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Abstract

We consider an implementation of a recursive model-based active-set trust-region method for
solving bound-constrained nonlinear non-convex optimization problems without derivatives using the
technique of self-correcting geometry proposed in [24]. Considering an active-set method in model-
based optimization creates the opportunity of saving a substantial amount of function evaluations
when maintaining smaller interpolation sets while proceeding optimization in lower dimensional
subspaces. The resulting algorithm is shown to be numerically competitive.

Keywords: derivative-free optimization, bound constraints, nonlinear optimization, active-set meth-
ods, trust region, numerical experiments.

1 Introduction

Derivative-free optimization has enjoyed renewed interest over the past years, mostly motivated by the
ever growing need to solve optimization problems defined by functions whose values are computed by
simulation. Model-based methods have been pioneered by Powell [19] and several such methods for solv-
ing unconstrained optimization problems without derivatives (and associated software implementations)
are available today [19, 20, 7, 8, 22, 17] and have been shown to be numerically efficient [18]. Algorithms
of this type are discussed extensively in the recent book [10] by Conn, Scheinberg and Vicente.

Many of these methods construct local polynomial interpolation-based models of the objective func-
tion and compute steps by minimizing these models inside a region using the standard trust-region
methodology (see [6] for detailed information). The models are built to interpolate previously computed
function values at past iterates or at specially constructed points. For the model to be well-defined,
the interpolation points must be poised [9, 21], meaning that the geometry of this set of points has to
“cover the space” sufficiently well to stay safely away from degeneracy of the interpolation conditions.
To maintain a good poisedness of the set, geometry improving steps are included in many model-based
DFO algorithms, but their necessity has recently been questioned (see [13]) in that a simple method
not using them at all has shown surprisingly good performance. However, it was also shown in [24] that
convergence from arbitrary starting points may then be lost, but that a new algorithm can be designed to
substantially reduce the need of such geometry improving steps by exploiting a self-correcting property
of the interpolation set geometry.

The purpose of this paper is to describe a particular implementation of this algorithm (see Algorithm 1
on page 3 of this paper) in a bound-constrained setting, where bounds on the variables are handled by
an active set strategy.

The paper is organized as follows. We present the basic framework of our algorithm in Section 2. After
recalling elements of polynomial interpolation theory, we discuss algorithmic concepts in Section 3, while
Section 4 is concerned with practical implementation issues. Section 5 reports numerical experiments
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with the new algorithm and compares it to NEWUOA [22] and BOBYQA [23], two state-of-the-art
packages. We finally present some conclusions and perspectives in Section 6.

2 A recursive active-set trust-region DFO algorithm

We consider the bound-constrained optimization problem

min
x∈IRn f(x), (1)

subject to l ≤ x ≤ u,

where f is a nonlinear function from IRn into IR, which is bounded below, and where l and u are vectors
of (possibly infinite) lower and upper bounds on x. We denote the feasible domain of this problem by F .

Our approach uses an iterative trust-region method. At each iteration of such a method, a model of
the form

mk(xk + s) = f(xk) + gTk s+
1

2
sTHks (2)

(where gk and Hk are the model’s gradient and Hessian, respectively) is minimized inside a trust region

B∞(xk,∆k) = {x ∈ IRn | ‖x− xk‖∞ ≤ ∆k}, (3)

where ‖ · ‖∞ denotes the infinity norm.
This (possibly approximate) minimization yields a trial point xk + sk, which is accepted as the new

iterate if the ratio

ρk
def
=

f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
(4)

is larger than a constant η1 > 0. In this case, the model is updated and the trust-region radius is possibly
increased. If ρ ≤ η1, the trial point is rejected and the trust-region radius is decreased. Methods of this
type have long been considered for the solution of numerical optimization problems, and we refer the
reader to [6] for an extensive coverage of this topic.

In our context, the model (2) will be1 determined by interpolating known objective function’s values
at a given set Yk of interpolation points, meaning that

mk(y) = f(y) for all y ∈ Yk. (5)

The set Yk, known as the interpolation set, contains (in our case) at least n+ 1 points and is chosen as
a subset of Xk, the set of all points where the value of the objective function f is known. How to choose
this interpolation set is of course one of the main issues we have to address below, as not every set Yk is
suitable. We also propose to handle the bound constraints by an “active set” approach in the sense that
our method keeps track of all such constraints which are (nearly) active and then performs minimization
in the subspace of the remaining free variables.

An outline of the algorithm is given in Algorithm 1 on the following page. This outline is purposedly
schematic and many more of its details needs to be discussed. This discussion constitutes the body of
Section 3. At this stage, we only need to mention that the initial call is performed with S0 = IRn and
X0 = Z0 = {x0} (typically). It is also assumed that

∆ ≤ 1

2
min

i=1,...,n
(u(i)− l(i)) and l(i) + ∆ ≤ x0(i) ≤ u(i)−∆, (6)

where x(i) denotes the i-th component of the vector x. We finally note that the functions values associated
with Xk and Zk are considered implicitly.

3 Algorithmic details

We now need to make the steps of our algorithmic outline more precise, and discuss all the relevant
ingredients.

1Except for the case of “dummy points”, see Section 3.3 below.
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Algorithm 1 BC-DFO (S0,X0, x0,Z0,∆0, ǫ)

Step 0: Initialization. A trust-region radius ∆0 and an accuracy threshold ǫ are given. X0, the set
of all points, and a tentative interpolation set Z0, which contains the initial point x0, are also given.
Set k = 0.

Step 1: Ensure the suitability of Z0 and build the initial model.
Update Z0 to an interpolation set Y0 suitable for building an interpolation model with |Y0| ≥
dim(S0)+1. Then build the corresponding interpolation model m0.

Step 2: Possibly restrict minimization to a subspace Sk.
Step 2.1: Check for (nearly) active bounds.
Determine active and nearly active bounds, as well as the corresponding subspace Sk spanned by the
remaining free variables. If there is no active or nearly active bound or if Sk has already been explored,
go to Step 3.
Step 2.2: Project information on the subspace of free variables.
Project points in Xk which lie close to the (nearly) active bounds on Sk and associate with them
suitable function values estimates.
Step 2.3: Build a tentative interpolation set in the subspace.
Build a new tentative interpolation set Zk in Sk including the projected points, if any.
Step 2.4: Solve in Sk by a recursive call.
Call algorithm

BC-DFO(Sk,Xk, xk,Zk,∆k, ǫ),

yielding a solution x∗
S of the subspace problem.

Step 2.5: Return to the full space.
If dim(Sk)< n, return x∗

S . Otherwise, redefine xk = x∗
S , construct a new interpolation set Yk around

xk and build the corresponding model mk.

Step 3: Criticality test.
If ‖PF (xk−∇mk(x))−xk‖∞ ≤ ǫ (where PF is the projection onto F) and the model mk is sufficiently
accurate, return xk.

Step 4: Compute a trial point and evaluate the objective function.
Compute x+

k = xk + sk by applying a projected truncated conjugate gradient algorithm. Evaluate f
at x+

k and compute the ratio ρk from (4).

Step 5: Define the next iterate and update the trust-region radius.
Take a decision how to possibly incorporate the current trial point x+

k into the set Yk+1, define xk+1

and determine ∆k+1.

Step 6: Update the model.
If Yk+1 6= Yk, compute the interpolation model mk+1 around xk+1 using Yk+1. Update Xk+1 =
Xk ∪ {xk+1}. Increment k by one and go to Step 2.
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3.1 Polynomial interpolation and poisedness

The first question is to discuss when a model can be associated (numerically safely) to a given interpola-
tion set Y (we drop the subscript k in this description for clarity). In order to provide a formal answer,
we have to briefly recall some basic material about multivariate interpolation and Lagrange polynomials
(the reader is referred to [10] for further details and definitions). Consider Pd

n, the space of polynomials
of degree ≤ d in IRn. A polynomial basis φ = {φ1(x), φ2(x), ..., φp(x)} of Pd

n is a set of p polynomials
of degree ≤ d that span Pd

n. Well-known examples of such bases are the basis of monomials and bases
of Lagrange or Newton fundamental polynomials. For any basis φ, any polynomial m(x) ∈ Pd

n can be
written as

m(x) =

p
∑

j=1

αjφj(x),

where αj are real coefficients.
Given an interpolation set Y = {y1, y2, ...yp} ⊂ IRn and a polynomial m(x) of degree d in IRn that

interpolates f(x) at the points of Y, the coefficients α1, ..., αp can be determined by solving the linear
system

M(φ,Y)αφ = f(Y),

where

M(φ,Y) =











φ1(y
1) φ2(y

1) · · · φp(y
1)

φ1(y
2) φ2(y

2) · · · φp(y
2)

...
...

...
φ1(y

p) φ2(y
p) · · · φp(y

p)











, f(Y) =











f(y1)
f(y2)

...
f(yp)











. (7)

If the coefficient matrix M(φ,Y) of the system is nonsingular for some basis φ in Pd
n, the set of points

Y = {y1, y2, ...yp} is called poised for polynomial interpolation in IRn. If the interpolation set Y is
poised, the basis of Lagrange polynomials (see [10, page 39]) {ℓi(x)}pi=1 exists and is uniquely defined.
The unique polynomial m(x) which interpolates f(x) on Y using this basis of Lagrange polynomials can
be expressed as

m(x) =

p
∑

i=1

f(yi) ℓi(x). (8)

The quality of poisedness of Y can be measured using the following notion [10]. Let a set B ∈ IRn be
given and let φ be a basis in Pd

n. A poised set Y = {y1, y2, ..., yp} is said to be Λ-poised in B for some
Λ > 0 if and only if for the basis of Lagrange polynomials associated with Y

Λ ≥ max
1≤i≤p

max
x∈B

|ℓi(x)|.

This upper bound on the absolute value of the Lagrange polynomials in a region B can be interpreted as
a measure of the distance to a nonpoised set or equivalently to a singular system matrix [10, page 49].
Importantly for our purposes, Lagrange polynomial values and Λ-poisedness are also used to bound the
model function and model gradient accuracy: given the sphere

B2(x,∆)
def
= {v ∈ IRn | ‖v − x‖2 ≤ √

n∆},

a poised interpolation set Y ∈ B2(x,∆) and its associated basis of Lagrange polynomials {ℓi(x)}pi=1,
there exists constants κef > 0 and κeg > 0 such that, for any interpolation polynomial m(x) of degree
one or higher of the form (8) and any point y ∈ B2(x,∆),

|f(y)−m(y)| ≤ κef

p
∑

i=1

‖yi − y‖22|ℓi(y)| (9)

and
‖∇xf(y)−∇xm(y)‖2 ≤ κegΛ∆, (10)

where
Λ = max

i=1,...,p
max

x∈B2(x,∆)
|ℓi(x)| (11)
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(see [4]). From a practical point of view, it is often important to compute the global maximum in (11)
relatively accurately, which can be done using the Hebden-Moré-Sorensen algorithm (see [6], Section 7.3)
in the Euclidean norm and motivates our choice of B2(x,∆). Note that our definition of this last
neighbourhood guarantees that B∞(x,∆) ⊂ B2(x,∆), and the error bounds (9)-(10) therefore hold in
B∞(x,∆).

An alternative measure of poisedness may be derived, albeit indirectly, from the matrix M(φ,Y).
First note that the condition number of this matrix is in general not a satisfactory measure of poisedness
of Y since it can be made arbitrarily large by changing the basis φ and scaling Y. However, [10] have
shown that a relation between the condition number of M̂ = M(φ̄, Ŷ) and the measure of Λ-poisedness
can be established when considering the basis of monomials φ̄ and Ŷ, a shifted and scaled version of Y.
This new matrix is computed as follows. Given a sample set Y = {y1, y2, ..., yp}, a shift of coordinates
is first performed to center the interpolation set Y at the origin, giving {0, y2 − y1, ..., yp − y1}, where
y1 denotes the current best iterate which is usually the center of the interpolation. The region B is then
fixed to be B2(0,∆(Y)) and the radius

∆ = ∆(Y) = max
2≤i≤p

‖yi − y1‖2

is used to scale the set, yielding

Ŷ = {0, ŷ2, ..., ŷp} = {0, (y2 − y1)/∆, ..., (yp − y1)/∆}.

The resulting scaled interpolation set Ŷ is then contained in a ball of radius one centered at the origin.
The following result is then derived in [10, page 51].

Theorem 3.1 If M̂ is nonsingular and ‖M̂−1‖2 ≤ Λ, then the set Ŷ is
√
pΛ-poised in the unit ball

B(0, 1) centered at 0. Conversely, if the set Ŷ is Λ-poised in the unit ball B(0, 1) centered at 0, then

κ(M̂) = ‖M̂‖2‖M̂−1‖2 ≤ θp2Λ, (12)

where θ > 0 is dependent on n and d, but independent of Ŷ and Λ.

This means that this condition number of M(φ̄, Ŷ) can also be used to monitor poisedness of the
interpolation set without computing Lagrange polynomials and Λ. Conversely, we can conclude that if
the set Ŷ is reasonably well-poised, then there is virtually no risk of numerical difficulties when using
M(φ̄, Ŷ).

One may then wonder which measure of poisedness is more appropriate. In our experience, both have
their advantages. The measure in terms of the Lagrange polynomials is more convenient for estimating
the (crucial) accuracy of the model’s gradient near convergence (see Section 4.3), while the condition
number of M̂ is cheaper to compute and suitable for the update of interpolation sets (see Section 3.2).

If we now consider using interpolation models in the framework of a trust-region method for op-
timization, we observe that interpolation models of varying degree are possible and indeed desirable
in the course of the complete minimization. In early stages, a more economical linear model (using
p = n + 1 function values) is often sufficient while faster progress to a close solution may be achieved
with quadratic ones (which uses p = 1

2 (n + 1)(n + 2) values). It is then natural to consider models
evolving from linear to fully quadratic as minimization progresses. In our algorithm, models become
progressively “more quadratic” by considering banded matrices Hk with increasing semi-bandwidth.
The number of interpolation conditions p that are imposed on a model m(x) therefore varies in the
interval [n+ 1, 1

2 (n+ 1)(n+ 2)]. Note that this “expanding band” strategy is particularly efficient if the
true Hessian of the objective function is itself banded.

3.2 Ensuring suitability of a tentative interpolation set

At the start (in Step 1) of our algorithm, we are given a tentative interpolation set Z0 and have to build
an interpolation model using this set as much as possible. As is clear from the previous subsection, using
the whole of Z0 is only possible if this set is suitable in the sense that it is (sufficiently well) poised. We
now describe the procedure used in our algorithm to verify this condition and/or to modify Z0 to form
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Y0 if necessary. This procedure distinguishes two cases, depending whether or not Z0 contains more
than a single point.

If |Z0| = 1, our objective is then to build a poised interpolation set Y0 containing {x0} = Z0 and
contained in the initial trust region B(x0,∆0). This is achieved by choosing the interpolation points at
the vertices of an n-dimensional simplex, as given by the formula

yi+1 = x0 ±∆0ei, i = 1, 2, ..., n

where ei is the i-th coordinate vector in IRn and the sign is negative for the initial computation of an
interpolation set but, in an attempt to diversify the set of interpolation points, alternates whenever
applied again during the calculation.

If |Z0| > 1, an obvious choice would be to search first for the set Y0 ⊆ Z0 of size p ≤ n+ 1 for which
the condition number of the shifted and scaled system matrix M(φ̄, Ŷ0) is the smallest out of all matrices
associated with subsets of Z0 consisting of at most min (n+ 1, |Z0|) points. However, this procedure is
quite costly due to its combinatorial nature, and we have decided to use a cheaper technique adapted
from [1].

Suppose that there exists a subset of points Wp = {x1, x2, ..., xp} in Z0 spanning a p-dimensional
linear manifold L. Our selection problem in Z0 can be seen as an optimal basis problem in Wp where we
have to find p vectors out of Z0 (of the form xi−xj) which are as linearly independent as possible. This
problem can be formalized by regarding the points in Wp as nodes of a graph and the vectors xi − xj as
edges eij in this graph. It can then be shown that any set of p linearly independent vectors of the form
xi − xj that generate L corresponds to a tree spanning all nodes of Wp, and conversely. In addition,
Burdakov shows that the optimal basis problem can be reduced to finding the spanning tree t which
minimizes the functional

φ(t) =
∑

eij∈t

‖xi − xj‖2. (13)

This author proposes in [2] a greedy algorithm for the solution of this minimization problem, in which
the measure of linear independence given by Γ({x1, ..., xp}) = det(ATA) is exploited, where

A =

[

x1 − x2

‖x1 − x2‖2
, · · · , xp−1 − xp

‖xp−1 − xp‖2

]

∈ Rn×p−1.

It can be shown that Γ is a scaling invariant measure of linear independence of the columns of A and
thus also measures the general position of {x1, ..., xp}. It is always included in the interval [0, 1] and
takes the value 0 and 1 for linearly dependent or orthogonal columns, respectively. For a given threshold
κth ∈ (0, 1), we thus consider as sufficiently well-poised those sets of points, for which Γ({x1, ..., xp}) ≥
κth. It also turns out that Γ({x1, ..., xp}) can be updated to Γ({x1, ..., xp, xp+1}) by a simple algebraic
formula, thereby avoiding the repetitive computation of determinants.

As we do not know a subset of Z0 containing points in general position and not even the final number
p of linearly independent points in Wp, a modified version of Burdakov’s greedy algorithm is proposed.
In our version, the desired set is built incrementally in a sequence W1, . . . , Wp, where Wp is chosen
over all sets of the form Wp−1 ∪ {y} for y ∈ Z0 \ Wp−1 \ Tk, where Tk contains the points which were
tried but couldn’t be included in Wp while keeping Γ sufficiently large. The algorithm is formalized as
Algorithm 2 on the next page.

Note that p, the number of points selected from Z0 may be smaller than n+1. In this case, we propose
to complete Wp by n+1−|Wp| points selected randomly in the trust region to form the final interpolation
set Y0. To ensure a good geometry of Y0, these random points {yp+1, ..., yn+1} are then successively
improved using the observation that replacing an interpolation point by the maximum of its associated
Lagrange polynomial in the trust region ameliorates poisedness of the interpolation set (see [24], for
instance). More precisely, for each j = p + 1, . . . , n + 1, the absolute value of the Lagrange polynomial
ℓj(x) associated with yj is maximized inside B(xk,∆k) and yj is then replaced by the computed maximizer
ỹj . This finally yields the “optimized” interpolation set Y0 = Wp ∪ {ỹp+1} ∪ . . . ∪ {ỹn+1}.

3.3 Recursive call in the subspace Sk

As we have mentioned above, our algorithm is of the active-set type and proceeds by exploring the
subspace Sk defined by fixing active or nearly active variables at their bound. This choice is intended
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Algorithm 2 Modified greedy algorithm for selecting a well-poised interpolation set (Inputs: x0,Z0,
Outputs: Wp, p)

Step 1: Compute distances ‖xi − xj‖2 for i, j = 1, ..., |Z0|.
Step 2: Define p = 1, W1 = {x0} and T0 = ∅. Set Γ(W1) = 1 and k = 0.
while (p < n+ 1) and (k < |Z0|) do
Step 3: Find xi ∈ Wp and xj ∈ Z0 \ (Wp ∪ Tk), such that ‖xi − xj‖2 is minimal.
Step 4: Compute the measure of degeneracy

Γ(Wp ∪ {xj}) = Γ(Wp)
‖xj

⊥‖22
‖xj − xi‖22

where xj
⊥ = xj −Ppx

j , and Pp is the orthogonal projector on the linear manifold spanned by {xi}p1.
Step 5: If Γ(Wp ∪ {xj}) ≥ κth, then set Wp+1 = Wp ∪ {xj}, Tk+1 = Tk, and increment p by one,
else Tk+1 = Tk ∪ {xj}.
Step 6: Increment k by one.

end while

to prevent the interpolation set from degenerating as would happen when points belonging to such a
subspace are included in Y. This section is devoted to the description of the mechanism for selecting
(nearly) active bounds and then restarting the minimization in the associated subspace.

The lower und upper (nearly) active bounds at the current iterate xk are defined, at iteration k, by
those whose index is in one of the sets

Lk = { i | xk(i)−∇mk(i) < l(i) and xk(i)− l(i) ≤ ǫb},
Uk = { i | xk(i)−∇mk(i) > u(i) and u(i)− xk(i) ≤ ǫb},

where i = 1, ..., n and ǫb = min{ǫ, |PSk
[(∇mk)(i)]|}, the minimum of the required accuracy for ter-

mination ǫ and the absolute value of the appropriate model gradient component projected onto Sk.
Considering the combined measure ǫb on the bounds l and u indeed enables us to define not only cur-
rently active bounds but also “nearly-active” bounds which are presumed to become active in the next
local minimization problem. If the set Lk ∪ Uk is non-empty, the minimization is then restricted to the
affine subspace

Sk = {x ∈ F | xk(i) = l(i) for i ∈ Lk and xk(i) = u(i) for i ∈ Uk},

and the number of free variables consequently reduces to nfree = n− |Lk ∪ Uk|.
To pursue minimization in Sk, a new linear model has to be built to initiate the computation of the

first step, and the interpolation set for this model must consist of points lying exactly in this subspace.
In an attempt to use all the available information when entering the subspace, all points of Xk lying
inside a ±ǫb-region of the active bounds are projected on Sk. To save function evaluations, function
values corresponding to these projected points are not recomputed but replaced by the relevant current
values, giving rise to points with approximate function values that we call “dummy” points. Specifically,
we define

Ak = {y ∈ Xk | 0 < |y(i)− l(i)| ≤ ǫb, ∀i ∈ Lk and 0 < |u(i)− y(i)| ≤ ǫb, ∀i ∈ Uk},

the set of points that are close to the active bounds (but not on these). All points y ∈ Ak are then
projected on Sk, yielding ys = PSk

(y), and these “dummy” points {ys} are added to Xk with associated
function values given by {mk(ys)}. An exception is made when the current best point xk belongs to Ak

and is thus projected onto Sk: the objective function is then evaluated at the projected point PSk
(xk),

rather than mk. If the new function value is such that the projected point is not the current best point,
we refrain from further exploring the subspace Sk, otherwise the current best point consequently changes
to the projected point in Sk.

The technique described above in Section 3.2 is then used to select a well-poised interpolation set
Y0 in Zk = Xk ∩ Sk. The algorithm then proceeds by recursively calling itself in the subspace Sk, as
indicated in Step 2.4 of Algorithm 1.
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While minimizing in Sk, dummy points are successively replaced by real points with high priority
(see Section 3.5 below). Moreover, we ensure that there is no dummy point in the interpolation set at a
potential subspace solution: if the interpolation set still contains dummy points at this stage, the true
function values are computed to ensure that convergence in Sk is solely based on real function values.

Once the algorithm has converged to an approximate solution of the problem restricted to Sk, it must
be verified whether it is also an approximate solution for the full-dimensional problem (after adding the
fixed components). Therefore, a safely nondegenerate full-space interpolation set of degree n + 1 in an
ǫ-neighbourhood around the suspected solution x∗ is constructed following the technique described in
Section 3.2. After computing the associated model, its gradient is checked for convergence. If convergence
can not be declared the minimization is then restarted in IRn.

3.4 Local solver

To minimize the interpolation model mk inside the intersection of the trust region and the bounds at
each iteration, a simple projected truncated conjugate-gradient algorithm is used, as in the LANCELOT

package [5]. As is standard for such techniques, the set of active bounds is never reduced and a piecewise
linesearch is performed on the path defined by the projection of the current search direction onto the
feasible set F if a new bound is hit in the course of the conjugate-gradient calculation. The computation
is also stopped as soon as the iterates leave the trust region.

3.5 Defining the next iterate

At each iteration of a classical trust-region method, a new trial point x+
k is computed by minimizing

the interpolation model mk inside the trust-region ∆k. The point x+
k is accepted to be the new iterate

xk+1 if the ratio ρ between achieved and predicted reduction (4) exceeds a constant η1. In this case, the
iteration is declared successful. Otherwise, the iteration is unsuccessful. Following [24], we note that an
unsuccessful iteration can either result from a too large trust region or from a badly poised Yk. For this
reason, we always try first to improve the geometry by replacing an appropriate point from the set and
only if we cannot find such a point, is the trust-region radius decreased. We now describe the details of
this replacement/updating procedure (Step 5 of Algorithm 1).

The first step (after unsetting the illcond flag if necessary) is to check whether the current model
degree is already quadratic. If this is not the case, the size of the interpolation set is augmented by the
new trial point when possible, i.e. when appending the trial point doesn’t deteriorate the poisedness of
Yk too much. This verified by checking that κ(M̂), the condition of the system matrix after appending
the trial point, does not exceed a certain threshold κillcond. If this threshold is exceeded, the trial is not
added to Yk and the flag illcond is set. If the iteration is successful, we also have to update the current
best iterate and thus the center of the interpolation set.

When the model is either quadratic or it is not yet quadratic but the flag illcond is set, we try
to replace the dummy points in the current interpolation set to avoid keeping approximate information
in the model for too long. If there are any dummy points in the current interpolation set for which
ℓk,j(x

+
k ), the value of the associated Lagrange polynomial evaluated at the trial point, is nonzero, the

dummy point for which this last value is largest in absolute value is replaced by x+
k . If the current

iteration is successful, we update the iterate by xk+1 = x+
k and the trust-region radius by

∆k+1 = min(max(γ3‖sk‖∞,∆k),∆max). (14)

Otherwise we define xk+1 = xk and keep ∆k+1 = ∆k.
If the trial point could not yet be included in the interpolation set, we apply the strategy described

by Scheinberg and Toint in [24, Algorithm 2] for the unconstrained case, which we now recall. If the
iteration is successful, we define, as above, xk+1 = x+

k and update the radius by (14). In the interpolation
set, one point yk,r is then replaced by the trial point Yk+1 = Yk \ {yk,r} ∪ {x+

k } for

yk,r = arg max
yk,j∈Yk

‖yk,j − x+
k ‖22|ℓk,j(x+

k )|.

In the unsuccessful case, i.e. when ρ < η1, we still attempt to include the trial point in the interpolation
set to improve its geometry. To do so, a point from Yk \ {xk} has to be replaced by x+

k and we first
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attempt to replace a far interpolation point. If the set

Fk
def
= {yk,j ∈ Yk | ‖yk,j − xk‖∞ > β∆k and ℓk,j(x

+
k ) 6= 0} (15)

is non-empty, where β ≥ 1, then we set xk+1 = xk, ∆k+1 = ∆k and define the new interpolation set by
Yk+1 = Yk \ {yk,r} ∪ {x+

k } where r is an index of any point in Fk, for instance such that

yk,r = arg max
yk,j∈Fk

‖yk,j − x+
k ‖22|ℓk,j(x+

k )|

or
yk,r = arg max

yk,j∈Fk

‖yk,j − x+
k ‖22. (16)

If the set Fk is empty and the set

Ck def
= {yk,j ∈ Yk \ {xk} such that ‖yk,j − xk‖∞ ≤ β∆k and ℓk,j(x

+
k ) > ΛC} (17)

is non-empty, where ΛC > 1 is defined by the user, we then set xk+1 = xk,∆k+1 = ∆k and define the
new interpolation set Yk+1 = Yk \ {yk,r} ∪ {x+

k } where r is the index of any point in Ck, for instance
such that

yk,r = arg max
yk,j∈Ck

‖yk,j − x+
k ‖22|ℓk,j(x+

k )|
or

yk,r = arg max
yk,j∈Ck

|ℓk,j(x+
k )|. (18)

(The current default in our algorithm, based on our numerical experience, is to choose (16) and (18).)
If the trial point could finally not be included into the interpolation set under the above conditions,

it implies that the interpolation set must be reasonably poised, as otherwise we could have improved
it. As a consequence, we set xk+1 = xk, Yk+1 = Yk and reduce the trust-region radius such that
∆k+1 ∈ [γ1∆k, γ2∆k], where 0 < γ1 ≤ γ2 < 1. In practice, interpolation is used to define the new
trust-region radius as described in [5, page 116].

3.6 Re-entering a subspace

We have stated in Step 2.1 of Algorithm 1 that we never re-enter a subspace Sk which has already been
explored. We now justify that feature.

Suppose that convergence is declared in Sk and that a new model of the required degree—the default
is linear—is built at x∗ in IRn. Assume also that x∗ is an acceptable solution of the full-space problem.
It may then happen that the model gradient ∇mk(x

∗) is too large to declare convergence in IRn, because
mk is not a sufficiently accurate model even if the interpolation set is well poised. Since convergence
is not detected, the algorithm has to proceed, re-enter the subspace it just left and thus loop without
progressing. We now show that this can only happen if the trust-region radius is too large, in which case
reducing it is the appropriate strategy. Indeed, we know (Theorem 2.11, p. 29, in [10]) that, for linear
models,

‖∇xf(y)−∇xm(y)‖2 ≤ κeg∆, (19)

where κeg is given by

κeg = ν(1 + n
1

2 ‖L̂−1‖2/2), (20)

with L̂ = L
∆ = 1

∆ [y2 − y1, ..., yn − y1] and ∇f is Lipschitz continuous with constant ν > 0. As a
consequence, a big difference between ∇mk and ∇f can only occur either because the Lipschitz constant
or the trust region radius are too large. As the size of Lipschitz constant is beyond our control, reducing
∆k must solve the problem because (19) implies that the model gradient will converge to the true one
and either convergence will be declared or the algorithm may proceed with a more accurate model.

4 Practical implementation issues

The description of our algorithm in the previous chapter leaves a number of practical questions open. In
this section, we briefly report some further details about the particular implementation of the algorithm
whose numerical performance is reported in Section 5 of this paper.
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4.1 Representation of the Lagrange polynomials

As Y varies, the code maintains a QR factorization

M(φ,Y)T = QYRY

of the matrix of the system (7) (or of its shifted version M̂ if appropriate), where the basis φ is that of
the monomials. If the vector ℓi contains the coefficients of the Lagrange polynomial ℓi(x) associated to
Y, their definition implies that they have to satisfy M(φ,Y)ℓi = ei and hence may be retrieved from the
formula ℓi = QYR

−T
Y ei.

4.2 Handling fixed variables

In practice, it is often very convenient for users of an optimization package, to be able to fix the value of
certain variables. Hence, we have that

l(i) = x0(i) = u(i).

In order to handle such a case, we check for variables where u(i) − l(i) = 0. The corresponding indices
i together with their fixed values x0(i) are then stored in a vector for use when evaluating the objec-
tive function throughout the calculation, but the associated variables are otherwise excluded from the
minimization process.

4.3 Model gradient as stopping criterion

As indicated above, the model gradient ∇xmk(x) is used to check convergence to a first-order critical
point, in the sense that we verify the inequality

‖PF (xk −∇mk(xk))− xk‖∞ ≤ ǫ, (21)

which [15] have shown to correspond to a suitable measure of backward error for bound-constrained
problems. Moreover, we have, that

‖PF (xk −∇f(xk))− xk‖∞
= ‖PF (xk −∇f(xk)−∇mk(xk) +∇mk(xk))− xk‖∞
≤ ‖PF (xk −∇mk(xk))− xk‖∞ + ‖∇mk(xk)−∇f(xk)‖∞
≤ ‖PF (xk −∇mk(xk))− xk‖∞ + ‖∇mk(xk)−∇f(xk)‖2,

and, using (19), we deduce that the left-hand side of this inequality can be made small if (21) holds and
∆k is sufficiently small. In practice, we require the interpolation points yi, i = 1, ..., p used to build mk(x)
to be contained in the ball B(xk, ǫ) and Yk is poised enough to ensure κegΛ∆k ≤ ǫ for some user-defined
constant κeg > 0.

5 Numerical experiments

The algorithm described has been implemented in the BC-DFO Matlab code and all numerical ex-
periments reported below were run on a single processor workstation. As the time to compute the
objective function values in derivative-free optimization typically dominates other costs of the algorithm,
our results will be presented in terms of number of function evaluations. In what follows, BC-DFO is
compared with the excellent packages NEWUOA [22] and BOBYQA [23] developed by M.J.D. Powell,
where BOBYQA is able to handle bound constraints and NEWUOA supersedes BOBYQA in solving
unconstrained problems.
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5.1 Default parameters

In BC-DFO, we fixed the trust-region parameters to η1 = 0.0001, η2 = 0.9, γ1 = 0.01, γ2 = 0.5 and
γ3 = 1.5. The initial trust-region radius ∆0 is set to 1, as suggested in Section 17.2 of [6]. To build
a sufficiently well-poised set in the modified greedy algorithm, we set the threshold κth = 0.005. After
appending a point to an incomplete interpolation set, we check the condition of the shifted and scaled
system matrix κ(M̂) to be smaller than κillcond = 1015. To divide the interpolation set into far and
close points when incorporating the new trial point, we set β = 1. When replacing a close interpolation
point, we use the parameter ΛC = 1.2 to ensure an improvement of the interpolation set geometry. For
declaring convergence, the desired accuracy on the projected gradient norm is set to ǫ = 10−5 and the
parameter of the tolerated error on the gradient is set to κeg = 0.1.

We always used the default parameters for the codes NEWUOA and BOBYQA. We run BOBYQA
with a number of m = 2n + 1 interpolation points using the Frobenius norm approach and NEWUOA
with a full quadratic model, as these two options give the best results for these solvers, out of the choice
m ∈ [n+ 1, 2n+ 1, 1

2 (n+ 1)(n+ 2)].

5.2 Test problems

The CUTEr test environment (see [14]) is used in our experiments. To compare BC-DFO and NEWUOA
on unconstrained problems, we chose to use the test problems from the CUTEr test collection which
were selected in [13]. Two problems2 were excluded from the test set because they contain fixed variables
and NEWUOA does not provide facilities to handle such cases and one listed problem3 contains bounds.
After running all problems in this test set, three problems4 were removed because the solvers converged
to different solutions, making a comparison meaningless. A total of 54 unconstrained problems were thus
considered.

For the bound-constrained case, we took all bound-constrained problems provided by the CUTEr
collection with a size of at most 30 variables. We could not consider problems containing fixed variables
because BOBYQA, as NEWUOA, does not provide the required facilities. Furthermore, in order to avoid
too many problems of the same kind, we chose randomly four of the 26 bound-constrained PALMER
problems provided. After running BC-DFO and BOBYQA on these 53 remaining problems, six of them5

had to be excluded from our comparison because the two algorithms converged to different solutions,
giving a final test set of 47 bound-constrained problems.

The detailed list of all considered bound-constrained problems and their characteristics is provided
in Table 1 in the Appendix of this paper.

5.3 A common stopping criterion

As BOBYQA and NEWUOA use different stopping criteria from those of BC-DFO, an independent
criterion needs to be applied for the comparison. For this reason, we use the optimal objective function
value computed by the TRON package [16] (using first and second derivatives) as a reference for our
bound-constrained experiments. In the experiments with unconstrained problems we take the optimal
objective function value computed by the KNITRO package [3] used in the paper of Fasano, Morales and
Nocedal [13]6. We take the number of function evaluations needed until a prescribed number of correct
significant figures in the objective value was attained.

To provide a fair comparison, we followed the testing framework proposed by Dolan, Moré, and
Munson in [12]. In this framework, the solvers are run first with their own default stopping criterion. If,
for a given problem, convergence of one of the solvers to the common stopping criterion can’t be declared
with this configuration, the stopping criterion for this solver is strenghtened and the run repeated using
the more stringent criterion. For a few test problems, BOBYQA and NEWUOA were run several times
while decreasing its own stopping criterion (namely ρend) after each run, trying to attain the commonly
required accuracy in the objective function value. This procedure was a successful for a subset of the

2BIGGS3, BOX2
3CHEBYQAD
4ENGVAL2, HATFLDD, HATFLDE
5EG1, EXPLIN, HART6, KOEBHELB, MAXLIKA, WEEDS
6Unfortunately, we could not conduct a detailed comparison of our results with the method proposed by these authors.
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problems, for others the limit of function evaluations (15000) was reached or, in some cases, NEWUOA
reported failure to reduce the model in a trust region step. No time limitation was set.

5.4 Performance of BC-DFO

We now report our results using performance profiles (see [11]). Such profiles compare the number of
function evaluations needed by each solver to achieve the desired accuracy in the objective function value.
We use four different levels of accuracy: 2, 4, 6 and 8 significant figures in f(x∗).
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Figure 1: Experiments on a bound-constrained subset of CUTEr

The profiles reported in Figures 1(a)-1(d) show that BC-DFO compares well with BOBYQA in the
bound-constrained experiments. For low accuracy (in Figure 1(a)), BOBYQA manages to solve 44 of
the 47 test problems including PALMER3E which it couldn’t solve in 15000 function evaluations to a
more accurate level. BC-DFO fails to solve two test problems in all four cases. The overall conclusion is
that both solvers are equally robust, but that BC-DFO’s dominance increases with the desired level of
accuracy. For the case where 2 correct significant figures are required, BC-DFO solves 60% of the test
cases faster than BOBYQA and BOBYQA solves 42 % of the problems faster. For 8 correct significant
figures, BC-DFO solves 66% of the test cases faster, and BOBYQA solves 36 % of the problems faster.
The performance of both codes does not vary significantly between requiring 4 or 6 correct significant
figures.

In the six cases where BOBYQA and BC-DFO converged to different critical points, BC-DFO con-
verged to a lower optimal value than BOBYQA in three cases and BOBYQA found a lower function
value in three cases. This is due to the existence of multiple minima, but also to the fact that BC-DFO
sometimes checks convergence in the full-space without taking second order information into account
(after converging inside a subspace). This creates the possibility to declare convergence at a saddle point
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which is a minimum in the explored subspace. This is a slight disadvantage of our current implemen-
tation and can be circumvented (at some cost) by requiring that a full quadratic model is built before
declaring termination.
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Figure 2: Experiments on an unconstrained subset of CUTEr

The conclusions are different for unconstrained problems. As Figure 2 shows, BC-DFO appears to
be more robust but less efficient than NEWUOA, irrespective of the accuracy required. For instance,
NEWUOA solves 52 % of the problems faster and BC-DFO solves 46 % of the test cases faster, when 6
digits of accuracy are requested.

Tables 3 and 4 in the appendix contain the detailed results for each code and each problem for the
various accuracy levels.

6 Concluding remarks

We have presented an implementation of an active-set trust-region method for bound-constrained opti-
mization without derivatives which uses the self-correction mechanism presented by [24]. The numerical
experiments reported suggest that such an algorithm may prove to be both efficient and reliable.

Continued development of the BC-DFO code is expected. In particular, developments making use
of the structure of the model’s Hessian or extending the methodology to larger problem classes are
considered.
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A Test problems

Table 1 depicts the bound-constrained test problems taken from the CUTEr testing environment for
running our numerical experiments. It shows the name and dimension of the problem and gives specific
details on the number of free variables, the number of variables which are bounded from below, those
which are bounded from above and the number of variables which are bounded from below and above.

name n free vars lbound ubound l+ubound f∗

3PK 30 30 1.72011856739612E+00
BIGGSB1 25 1 24 1.50000000000000E-02
BQP1VAR 1 1 0.00000000000000E+00
CAMEL6 2 2 -1.03162845348988E+00
CHARDIS0 18 18 3.95170009709151E-27
CHEBYQAD 4 4 2.56057805386809E-22
CHENHARK 10 10 -2.00000000000000E+00
CVXBQP1 10 10 2.47500000000000E+00
EXPLIN2 12 13 -7.09247239439664E+03
EXPQUAD 12 6 6 -4.20107186489211E+03
HARKERP2 10 10 -5.00000000000000E-01
HATFLDA 4 4 1.61711062151584E-25
HATFLDB 4 3 1 5.57280900008425E-03
HATFLDC 25 1 24 3.43494690036517E-27
HIMMELP1 2 2 -6.205393553382574E+01
HS1 2 1 1 7.13660798093435E-24
HS110 10 10 -4.57784755318868E+01
HS2 2 1 1 4.94122931798918E+00
HS25 3 3 1.81845940377455E-16
HS3 2 1 1 1.97215226305253E-36
HS38 4 4 2.02675622883580E-28
HS3MOD 2 1 1 0.00000000000000E+00
HS4 2 2 2.66666666400000E+00
HS45 5 5 1.00000000040000E+00
HS5 2 2 -1.91322295498104E+00
LINVERSE 19 9 10 6.00000000022758E+00
LOGROS 2 2 0.00000000000000E+00
MCCORMCK 10 10 -9.59800619474625E+00
MDHOLE 2 1 1 7.52316384526264E-35
NCVXBQP1 10 10 -2.20500000000000E+04
NCVXBQP2 10 10 -1.43818650000000E+04
NCVXBQP3 10 10 -1.19578050000000E+04
NONSCOMP 25 25 4.42431972353647E-14
OSLBQP 8 5 6.25000000000000E+00
PALMER1A 6 4 2 8.98830583652624E-02
PALMER2B 4 2 2 6.23266904205002E-01
PALMER3E 8 7 1 1.38380645324899e-01
PALMER4 4 1 3 2.28538322742966E+03
PALMER4A 6 4 2 4.06061409159725E-02
PROBPENL 10 10 -2.11912948080046E+05
PSPDOC 4 3 1 2.41421356237309E+00
QUDLIN 12 12 -7.20000000000000E+03
S368 8 8 -9.37500000000000E-01
SIMBQP 2 1 1 0.00000000000000E+00
SINEALI 4 4 -2.83870492243045E+02
SPECAN 9 9 1.64565541040970E-13
YFIT 3 2 1 6.66972055747565E-13

Table 1: Bound-constrained CUTEr test problems



Cartis, Gould, Toint: Complexity of steepest descent, Newton’s and ARC methods 17

name n f∗

ALLINITU 4 5.74438491032034E+00
ARGLINB 10 4.63414634146338E+00
ARGLINC 10 6.13513513513513E+00
ARWHEAD 16 5.32907051820075E-15
BARD 3 8.21487730657899E-3
BDQRTIC 10 1.82811617535935E+01
BEALE 2 1.03537993810258E-30
BIGGS6 6 5.49981608181981E-16
BOX3 3 1.85236429640516E-20
BRKMCC 2 1.69042679196450E-1
BROWNAL 10 1.49563496755546E-16
BROWNDEN 4 8.58222016263563E+04
CHNROSNB 10 1.21589148855346E-19
CRAGGLVY 10 1.88656589666311E+00
CUBE 2 5.37959996529976E-25
DENSCHND 3 2.15818302178292E-4
DENSCHNE 3 1.29096866601748e-18
DENSCHNF 2 6.51324621983021E-22
DIXMAANC 15 1.00000000000000E+00
DIXMAANG 15 1.00000000000000E+00
DIXMAANI 15 1.00000000000000E+00
DIXMAANK 15 1.00000000000000E+00
DIXON3DQ 10 2.95822839457879E-31
DQDRTIC 10 5.91645678915759E-29
ENGVAL1 2 0.00000000000000E+00
EXPFIT 2 2.40510593999058E-1
FREUROTH 10 1.01406407257452E+03
GENHUMPS 5 9.31205762089110E-33
GULF 3 5.70816776659866E-29
HAIRY 2 2.00000000000000E+01
HELIX 3 1.81767515239766E-28
HILBERTA 2 1.51145573593758E-20
HIMMELBF 4 3.18571748791125E+02
HIMMELBG 2 1.17043537660229E-27
JENSMP 2 1.24362182355615e+02
KOWOSB 4 3.07505603849238E-4
MANCINO 10 1.24143266331958E-19
MARATOSB 2 -1.00000006249999E+00
MEXHAT 2 -4.01000000000000E-2
MOREBV 10 1.85746736253704E-24
NASTY 2 1.53409170790554e-72
OSBORNEB 11 4.01377362935478E-2
PALMER1C 8 9.75979912629838E-2
PALMER3C 8 1.95376385131058E-2
PALMER5C 6 2.12808666605511E+00
PALMER8C 8 1.59768063470262E-1
POWER 10 6.03971630559837E-31
ROSENBR 2 3.74397564313947E-21
SINEVAL 2 7.09027697800298E-20
SINGULAR 4 6.66638187151797e-12
SISSER 2 1.06051492721772E-12
VARDIM 10 1.59507305257139E-26
YFITU 3 6.66972048929030E-13
ZANGWIL2 2 -1.82000000000000E+01

Table 2: Unconstrained CUTEr test problems
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B Test results

The results of the bound-constrained and unconstrained testing can be seen in Table 3 and 4 below. Both
tables show the name and number of variables of the problem, and the number of function evaluations
needed by each solver to attain six significant figures of the objective function value f∗, computed using
the package TRON or KNITRO in the bound- or unconstrained case, respectively.

nf BC-DFO nf BOBYQA
name n 2 fig 4 fig 6 fig 8 fig 2 fig 4 fig 6 fig 8 fig
3PK 30 8834 8834 8927 8959 failed failed failed failed
BIGGSB1 25 35 35 35 35 144 341 489 548
BQP1VAR 1 2 2 2 2 7 7 7 7
CAMEL6 2 16 26 29 35 17 29 37 41
CHARDIS0 18 420 420 420 420 92 119 139 161
CHEBYQAD 4 208 235 259 265 15 50 60 64
CHENHARK 10 133 134 134 134 90 121 151 172
CVXBQP1 10 21 21 21 21 26 39 39 39
EXPLIN2 12 93 99 115 118 224 233 236 258
EXPQUAD 12 613 813 857 911 105 157 200 231
HARKERP2 10 62 63 63 63 64 67 67 67
HATFLDA 4 5 5 5 5 46 104 141 182
HATFLDB 4 64 76 81 91 40 52 67 72
HATFLDC 25 699 753 768 790 131 247 360 441
HIMMELP1 2 15 25 26 28 13 19 22 26
HS1 2 133 138 147 148 135 158 167 172
HS110 10 196 316 398 409 144 260 436 521
HS2 2 25 38 38 39 33 35 39 39
HS25 3 59 254 298 failed 107 734 978 995
HS3 2 3 8 9 9 6 9 10 10
HS38 4 322 342 347 347 408 440 474 503
HS3MOD 2 13 13 13 13 21 24 24 24
HS4 2 5 575 57 7 7
HS45 5 15 15 15 15 16 16 16 16
HS5 2 8 8 20 20 13 15 18 21
LINVERSE 19 792 905 936 958 137 236 651 2828
LOGROS 2 3 3 3 3 443 609 652 661
MCCORMCK 10 59 152 166 178 29 54 75 87
MDHOLE 2 165 165 165 165 220 220 225 225
NCVXBQP1 10 16 18 18 18 31 31 31 31
NCVXBQP2 10 64 64 64 64 31 31 31 31
NCVXBQP3 10 50 50 50 50 49 49 49 49
NONSCOMP 25 859 907 921 937 779 1072 1406 1684
OSLBQP 8 31 32 32 32 22 22 22 22
PALMER1A 6 10842 11143 11190 11195 failed failed failed failed
PALMER2B 4 1192 1198 1201 1206 1037 1118 1144 1166
PALMER3E 8 82 82 82 82 1223 failed failed failed
PALMER4 4 145 160 162 170 62 82 87 93
PALMER4A 6 2753 3445 3511 3536 2366 5767 7606 8105
PROBPENL 10 failed failed failed failed failed failed failed failed
PSPDOC 4 35 44 44 50 41 55 57 65
QUDLIN 12 22 22 22 22 34 34 34 34
S368 8 90 136 154 158 33 50 63 76
SIMBQP 2 12 12 12 12 12 12 12 12
SINEALI 4 29 87 209 242 36 260 387 432
SPECAN 9 failed failed failed failed 697 765 820 881
YFIT 3 897 965 981 985 1356 2011 2237 2257

Table 3: Results on bound-constrained test set with 2, 4, 6 and 8 significant figures attained in f∗
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nf BC-DFO nf NEWUOA
name n 2 fig 4 fig 6 fig 8 fig 2 fig 4 fig 6 fig 8 fig
ALLINITU 4 53 66 103 106 50 60 67 73
ARGLINB 10 88 88 88 88 70 70 70 70
ARGLINC 8 84 84 84 84 70 70 70 70
ARWHEAD 15 16 16 16 16 513 579 641 680
BARD 3 62 73 80 83 26 46 51 60
BDQRTIC 10 347 435 578 593 181 236 276 296
BEALE 2 63 69 69 73 24 33 42 46
BIGGS6 6 442 653 715 820 148 265 400 624
BOX3 3 46 56 58 63 18 33 47 59
BRKMCC 2 7 13 13 16 7 7 15 15
BROWNAL 10 320 377 398 432 88 166 212 256
BROWNDEN 4 93 99 107 111 59 66 80 85
CHNROSNB 15 1180 1264 1335 1341 717 776 790 803
CRAGGLVY 10 919 1199 1302 1324 458 538 616 662
CUBE 2 77 103 110 112 105 130 138 151
DENSCHND 3 58 78 86 100 45 45 64 68
DENSCHNE 3 67 76 87 91 87 92 99 110
DENSCHNF 2 15 18 22 22 23 25 25 34
DIXMAANC 15 334 375 400 444 415 447 465 472
DIXMAANG 15 566 654 669 691 479 508 528 543
DIXMAANI 15 810 813 831 971 398 460 483 509
DIXMAANK 15 570 779 799 825 736 773 848 881
DIXON3DQ 10 31 31 31 31 72 72 79 83
DQDRTIC 10 44 44 44 44 71 71 81 81
ENGVAL1 2 4 4 4 4 17 23 29 29
EXPFIT 2 65 68 70 72 25 32 34 38
FREUROTH 10 345 553 560 571 174 197 229 243
GENHUMPS 5 705 1422 1602 1684 613 739 760 793
GULF 3 197 307 338 344 187 336 378 404
HAIRY 2 46 54 55 57 68 68 74 74
HELIX 3 57 66 68 70 66 75 84 90
HILBERTA 10 7 7 7 7 9 9 9 9
HIMMELBF 4 257 400 461 485 168 599 737 1076
HIMMELBG 2 22 32 35 35 14 19 23 23
JENSMP 2 36 44 48 49 10 25 28 31
KOWOSB 4 5 59 125 144 16 38 106 116
MANCINO 10 89 103 110 116 136 136 143 150
MARATOSB 2 2915 3240 3339 3361 5693 6471 6748 6813
MEXHAT 2 263 508 520 527 64 65 79 83
MOREBV 10 88 108 119 135 68 73 84 112
NASTY 2 3 3 3 3 failed failed failed failed
OSBORNEB 11 1917 2564 2743 2764 858 1126 1190 1211
PALMER1C 8 68 68 failed failed failed failed failed failed
PALMER3C 8 66 66 66 67 failed failed failed failed
PALMER5C 6 46 46 46 46 37 37 44 44
PALMER8C 8 70 71 71 78 failed failed failed failed
POWER 10 358 704 839 1117 218 289 375 460
ROSENBR 2 46 72 75 78 82 94 98 107
SINEVAL 2 171 177 178 182 203 217 218 234
SINGULAR 4 67 99 136 173 60 82 105 137
SISSER 2 3 8 16 26 16 27 32 35
VARDIM 10 2022 2278 2409 2412 464 579 648 648
YFITU 3 897 965 981 985 failed failed failed failed
ZANGWIL2 2 4 4 4 4 7 7 7 7

Table 4: Results on unconstrained test set with 2, 4, 6 and 8 significant figures attained in f∗


