

Proof. Since v(x∗, s∗) = 0, it follows that limk∈K c(xk, sk) = c(x∗, s∗) = 0, which, when combined
with Lemma 3.2, proves that limk∈K πv

k = 0. But Assumption 3.2 ensures that σmin(x∗, s∗) > 0
and, by continuity, that σmin(xk, sk) ≥ 1

2σmin(x∗, s∗) > 0 for k sufficiently large. We may now apply
(3.34) to deduce that that, for k sufficiently large,

‖P−1
k nk‖2 ≤

8

σmin(x∗, s∗)2
πv

k ,

which, with limk∈K πv
k = 0, gives that

lim
k∈K

nk = 0. (3.36)
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Next, observe that

0 = lim
k∈K

πf
k = lim

k∈K

∥

∥

∥Pk

(

∇mf
k(nk) + J(xk, sk)Tyk

)∥

∥

∥

2

= lim
k∈K

∥

∥

∥

∥

(

g(xk) + ∇xxL(xk, yB

k )nx
k + J(xk)Tyk

−µe + SkDkns
k + Skyk

)∥

∥

∥

∥

2

(3.37)

= lim
k∈K

∥

∥

∥

∥

∥

∥





g(xk) + ∇xxL(xk, yB

k )nx
k + J(xk)Tyk

[−µe + SkDkns
k + Skyk]A∗

[−µe + SkDkns
k + Skyk]I∗





∥

∥

∥

∥

∥

∥

2

. (3.38)

Using (3.38) (specifically the third row of the matrix inside the norm) with limk∈K(xk, sk) = (x∗, s∗),
the fact that [s∗]I∗

> 0, (2.20), Lemma 3.2 and (3.36) shows that

lim
k∈K

[yk]I∗
= [µS−1

∗ e]I∗
=: [y∗]I∗

.

It then follows from (3.38) (specifically the first row of the matrix inside the norm), the fact that
limk∈K(xk, sk) = (x∗, s∗), (2.20), (2.19), Lemma 3.1, (3.36), the fact that limk∈K πv

k = 0, and hence
the full row rank of JA∗

(x∗) (stated in Assumption 3.2) that

lim
k∈K

[yk]A∗
= −

[

JA∗
(x∗)JA∗

(x∗)
T
]−1

JA∗
(x∗)

(

g(x∗) + JI∗
(x∗)

T [y∗]I∗

)

=: [y∗]A∗
.

We have shown that the multiplier sequence converges on K, i.e., that limk∈K yk = y∗ for some y∗ ∈
R

M . Combining this with (3.37), the fact that limk∈K(xk, sk) = (x∗, s∗), (2.20), (2.19), Lemma 3.1,
and (3.36) proves that

g(x∗) + J(x∗)
Ty∗ = 0 and S∗y∗ = µe. (3.39)

Note that it follows from (3.39), Lemma 2.2, and the fact that µ > 0 that (s∗, y∗) > 0. Combining
this with (3.39) and v(x∗, s∗) = 0 proves that (x∗, y∗, s∗) is a KKT point for problem (1.1). ¤

Lemmas 3.15 and 3.18 prove that, under Assumption 3.2, we may obtain a first-order KKT point for
the barrier subproblem (1.1) with any subsequence K over which {vk}k∈K → 0 and {πf

k}k∈K → 0. Now,
to prove that such a sequence will exist, we make the following assumption—which is, at nearly feasible
points, stronger than Assumption 3.2—for the remainder of our analysis. The assumption states that
at any nearly feasible point, the singular values of a scaled constraint Jacobian are uniformly bounded
away from zero.

Assumption 3.3 There exists a constant κc > 0 independent of k such that if vk ≤ κc, then σmin(xk, sk)
is greater than κJ for some constant κJ > 0 independent of k. Observe that this implies that if vk ≤ κc,
then χv

k ≥ κJ.

We also define the following projection operator. Note that this operator is used for theoretical
purposes only, i.e., computing such projections is unnecessary in an implementation of our algorithm.

Definition 3.1 Let Projk(d) denote the orthogonal projection of d onto the range space of PkJ(xk, sk)T .

Lemma 3.19 If k ∈ N and vk ≤ κc, then

‖P−1
k nk‖2 ≤

2

κ2
J

πv
k . (3.40)

Moreover, there exist constants {κR1, κR2} ⊂ (0,∞) such that if, in addition, k ∈ D, then

‖Projk(P
−1
k dk)‖2 ≤

2

κ2
J

πv
k and ∆mv,d

k ≥ κJ min{κR1, κR2‖Projk(P
−1
k dk)‖2}. (3.41)
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Proof. If k ∈ N and vk ≤ κc, inequality (3.40) is an immediate consequence of (3.34) and
Assumption 3.3. Assume now that, in addition, k ∈ D and define dP

k := P−1
k dk. Then, it follows

from the fact that J(xk, sk)PkProjk(d
P
k ) = J(xk, sk)PkdP

k , part (i) of Lemma 2.1, and (2.30d) that

mv,P
k (Projk(d

P
k )) = ‖c(xk, sk) + J(xk, sk)PkProjk(d

P
k )‖2 = ‖c(xk, sk) + J(xk, sk)PkdP

k ‖2

= ‖c(xk, sk) + J(xk, sk)dk‖2 < ‖c(xk, sk)‖2 = mv,P
k (0). (3.42)

We may then deduce from (3.33) with ak = Projk(d
P
k ) and Assumption 3.3 that

‖Projk(P
−1
k dk)‖2 = ‖Projk(d

P
k )‖2 ≤

2

κ2
J

πv
k ,

which proves the first inequality in (3.41). It also follows from Lemma 3.4 and the fact that the
orthogonal projection operator is nonexpansive that

δv
k ≥ ‖P−1

k dk‖2 ≥ ‖Projk(P
−1
k dk)‖2.

Combining this with the fact that k ∈ D, Lemma 2.1(ix), the inequality in (2.49), (2.12), Lemma 3.3(i),
Assumption 3.3 and the first inequality in (3.41), we have that there exist constants {κR1, κR2} ⊂
(0,∞) such that the second inequality in (3.41) holds. ¤

We now prove that if there are an infinite number of successful v-iterations, then, amongst other things,
feasibility is achieved at all limit points of the sequence of iterates computed by the algorithm.

Lemma 3.20 If |Sv| = ∞, then {vmax

k } → 0, {vk} → 0, {πv
k} → 0, and {nk} → 0.

Proof. Since |Sv| = ∞, it must be true that Algorithm 1 does not terminate finitely. This implies,
for one thing, that the result of Lemma 3.13 holds true. Moreover, Lemma 2.4 shows that {vmax

k }
is monotonically decreasing and bounded below by zero. Then, as in the proof of Lemma 3.13, we
have that if the update (2.54) sets vmax

k+1 ≤ κt1v
max

k infinitely often, then {vmax

k } → 0 and {vk} → 0,
from which it follows by Lemma 3.2 that {πv

k} → 0. It then follows from these facts and (3.40) that
{nk} → 0.

All that remains is to consider the case when the update (2.54) sets vmax

k+1 > κt1v
max

k for all large
k. From Lemma 3.13 we have that {min{vk, χv

k}}k∈K1
→ 0 for some infinite subsequence K1 ⊆ Sv,

which in turn by Lemma 3.16 implies that {πv
k}k∈K1

→ 0. Then, by Lemma 3.15, Assumption 3.1,
and the boundedness of {sk} stated in Lemma 3.2, there exists an infinite index set K2 ⊆ Sv such
that {vk}k∈K2

→ 0. We then have from Lemma 3.12 (in particular, (3.19b)) that {vmax

k+1}k∈K2
→ 0,

which means that {vmax

k } → 0 and hence {vk} → 0 because of Lemma 2.4. Combining this with
Assumptions 1.1 and 3.1 and Lemma 3.2, we thus have that {πv

k} → 0. It follows from this fact and
(3.40) that {nk} → 0. ¤

We now bound the size of the normal step along a certain subsequence of unsuccessful v-iterations.

Lemma 3.21 If k ∈ (N ∩ V ∩ D) \ Sv and

vk ≤ min

{

κc,
κ∆c1

κ∆c2κJ

,
κ∆c3

κ∆c2

,
1 − κfbn

κJ

,
1 − κfbn

κ∆c2κJ

}

, (3.43)

then, for some constants {κcld, κsRn} ⊂ (0, 1), we have

mv
k(dk) ≤ κcldvk and ‖Projk(P

−1
k dk)‖2 ≥ κsRn‖P

−1
k nk‖2. (3.44)

Proof. Consider k ∈ (N ∩ V ∩ D) \ Sv such that (3.43) holds. It follows from the fact that
k ∈ N ∩ D, Lemma 2.1(ix), the inequality in (2.49), (2.12), Lemma 3.3(i), (3.43), Assumption 3.3,
and (2.7) that

mv
k(dk) ≤ mv

k(0)−κcdκcnχ
v
k min {πv

k , δv
k , 1 − κfbn} ≤ mv

k(0)−κcdκcnκJ min {κJvk, δv
k , 1 − κfbn} . (3.45)
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It also follows from Lemma 3.8(ii), the fact that k ∈ V \ Sv, Assumption 3.3, (2.7), and (3.43) that

δv
k > min {κ∆c1, κ∆c2π

v
k , κ∆c3χ

v
k} ≥ min {κ∆c1, κ∆c2κJvk, κ∆c3κJ} = κ∆c2κJvk.

Substituting this into (3.45) ensures by (3.43) the existence of κcld ∈ (0, 1) independent of k such
that

mv
k(dk) ≤ mv

k(0)−κcdκcnκJ min {κJvk, κ∆c2κJvk, 1 − κfbn} = vk−κcdκcnκJ min {κJ, κ∆c2κJ} vk ≤ κcldvk.

This is the first desired result. Next, defining dP
k := P−1

k dk, we may use the inequality above, the
reverse triangle inequality, and the fact that J(xk, sk)PkdP

k = J(xk, sk)PkProjk(d
P
k ) to have

vk − ‖J(xk, sk)PkProjk(d
P
k )‖2 ≤ ‖c(xk, sk) + J(xk, sk)PkProjk(d

P
k )‖2

= ‖c(xk, sk) + J(xk, sk)PkdP
k ‖2

= mv
k(dk) ≤ κcldvk.

Combining the above with the fact that k ∈ N , (3.40), and standard norm inequalities then implies

‖P−1
k nk‖2 ≤

2

κ2
J

πv
k ≤

2

κ2
J

‖PkJ(xk, sk)T ‖2 vk

≤
2

κ2
J

‖PkJ(xk, sk)T ‖2
‖J(xk, sk)PkProjk(d

P
k )‖2

1 − κcld

≤
2

κ2
J

‖PkJ(xk, sk)T ‖2
‖J(xk, sk)Pk‖2‖Projk(d

P
k )‖2

1 − κcld

.

It then follows from the definition of dP
k , Lemma 3.2, and the fact that κcld ∈ (0, 1) that for some

κsRn ∈ (0, 1) independent of k, we have

‖Projk(P
−1
k dk)‖2 ≥

(1 − κcld)κ
2
J

2‖J(xk, sk)Pk‖2
2

‖P−1
k nk‖2 ≥ κsRn‖P

−1
k nk‖2,

which is the second desired result. ¤

For our next pair of results, we define the constants

ςtn := κVS max

{

1,
2κub

(1 − κδ)(κVS − 1)κct(1 − κB)ǫπ

}

> 1 and (3.46a)

ςδ := min

{

1,
ǫπ

1 − κB

,
(1 − κfbt)κbfn

1 − κB

}

∈ (0, 1]. (3.46b)

Lemma 3.22 If k 6∈ Y,

πf
k ≥ ǫπ > 0, (3.47a)

min{δv
k , δf

k} ≤ ςδ, and (3.47b)

‖P−1
k tk‖2 ≥ ςtn‖P

−1
k nk‖2, (3.47c)

then tk 6= 0 and (2.32) holds.

Proof. Let k /∈ Y be such that (3.47) holds. If k ∈ F , then the results follow by the definition of
the index set F . Thus, for the remainder of the proof, we may assume that k ∈ V.

If nk = 0, then tk 6= 0 (since otherwise k ∈ Y by Lemma 2.1(vi)) and by (2.30a)/(2.35a), and

Lemma 3.3(ii) we have ∆mf,d
k = ∆mf,t

k ≥ 0, meaning that (2.32) holds, as desired. Otherwise, if
nk 6= 0, then since sk > 0 and Pk ≻ 0 for all k and (3.47c) holds, we have tk 6= 0, which implies
k ∈ T \ T0 and (2.21) holds. It then follows from the reverse triangle inequality, (3.47c), and (3.46a)
that

‖P−1
k dk‖2 ≥ ‖P−1

k tk‖2 − ‖P−1
k nk‖2 =

(

1 −
‖P−1

k nk‖2

‖P−1
k tk‖2

)

‖P−1
k tk‖2 ≥

(

κVS − 1

κVS

)

‖P−1
k tk‖2. (3.48)
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We also have that

− ∆mf,n
k = ∇f(xk, sk)Tnk + 1

2nT
kGknk =

(

Pk∇f(xk, sk)
)T

P−1
k nk + 1

2 (P−1
k nk)TPkGkPk(P−1

k nk).
(3.49)

Using the triangle and Cauchy-Schwarz inequalities, Lemma 3.2, and the fact that (2.21), (3.47b)

and (3.46b) imply ‖P−1
k nk‖2 ≤ min{δv

k , δf
k} ≤ 1, we then have

|∆mf,n
k | ≤ κub(‖P

−1
k nk‖2 + 1

2‖P
−1
k nk‖

2
2) ≤ 2κub‖P

−1
k nk‖2. (3.50)

Moreover, it follows from the fact that k ∈ T \T0, Lemma 3.3(ii), (3.47a), (2.59), (3.47b) and (3.46b)
that

∆mf,t
k ≥ κctǫπ min{ǫπ, (1 − κB)δt

k, (1 − κfbt)κfbn} = κctǫπ(1 − κB)δt
k.

Combining this with (3.50), the fact that k ∈ T \ T0, Lemma 3.4, (3.48) and (3.47c) and (3.46a)
yields

|∆mf,n
k |

∆mf,t
k

≤
2κub‖P

−1
k nk‖2

κctǫπ(1 − κB)δt
k

≤
2κub‖P

−1
k nk‖2

κctǫπ(1 − κB)‖P−1
k dk‖2

≤
2κubκVS

κctǫπ(1 − κB)(κVS − 1)

‖P−1
k nk‖2

‖P−1
k tk‖2

≤ 1−κδ.

Hence, (2.32) holds, which completes the proof. ¤

We next prove that at nearly feasible points, certain v-iterates are guaranteed to be successful.

Lemma 3.23 If k ∈ V ∩ D,
‖P−1

k tk‖2 ≤ ςtn‖P
−1
k nk‖2, (3.51)

and

vk ≤ min

{

κc,
κ∆c1

κ∆c2κJ

,
κ∆c3

κ∆c2

,
1 − κfbn

κJ

,
1 − κfbn

κ∆c2κJ

,
κ

R1
κ2

J

2κ
R2

κsRnκub

,
κ3

J
κR2κsRn(1 − η1)

2κC(1 + ςtn)2κub

}

, (3.52)

then k ∈ Sv and δv
k+1 ≥ δv

k.

Proof. Consider k ∈ V ∩ D such that (3.51) and (3.52) hold. If nk = 0, then (3.51) implies that
tk = 0, which in turn implies by part (vi) of Lemma 2.1 that k ∈ Y. However, this contradicts the
supposition that k ∈ V, so we must have nk 6= 0. In this case, part (ii) of Lemma 2.1 ensures that
k ∈ N , so that overall we have k ∈ N ∩ V ∩ D.

To obtain a contradiction, suppose that k 6∈ Sv, so that overall we have k ∈ (N ∩ V ∩ D) \ Sv. This
and the bound (3.52) imply that the results of Lemmas 3.19 and 3.21 hold, i.e., that (3.41) and (3.44)
hold. Moreover, the fact that k ∈ D and Lemma 2.1(ix) imply that (2.49) holds. Using this and the
facts that nk 6= 0 and k ∈ V \ Sv, it follows from (2.55) that ρv

k < η1. However, since (3.41) and
(3.44) hold,

∆mv,d
k ≥ κJ min{κ

R1
, κ

R2
‖Projk(P

−1
k dk)‖2} ≥ κJ min{κ

R1
, κ

R2
κsRn‖P

−1
k nk‖2}.

In fact, it follows from (3.40), Lemma 3.2 and (3.52) that

κ
R2

κsRn‖P
−1
k nk‖2 ≤

2κ
R2

κsRn

κ2
J

πv
k ≤

2κ
R2

κsRnκub

κ2
J

vk ≤ κ
R1

,

and thus
∆mv,d

k ≥ κJκR2κsRn‖P
−1
k nk‖2. (3.53)

Furthermore, by (2.50), (3.2), (3.53), the triangle inequality, (3.51), (2.11), the Cauchy-Schwarz
inequality, Lemma 3.2, and (3.52), we have that

|ρv
k − 1| =

∣

∣

∣

∣

∣

v(xk + dx
k, sk + ds

k) − mv
k(dk)

∆mv,d
k

∣

∣

∣

∣

∣

≤
κC‖P

−1
k dk‖

2
2

κJκR2κsRn‖P
−1
k nk‖2

≤
κC(1 + ςtn)

2‖P−1
k nk‖2

κJκR2κsRn

≤
2κC(1 + ςtn)

2κub

κ3
J
κR2κsRn

vk ≤ 1 − η1,
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and hence ρv
k ≥ η1, which is a contradiction. Thus, we must conclude that k ∈ Sv. The fact that

δv
k+1 ≥ δv

k now follows from the fact that k ∈ Sv and (2.53). ¤

We now prove that our algorithm terminates finitely if there are finitely many successful v-iterations.

Lemma 3.24 If |Sv| < ∞, Algorithm 1 terminates finitely.

Proof. We prove the result by contradiction, and so suppose that |Sv| < ∞, but that Algorithm 1
does not terminate finitely. It then follows from Theorem 3.11 that |S| = ∞, which when combined
with the fact that |Sv| < ∞ implies that |Sf | = ∞; i.e., it follows that there are an infinite number of
successful iterations, and all belong to Sf for all sufficiently large k. We may also deduce from these
facts—and since the barrier function is decreased for k ∈ Sf and the slack reset only possibly decreases
the barrier function—that the sequence {f(xk, sk)} is monotonically decreasing for sufficiently large
k. Moreover, since vmax

k+1 ← vmax

k for all k /∈ Sv and |Sv| < ∞, we have that there exists a constant
vmax

∞ > 0 such that
vmax

k = vmax

∞ > 0 for all sufficiently large k. (3.54)

We complete the proof by considering two cases depending on whether, for some ǫf > 0, (3.13) holds.

Case 1: Suppose that (3.13) holds for some ǫf > 0. It then follows from Lemma 3.9 that (3.14) also
holds, in which case we have from (2.30a)/(2.35a), the fact that Sf ⊆ F ⊆ T \ T0, Lemma 3.3(ii),
(3.13), (3.14), (2.59), and (3.54) that

∆mf,t
k ≥ κctǫf min{ǫf , (1 − κB)δt

k, (1 − κfbt)κfbn}

≥ κctǫf min{ǫf , (1 − κB)min{δv
k , ǫF , κvv

max

∞ }, (1 − κfbt)κfbn} for sufficiently large k ∈ Sf .
(3.55)

We now consider two subcases, deriving contradictions in each, which will prove that the condition
of this case (namely, that there exists ǫf > 0 such that (3.13) holds) cannot occur.

Subcase 1.1: Suppose there exists an infinite subsequence Kf ⊆ Sf such that {δv
k}k∈Kf

→ 0.
Since δv

k+1 < δv
k only if k ∈ V \ Sv and δv

k+1 ← δv
k otherwise, it follows that there exists an infinite

subsequence Kv ⊆ V \ Sv such that {δv
k}k∈Kv

→ 0. Our goal in the remainder of this subcase is to
prove that for all sufficiently large k ∈ Kv ⊆ V, we have that all of the conditions of an f -iteration
are satisfied, which is a contradiction since V ∩F = ∅. This will prove that such a sequence Kf ⊆ Sf

cannot exist.

Using the fact that {δv
k}k∈Kv

→ 0 and Lemma 3.6, we may conclude that for all sufficiently large
k ∈ Kv we have k ∈ (V ∩ D) \ Sv. In addition, since |Sv| < ∞ and {δv

k}k∈Kv
→ 0, we may conclude

from part (ii) of Lemma 3.8 and Lemma 3.16 that {πv
k}k∈Kv

→ 0, which in turn implies with
Lemma 3.15 that {vk}k∈Kv

→ 0. Now, suppose that there exists an infinite subsequence K′
v ⊆ Kv

such that K′
v ∩N = ∅. The following then hold for all sufficiently large k ∈ K′

v ⊆ Kv ⊆ V \ Sv:

(a) nk = 0 by part (ii) of Lemma 2.1 (and thus (2.32) holds);

(b) tk 6= 0 by (a), part (vi) of Lemma 2.1, and the fact that k ∈ V; and

(c) vk < κvvv
max

k = κvvv
max

∞ by Step 9, (2.8), and (3.54).

It then follows from Assumption 1.1, Lemma 3.4, the fact that {δv
k}k∈K′

v
→ 0, statement (c) above,

and the bound κvv < 1 that v(xk + dx
k, sk + ds

k) ≤ vmax

k for all sufficiently large k ∈ K′
v. Overall, this

yields (2.37), and thus we have that all of the conditions of an f -iteration hold, so k ∈ F . However,
this is a contradiction since k ∈ K′

v ⊆ V and V ∩F = ∅. Thus, such an infinite subsequence K′
v ⊆ Kv

cannot exist, so we may conclude that for all sufficiently large k ∈ Kv we have k ∈ N . To summarize,
at this point in this subcase, we may assume without loss of generality that there exists an infinite
subsequence Kv ⊆ (N ∩ V ∩ D) \ Sv over which {δv

k}k∈Kv
→ 0, {πv

k}k∈Kv
→ 0, and {vk}k∈Kv

→ 0.

It follows from Lemma 3.21 and the facts that Kv ⊆ (N ∩ V ∩ D) \ Sv and {vk}k∈Kv
→ 0 that

mv
k(dk) ≤ κcldvk for all sufficiently large k ∈ Kv. Using this fact, (3.2), the reverse triangle inequality,

Lemma 3.4, Lemma 2.4, and (3.54), we have

v(x+
k , s+

k ) ≤ κcldv
max

∞ + κC(δv
k)2 for all sufficiently large k ∈ Kv.
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This relationship then implies that

v(x+
k , s+

k ) ≤ vmax

∞ = vmax

k for all sufficiently large k ∈ Kv such that (δv
k)2 ≤

(1 − κcld)

κC

vmax

∞ .

Thus, since {δv
k}k∈Kv

→ 0, we may conclude that (2.37) holds for all sufficiently large k ∈ Kv.

Next, suppose that for ςtn > 0 defined in (3.46a), we have

‖P−1
k tk‖2 ≤ ςtn‖P

−1
k nk‖2 for all sufficiently large k ∈ Kv. (3.56)

We may then use the facts that Kv ⊆ (N ∩ V ∩ D) and {vk}k∈Kv
→ 0, (3.56), and Lemma 3.23 to

conclude that |Sv ∩ Kv| = ∞, which contradicts the fact that |Sv| < ∞. Therefore, there exists an
infinite subsequence K′′

v ⊆ Kv such that if k ∈ K′′
v then (3.56) fails.

We now show that with k ∈ K′′
v ⊆ Kv ⊆ V \ Sv, the conditions of Lemma 3.22 hold. Consider

k ∈ K′′
v . First, since k ∈ K′′

v ⊆ V, we know that k /∈ Y. Second, since k ∈ K′′
v , we know from the

previous paragraph that (3.56) does not hold, and therefore that tk 6= 0 and rk was computed to
satisfy (2.26a), (2.26b), or (2.26c). Since we have supposed that the algorithm does not terminate
finitely, we may use the fact that {vk}k∈Kv

→ 0 along with (2.26a) to conclude that (3.47a) holds
for all sufficiently large k ∈ K′′

v . Third, since {δv
k}k∈Kv

→ 0, we have that (3.47b) holds for all
sufficiently large k ∈ K′′

v . Fourth, we know from the definition of the set K′′
v that (3.56) fails, which

is to say that (3.47c) holds. We may now apply Lemma 3.22 to deduce that tk 6= 0 and (2.32) holds
for all sufficiently large k ∈ K′′

v . Thus, along with our previous conclusion that (2.37) holds for all
sufficiently large k ∈ Kv, we may conclude that for all sufficiently large k ∈ K′′

v we have that all of
the conditions of an f -iteration are satisfied. However, as previously mentioned, this is impossible
since K′′

v ⊆ Kv ⊆ V and F ∩ V = ∅. Hence our stated supposition for Subcase 1.1, i.e., that there is
infinite subsequence Kf ⊆ Sf such that {δv

k}k∈Kf
→ 0, must be impossible.

Subcase 1.2: Suppose that there exists ǫ∗ > 0 such that δv
k ≥ ǫ∗ for all k ∈ Sf , and recall that

|Sf | = ∞. We may combine (3.55) and the bound δv
k ≥ ǫ∗ for all k ∈ Sf to conclude that there exists

k′ such that

∆mf,t
k ≥ κctǫf min {ǫf , (1 − κB)min{ǫ∗, ǫF , κvv

max

∞ }, (1 − κfbt)κfbn} > 0 for all k ≥ k′ with k ∈ Sf .
(3.57)

Combining the facts that |Sv| < ∞ and |Sf | = ∞, (2.38), and (2.32) (which is required to hold for
k ∈ F), we have that

f(xk′ , sk′) − f(xk, sk) =

k−1
∑

j=k′,j∈Sf

[f(xj , sj) − f(xj+1, sj+1)] ≥ η1κδ

k−1
∑

j=k′,j∈Sf

∆mf,t
j , (3.58)

which in view of (3.57) proves that {f(xk, sk)} → −∞. However, this is a contradiction since the
barrier function is bounded below as a consequence of Lemma 3.2 and Assumptions 1.1 and 3.1.

Since we have proved that neither Subcase 1.1 nor 1.2 can occur, the premise of Case 1 cannot be
true.

Case 2: Suppose that the condition of Case 1 does not hold, which is to say that there exists K ⊆ F
with

lim
k∈K

πf
k = 0. (3.59)

For all k ∈ K ⊆ F ⊆ T \ T0, we have that tk 6= 0 was computed (and not reset to zero), in which
case it must be true that (2.26b) does not hold. Combining this fact with (3.59) yields

0 = lim
k∈K

πf
k ≥ lim

k∈K
ωt(π

v
k) ≥ 0, so that lim

k∈K
πv

k = 0.

It follows from this fact, Assumptions 3.1, 3.2, and 3.3, and Lemmas 3.2 and 3.15 that {vk}k∈K → 0,
which when combined with (3.59) shows that (2.26a) will be satisfied for all sufficiently large k ∈ K.
However, this contradicts our supposition that the algorithm does not terminate finitely. ¤
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The previous result proves that if the algorithm does not terminate finitely, then there are an infinite
number of successful v-iterations. We now establish an important consequence of this fact.

Lemma 3.25 If |Sv| = ∞ and (3.51) holds for all sufficiently large k ∈ V ∩ D, then

δv
k ≥ ǫ∗ for some ǫ∗ > 0 for all k. (3.60)

Proof. First, by Lemma 3.20, the fact that |Sv| = ∞ implies that {vk} → 0. Hence, for sufficiently
large k ∈ V ∩ D, we have that (3.51) and (3.52) hold, which in turn implies by Lemma 3.23 that

δv
k+1 ≥ δv

k . Second, if k ∈ V \D, then it follows from Lemma 3.6 that δv
k ≥ min{δv

k , δf
k , κvv

max

k } > κV .
Third, if k ∈ Y ∪F , then by (2.36), (2.42) and (2.45) we have that δv

k+1 ≥ δv
k . The result follows by

combining these facts. ¤

We next prove a result about certain v-iterations that are unsuccessful.

Lemma 3.26 If k ∈ V \ Sv, (3.43) holds,

vmax

k ≤ min

{

(

1 − κcld

κC

)2

,

(

1 − κvv

κC

)2

, κ
4
3
V

}

, (3.61)

and
δv
k ≤ (vmax

k )
3
4 (3.62)

then k ∈ D and (2.37) holds.

Proof. Let k ∈ V \ Sv and observe that (3.61) and (3.62) imply that δv
k ≤ κV . Hence, by

Lemma 3.6, we have that k ∈ D. That is, k ∈ (V ∩ D) \ Sv. We now consider two cases depending
on whether or not k ∈ N .

Suppose k ∈ N so that k ∈ (N ∩V∩D)\Sv. It then follows from (3.2), the reverse triangle inequality,
the fact that (3.43) holds, and Lemmas 3.4 and 3.21 that

v(xk + dx
k, sk + ds

k) ≤ κcldvk + κC(δv
k)2.

Then, from this inequality, Lemma 2.4, (3.62), and (3.61), we have that

v(xk + dx
k, sk + ds

k) ≤ κcldv
max

k + κC (vmax

k )
3
2 = vmax

k

(

κcld + κC

√

vmax

k

)

≤ vmax

k ,

which means that (2.37) holds, as desired.

Now suppose k 6∈ N . It then follows from (3.2), the reverse triangle inequality, Lemmas 3.4 and
2.4, (2.30d) (which holds since k ∈ D), and the fact that vk < κvvv

max

k (which holds by (2.8) since
k /∈ N ), (3.61), and (3.62) that

v(xk + dx
k, sk + ds

k) ≤ mv
k(dk) + κC(δv

k)2 ≤ κvvv
max

k + κC (vmax

k )
3
2 ≤ vmax

k

(

κvv + κC

√

vmax

k

)

≤ vmax

k ,

which again means that (2.37) holds, as desired. ¤

We now come to the conclusion that there are a finite number of successful v-iterations.

Theorem 3.27 The set Sv is finite.

Proof. We prove the result by contradiction, and so suppose that |Sv| = ∞. It then follows from
Lemma 3.20 that {vmax

k } → 0, {vk} → 0, {πv
k} → 0, and {nk} → 0. Moreover, from the fact that

|Sv| = ∞, we have that (2.26a) must not hold for all sufficiently large k, or else the algorithm would
terminate finitely in Step 19 or 34, which is a contradiction. Thus, since {vk} → 0, we have

πf
k ≥ ǫπ > 0 for all sufficiently large k. (3.63)

It follows from this fact and Lemma 3.9 that (3.14) holds. Also it follows from the facts that {vk} → 0,
{vmax

k } → 0, and |Sv| = ∞ that there exists k0 such that (3.43), (3.52), and (3.61) hold for all k ≥ k0.
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We now prove a lower bound for δv
k that holds for all sufficiently large k, written as equation (3.67)

below. We prove the bound by considering two cases, the latter of which is composed of two subcases.

Case 1: Suppose that (3.51) holds for all sufficiently large k ≥ k0 such that k ∈ V ∩D. Then, since
|Sv| = ∞, we may apply Lemma 3.25 to deduce that (3.60) holds for all sufficiently large k.

Case 2: Suppose that the situation in Case 1 does not occur in that there exists an infinite index
set

K1 := {k ≥ k0 : k ∈ V ∩ D and ‖P−1
k tk‖2 > ςtn‖P

−1
k nk‖2 }.

Since δv
k (vmax

k ) is not decreased (increased) for k ∈ Sv ∪Y ∪F , our goal is to provide a lower bound
for δv

k over k ∈ K1 \Sv. We do this by considering two subcases depending on whether or not k ∈ N .

Subcase 1: Consider k such that k0 ≤ k ∈ K1 \ (Sv ∪ N ). Since k /∈ N , it follows from part (ii)
of Lemma 2.1 that nk = 0. By part (vi) of Lemma 2.1, this means that tk 6= 0 (since otherwise we
would have k ∈ Y), which in turn means by part (v) of Lemma 2.1 that k ∈ T \ T0 and that (2.32)
holds (since nk = 0). We may then conclude from the fact that k ∈ V \ Sv, the choice of k0 being
large enough such that (3.43) and (3.61) hold for k ≥ k0, and Lemma 3.26 that if (3.62) holds, then
(2.37) also holds. However, this would imply that k ∈ F , which contradicts the definition of K1 since
V ∩ F = ∅. Thus, (3.62) must not hold and

δv
k > (vmax

k )
3
4 for all k such that k0 ≤ k ∈ K1 \ (Sv ∪N ). (3.64)

Subcase 2: Consider k such that k0 ≤ k ∈ (K1 ∩ N ) \ Sv. By (3.63), we have that (3.47a) holds.
Similarly, by the definition of K1, we have that (3.47c) holds. Now suppose that (3.47b) and (3.62)
both hold. Then, since k /∈ Y and (3.47a), (3.47b), and (3.47c) all hold, we may apply Lemma 3.22
to conclude that tk 6= 0 and (2.32) holds. Also, since k ∈ V \ Sv, we have shown that (3.43) and
(3.61) hold, and we have supposed that (3.62) holds, we may apply Lemma 3.26 to conclude that
(2.37) holds. Overall, we have shown that all of the conditions of an f -iteration are satisfied so that
k ∈ F . However, this contradicts the fact that k ∈ K1 ⊆ V and V ∩ F = ∅. Therefore, we may
deduce that at least one of (3.47b) or (3.62) must not hold, yielding

δv
k > min

{

ςδ, (v
max

k )
3
4

}

for all k such that k0 ≤ k ∈ (K1 ∩N ) \ Sv. (3.65)

Combining (3.64) and (3.65) from Subcases 1 and 2 shows that, for Case 2, we have

δv
k ≥ min

{

ςδ, (v
max

k )
3
4

}

for all k such that k0 ≤ k ∈ K1 \ Sv. (3.66)

Moreover, the fact that {vk} → 0 and Lemma 3.23 implies that for any k with k0 ≤ k ∈ (V ∩D)\K1,
we have k ∈ Sv. Thus, for all k ≥ k0 with k ∈ (V ∩ D) \ Sv, we have k ∈ K1 \ Sv. As a result,
the inequality in (3.66) holds for all k with k0 ≤ k ∈ (V ∩ D) \ Sv. This conclusion, along with the
deduction that δv

k > κV for all k ∈ V \ D from Lemma 3.6 yields

δv
k ≥ min

{

ςδ, (v
max

k )
3
4 , κV

}

for all k with k0 ≤ k ∈ V \ Sv,

which, when combined with the fact that δv
k (vmax

k ) is not decreased (increased) for k ∈ Sv ∪ Y ∪ F ,
yields

δv
k ≥ min

{

ςδ, (v
max

k )
3
4 , κV

}

for all k ≥ k0.

Combining the results of Cases 1 and 2, we have that

δv
k ≥ min

{

ǫ∗, ςδ, (v
max

k )
3
4 , κV

}

for all sufficiently large k. (3.67)

Using this fact, (3.14), and the fact that {vmax

k } → 0 yields

min{δv
k , δf

k} ≥ min
{

ǫ∗, ςδ, (v
max

k )
3
4 , κV , ǫF

}

= (vmax

k )
3
4 for all sufficiently large k. (3.68)
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Under our supposition that the set Sv is infinite, at least one of the following two scenarios must
occur. In both, we reach a contradiction to this supposition that Sv is infinite, which proves the
theorem.

Scenario 1: Suppose that S1 := Sv \ T is infinite. For k ∈ S1, we have that either (2.21) does
not hold or (2.26b) holds. In fact, since (3.63) holds and {πv

k} → 0, condition (2.26b) cannot hold
infinitely often for k ∈ S1, implying that for all sufficiently large k ∈ S1 we have that (2.21) does not
hold. Then, since tk = 0 for k ∈ S1 ⊆ V, we have by Lemma 2.1(vi) that nk 6= 0 (or else k ∈ Y). We

may now use the facts that vmax

k > 0, δv
k > 0, and δf

k > 0 for all k, (3.40), (3.68), Lemmas 2.4 and
3.2, and the fact that {vk} → 0 to conclude that

‖P−1
k nk‖2

min{δv
k , δf

k}
≤

2πv
k

κ2
J
(vmax

k )
3
4

≤
2κubvk

κ2
J
(vk)

3
4

=
2κub

κ2
J

v
1
4

k ≤ κB for sufficiently large k ∈ S1.

However, this means that (2.21) holds for all sufficiently large k ∈ S1, contradicting our earlier
conclusion that it does not. This contradiction implies that this scenario cannot occur.

Scenario 2: Suppose that S2 = Sv ∩ T is infinite. Our goal is to show that for all sufficiently large
k ∈ S2, we have that all of the conditions of an f -iteration are satisfied, which is impossible since
S2 ⊆ V and V ∩ F = ∅. We begin by showing that (2.32) holds for all sufficiently large k ∈ S2.
Using (3.49), the triangle and Cauchy-Schwarz inequalities, Lemma 3.2, and the fact that {πv

k} → 0
(implying in turn that 2πv

k ≤ κ2
J

and thus, in view of (3.40), that ‖P−1
k nk‖2 ≤ 1 for all sufficiently

large k), it follows as in the proof of Lemma 3.22 (see (3.50)) that

|∆mf,n
k | ≤ κub(‖P

−1
k nk‖2 + 1

2‖P
−1
k nk‖

2
2) ≤

4κub

κ2
J

πv
k ≤

4κ2
ub

κ2
J

vk for all sufficiently large k ∈ S2.

(3.69)
It also follows from the facts that {vmax

k } → 0 and S2 ⊆ V along with Lemma 3.6 that k ∈ D for
all sufficiently large k ∈ S2. Moreover, since S2 ⊆ T , it follows that for all k ∈ S2 a tangential step
tk 6= 0 was computed to satisfy either (2.30) or (2.35). However, for all k ∈ S2, it follows from (2.49)
that nk 6= 0, and then from Lemma 2.1(xi) that k ∈ TD, i.e., that (2.30) holds. This implies by (2.59)

that δt
k = min{δv

k , δf
k} for sufficiently large k ∈ S2. It follows from this fact, the fact that k ∈ TD,

(2.30a), part (ii) of Lemma 3.3, (3.63), (3.68), the fact that {vmax

k } → 0, and Lemma 2.4 that

∆mf,t
k ≥ κctǫπ min

{

ǫπ, (1 − κB)δt
k, (1 − κfbt)κfbn

}

= κctǫπ min
{

ǫπ, (1 − κB)min{δv
k , δf

k}, (1 − κfbt)κfbn

}

≥ κctǫπ(1 − κB)(vmax

k )
3
4 ≥ κctǫπ(1 − κB)v

3
4

k for all sufficiently large k ∈ S2.

Combining this with (3.69) and the fact that {vk} → 0 shows that

|∆mf,n
k |

∆mf,t
k

≤
4κ2

ub
v

1
4

k

κctǫπ(1 − κB)κ2
J

≤ 1 − κδ for all sufficiently large k ∈ S2.

Hence, (2.32) holds for sufficiently large k ∈ S2, as desired. From here, it follows from Step 29 that
the computed tangential step is not reset to zero, i.e., k ∈ TD \ T0 for all sufficiently large k ∈ S2,
from which it follows that tk 6= 0 for all sufficiently large k ∈ S2. Moreover, since k ∈ Sv implies by
Lemma 2.4 that (2.37) holds, we have from the fact that S2 ⊆ Sv that (2.37) holds for all k ∈ S2.
To summarize, we have shown that for all sufficiently large k ∈ S2, all conditions of an f -iteration
are satisfied, which is a contradiction. Thus, this scenario cannot occur.

Overall, we have shown that under our supposition that |Sv| = ∞, neither Scenario 1 nor 2 may
occur. However, since one of the two must occur in order to have |Sv| = ∞, we have reached a
contradiction to our supposition, meaning that the result is proved. ¤

We conclude by summarizing our convergence results.

Theorem 3.28 The following hold for Algorithm 1:
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(i) If Assumptions 1.1, 2.1, and 3.1 hold, then either Algorithm 1 terminates finitely or there exists an
infinite subsequence K such that limk∈K min{vk, χv

k} = limk∈K πv
k = 0. In the latter case, any limit

point (x∗, s∗) of {(xk, sk)}k∈K satisfies πv(x∗, s∗) = 0 and is therefore a critical point of 1
2v(x, s)2

subject to s ≥ 0.

(ii) If Assumptions 1.1, 2.1, 3.1, and 3.2 hold, then either Algorithm 1 terminates finitely or there
exists an infinite subsequence K such that limk∈K min{vk, χv

k} = limk∈K πv
k = 0. In the latter case,

any limit point (x∗, s∗) of {(xk, sk)}k∈K satisfies v(x∗, s∗) = 0 so that (x∗, s∗) is feasible for (NPs).

(iii) If Assumptions 1.1, 2.1, 3.1, 3.2, and 3.3 hold, then either Algorithm 1 terminates finitely in Step 8
with an infeasible stationary point (xk, sk) with vk > κc or it terminates finitely in Step 19 or 34
with an approximate first-order KKT point (xk, sk, yk) for the barrier problem (1.1).

Proof. Part (i) follows from Lemmas 3.13 and 3.16, Assumption 1.1, and the criticality conditions
(3.28) for minimizing 1

2v(x, s)2 subject to s ≥ 0. Then, part (ii) follows from part (i) and Lemma 3.15.
Finally, it follows from Theorems 3.27 and 3.24 that Algorithm 1 terminates finitely. Thus, part (iii)
follows since, under Assumption 3.3, the algorithm does not converge to an infeasible stationary
point with vk ≤ κc. ¤

4 A Trust-Funnel Algorithm for Solving the Nonlinear Opti-

mization Problem

The previous section considers the global convergence properties of our new trust-funnel algorithm when
applied to the barrier subproblem (1.1). This section describes how a sequence of barrier subproblems
with decreasing values for the barrier parameter may be solved to find an approximate first-order KKT
point for problem (NP) (equivalently, problem (NPs)).

To achieve our stated goal, we require the constants ǫπ and ǫv in Algorithm 1 to depend on µ.
Moreover, for practical reasons, it is advisable to make other constants in Algorithm 1 depend on µ as
well. In the previous section, for ease of exposition, we did not explicitly state these dependencies since
µ was fixed. This does not pose a problem in this section since we use Algorithm 1 to solve a sequence
of barrier problems where for each particular instance the penalty parameter is fixed and therefore our
previous analysis still holds. A summary of the constants that depend on µ and precisely where they
are used is given in Table 4.1. In addition to requiring them to be positive, it is practical to have them
satisfy

lim
µ→0

ǫπ(µ) = lim
µ→0

ǫv(µ) = lim
µ→0

κfbn(µ) = lim
µ→0

κfbt(µ) = 0 and (4.1)

lim
µ→0

κy(µ) = lim
µ→0

κD(µ) = ∞. (4.2)

Moreover, the convergence result that we present in this section additionally assumes that

ǫπ(µj) ≤ ζ1µj and ǫv(µj) ≤ ζ2µj (4.3)

for some chosen constants ζ1 ∈ (0, 1) and ζ2 ∈ (0,∞), and that a particular choice for the positive-definite
matrix Dk defined in (2.20) is used. Specifically, for each 1 ≤ i ≤ m, we define

[dk]i := [Dk]ii :=

{

κD(µj) if µj [sk]−2
i > κD(µj),

µj [sk]−2
i otherwise.

(4.4)

Other choices are possible, e.g., based on the primal-dual update Dk = YkS−1
k , and only require a small

modification in the proof.
With these requirements, we may now state our algorithm for solving problem (NPs).
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Table 4.1: Parameters from Algorithm 1 that depend on the barrier parameter.

Parameter Used Parameter Used Parameter Used

κy = κy(µ) (2.19) κD = κD(µ) (2.20) ǫπ = ǫπ(µ) (2.26a)

κfbt = κfbt(µ) (2.30b)/(2.35b) κfbn = κfbn(µ) (2.5)/(2.11) ǫv = ǫv(µ) (2.26a)

Algorithm 2 Trust-funnel algorithm for solving (NPs).

1: Input: (x0, s0, y0, µ0) satisfying (s0, y0, µ0) > 0.
2: Choose a parameter γµ ∈ (0, 1) and any two forcing functions ǫπ(·) and ǫv(·).
3: Set (xstart

0 , sstart

0 , ystart

0 ) ← (x0, s0, y0) and j ← 0.
4: loop
5: Call Algorithm 1 with input (xstart

j , sstart

j , ystart

j , µj) and
(

ǫπ(µj), ǫv(µj)
)

to compute
(xj+1, sj+1, yj+1).

6: if Algorithm 1 terminated in Step 8 then
7: Return the infeasible stationary point (xj+1, sj+1).

8: Set µj+1 ∈ (0, γµµj ].
9: Use µj , µj+1, and (xj+1, sj+1, yj+1) to compute the next starting point (xstart

j+1 , sstart

j+1 , ystart

j+1 ).
10: Set j ← j + 1.

Theorem 4.1 If Assumptions 1.1, 2.1, 3.1, 3.2, and 3.3 hold, and both (4.3) and (4.4) hold, then either

(i) Algorithm 2 returns an infeasible stationary point in Step 7, or

(ii) there exists a limit point (x∗, s∗, y∗) of the iterates {(xj+1, sj+1, yj+1)} computed by Algorithm 2
such that (x∗, s∗, y∗) is a first-order KKT point for problem (NPs).

Proof. If statement (i) occurs, then there is nothing left to prove. Therefore, suppose that
statement (i) does not occur, in which case we have that Algorithm 1 never terminates in Step 8,
which by (2.26a) and (4.3) means that for all j ≥ 0 we have

πf
j+1(yj+1) ≤ ǫπ(µj) ≤ ζ1µj and vj+1 ≤ ǫv(µj) ≤ ζ2µj . (4.5)

In particular, we have that the sequence {(xj+1, sj+1, yj+1)} is infinite, and from the second part
of (4.5), the reverse triangle inequality, and Assumption 3.1, that {sj+1} is bounded. Combining
this fact with Assumption 3.1 implies the existence of an infinite index set J and a point (x∗, s∗)
with s∗ ≥ 0 such that

lim
j∈J

(xj+1, sj+1) = (x∗, s∗). (4.6)

It follows from this fact, (4.5), µj → 0, and Assumption 1.1 that

lim
j∈J

vj+1 = v(x∗, s∗) = 0. (4.7)

We comment that for the remainder of the proof, the quantities Pj+1, nj+1, etc. are used to represent
the final values of the relevant quantities computed in Algorithm 1 when it is called in line 5 during
iteration j of Algorithm 2; they are the complementary quantities to (xj+1, sj+1, yj+1).

It follows from norm inequalities, the definition of Pj+1, (3.40), (4.6), Assumption 1.1, and (4.5) that

∣

∣

∣

∣

[ns
j+1]i

[sj+1]i

∣

∣

∣

∣

≤ ‖S−1
j+1n

s
j+1‖∞ ≤ ‖S−1

j+1n
s
j+1‖2 ≤ ‖P−1

j+1nj+1‖2 ≤
2

κ2
J

πv
j+1 = O(vj+1) = O(µj) for j ∈ J .

Since we maintain positive slack vectors throughout Algorithm 1, we may then conclude that

|[ns
j+1]i| = O(µj [sj+1]i) for all 1 ≤ i ≤ m and j ∈ J . (4.8)
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We now develop a crucial bound by considering two cases motivated by the definition of Dk. First,
suppose that for a given i we have µj [sj+1]

−2
i ≤ κD(µj), so that from (4.4) we have [dj+1]i =

µj [sj+1]
−2
i . It then follows from this fact and (4.8) that

|[sj+1]i[dj+1]i[n
s
j+1]i| = O(µ2

j ) for j ∈ J .

Second, suppose that for a given i we have µj [sj+1]
−2
i > κD(µj), so that from (4.4) we have [dj+1]i =

κD(µj) < µj [sj+1]
−2
i , and thus [sj+1]

2
i [dj+1]i < µj . Combining this fact with (4.8) shows that

|[sj+1]i[dj+1]i[n
s
j+1]i| = O(µj [sj+1]

2
i [dj+1]i) = O(µ2

j ) for j ∈ J . (4.9)

Therefore, we have shown that (4.9) holds in both cases, i.e., (4.9) holds for all 1 ≤ i ≤ m and j ∈ J .
We may now use the same proof as for Lemma 3.18, combined with (4.7), (4.9), and the first part
of (4.5) to deduce that limj∈J yj+1 = y∗ for some y∗ satisfying g(x∗) + J(x∗)

Ty∗ = 0 and S∗y∗ = 0.
To prove that (x∗, s∗, y∗) is a first-order KKT point for problem (NPs), it only remains to prove that
y∗ ≥ 0, which we now proceed to do.

¿From the first part of (4.5), we know that

ζ1µj ≥

∥

∥

∥

∥

(

g(xj+1) + ∇xxL(xj+1, y
B

j+1)n
x
j+1 + J(xj+1)

Tyj+1

−µje + Sj+1Dj+1n
s
j+1 + Sj+1yj+1

)∥

∥

∥

∥

2

≥
∥

∥−µje + Sj+1Dj+1n
s
j+1 + Sj+1yj+1

∥

∥

2
≥

∥

∥−µje + Sj+1Dj+1n
s
j+1 + Sj+1yj+1

∥

∥

∞

≥ | − µj + [sj+1]i[dj+1]i[n
s
j+1]i + [sj+1]i[yj+1]i| for all 1 ≤ i ≤ m. (4.10)

We now consider two cases. First, suppose that i is such that [s∗]i > 0. In this case it follows from
(4.10), (4.9), the fact that µj → 0, and (4.6) that limj∈J [yj+1]i = [y∗]i = 0, as desired. Second,
suppose that i is such that [s∗]i = 0. It may be observed from (4.10) that

−ζ1µj ≤ −µj + [sj+1]i[dj+1]i[n
s
j+1]i + [sj+1]i[yj+1]i,

and hence that

[yj+1]i ≥
−ζ1µj + µj − [sj+1]i[dj+1]i[n

s
j+1]i

[sj+1]i
.

It follows from the previous inequality, the facts that ζ1 ∈ (0, 1) and µj → 0, (4.9), and the fact that
the slack vectors are maintained to be positive in Algorithm 1, that [yj+1]i > 0 for all sufficiently
large j ∈ J . Combining this with limj∈J yj+1 = y∗ shows that [y∗]i ≥ 0. ¤

5 Conclusion and discussion

In this paper, we have presented a new algorithm for solving constrained nonlinear optimization problems.
The algorithm is of the inexact barrier-SQP variety, i.e., it approximately solves a sequence of barrier
subproblems using an inexact SQP method. In Sections 2 and 3, we proved that each barrier subproblem
could be solved approximately using a new inexact-SQP method based on a trust-funnel mechanism (not
requiring a filter or penalty function). The algorithm is extremely flexible in that, during each iteration,
it automatically determines the types of steps and updates that are expected to be most productive,
where potential productivity is determined by available criticality measures. In each iteration, each
subproblem may be solved approximately using matrix-free iterative methods, which means that the
algorithm is viable for solving large-scale barrier subproblems. We then proved in Section 4 that an
approximate solution of the original nonlinear optimization problem may be obtained by approximately
solving a sequence of barrier subproblems for a decreasing sequence of barrier parameters.

Although we have not considered them explicitly in this paper, we remark that equality constraints,
call them cE(x) = 0, may easily be included in our algorithm. To do this, one may simply redefine

c(x, s) :=

(

c(x) + s
cE(x)

)
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and adjust the barrier problem (1.1), violation measure (2.1) and v-criticality measure (2.7) in obvious
ways. Clearly, two-sided bounds on inequality constraints may also be incorporated in a similar fashion.

We are currently implementing our new algorithm. Once complete, it will be part of the Galahad [19]
thread-safe library of Fortran 90 packages for the numerical solution of optimization problems.
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[6] F. E. Curtis, O. Schenk, and A. Wächter, An interior-point algorithm for large-scale nonlinear
optimization with inexact step computations, SIAM Journal on Scientific Computing, 32 (2010),
pp. 3447–3475.

[7] J. Czyzyk, R. Fourer, and S. Mehrotra, Using a massively parallel processor to solve large
sparse linear programs by an interior-point method, SIAM J. Sci. Comput., 19 (1998), pp. 553–565.

[8] R. Fletcher, Practical Methods of Optimization, Wiley-Interscience [John Wiley & Sons], New
York, 2001.

[9] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter, Global conver-
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