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Nonlinear optimization: motivation, past and perspectives Definition and examples

What is optimization?

The best choice subject to constraints

best =- criterion, objective function
choice = variables whose value may be chosen
constraints = restrictions on allowed values of the variables
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Nonlinear optimization: motivation, past and perspectives Definition and examples

More formally

variables = x=(x1,X2,...,Xn)
objective function = minimize/maximize f(x)
constraints = ¢(x)>0

maximize f(x) equivalent to minimize —f(x).

min f(x)

X

such that
c(x)>0

(the general nonlinear optimization problem)
(4 conditions on x, f and c)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Nature optimizes

Philippe Toint (Namur)

6 /323



Nonlinear optimization: motivation, past and perspectives Definition and examples

People optimize (daily)

Philippe Toint (Namur)



Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: PAL design (1)

Design of modern Progressive Adaptive Lenses:

‘ vary optical power of lenses while minimizing astigmatism

Loos, Greiner, Seidel (1997)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: PAL design (2)

Achievements: Loos, Greiner, Seidel (1997)

uncorrected short distance
long distance PAL
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: PAL design (3)

‘ Is this nonlinear (= difficult)?‘

Assume the lens surface is z = z(x, y). The optical power is

(X )—E 1+ % ? &4_ 14+ % ? &_2%% 822
PRGCYI="5 Ox dy? dy 0x2 " Ox Oy OxOy

where

N=N(x,y) =

The surface astigmatism is then

0z 0z 92z 1°
_ I V2
a(X7y) - 2 p(va) N <8X 8_)/ |:8X8y:| >

Philippe Toint (Namur) April 2009 10 / 323




Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Food sterilization (1)

A common problem in the food processing industry:

‘ keep a max of vitamins while killing a prescribed fraction of the bacteria

heating in steam/hot water autoclaves

Sachs (2003)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Food sterilization (2)

coupled PDEs

Concentration of micro-organisms and other nutrients:

oC
E(x, t) = —KI[0(x, t)]C(x, t),

where 6(x, t) is the temperature, and where

1

1
Ko = Kie "2(53) )
Evolution of temperature:

pel8) 27 =V - [K(O)V0],

(with suitable boundary conditions: coolant, initial temperature,...)
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Definition and examples

Nonlinear optimization: motivation, past and perspectives

Applications: biological parameter estimation (1)

K-channel in a the model of a neuron membrane:

@ (3 [

Sansom (2001)

Doyle et al. (1998)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: biological parameter estimation (2)

Where are these neurons?

asophegeal gangion

ccnumizzrsl geralice

in a Pacific spiny lobster!

Simmers, Meyrand and Moulin (1995)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: biological parameter estimation (3)

After gathering experimental data (applying a current to the cell):

| estimate the biological model parameters that best fit experiments |

@ Activation: p independent gates

Deactivation: nj, gates with different dynamics

@ np + 2 coupled ODEs for the voltage, the activation level, the partial
inactivations levels

5-points BDF for =~ 50000 time steps
o = !

Philippe Toint (Namur) April 2009 15 / 323



Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (1)

(Attempt to) predict. ..
@ tomorrow's weather

@ the ocean’s average temperature
next month

o future gravity field
o future currents in the ionosphere
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (2)

Data: temperature, wind, pressure, .. .everywhere and at all times!

May involve up to 250000000 variables!
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)

The principle:

e Known situation 2.5 days ago
I and background prediction

temp. vs. days
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)

The principle:

. e Known situation 2.5 days ago
: e o and background prediction
A T e Record temperature for the past 2.5 days

temp. vs. days
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)

The principle:

lMinimize deviation between model and past observations |

e Known situation 2.5 days ago

and background prediction
e Record temperature for the past 2.5 days
e Run the model to minimize difference

| between model and observations

temp. vs. days

N
.1 L
n)1<(|)n §HX0 — XbH2B—1 + 5 ; | HM(ti, x0) — biH2i_1.
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)

The principle:

lMinimize deviation between model and past observations |

e Known situation 2.5 days ago
and background prediction
e Record temperature for the past 2.5 days
e Run the model to minimize difference
| between model and observations
e Predict temperature for the next day

temp. vs. days
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (4)

Analysis of the ocean’s heat content: CERFACS (2009)

HEAT CONTENT ANOMALIES 1960-2005
Global mean (80S—80N)

[ ——— CERFACS 3D-Var (Unperturbed)
——— CONTROL (No Assim)
—— Ensemble Members

Heat Content (J/m*2)
o
o

15 | . n |
1960.0 1970.0 1980.0 1990.0 2000.0 2010.0
Years

| Much better fit! |
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: aeronautical structure design

minimize weight while maintaining structural integrity

b F8593

P R ) ) [ ottt e 2 2 3

2 4 6 B 10 12 14 16 18 20 22 24 26 28
Iteratins

mass reduction during optimization

SAMTECH (2009)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: asteroid trajectory matching

find today’s asteroid whose orbital parameters
match best one observed 50 years ago

1996 JA,

Ediiptic Viiew Along The Asc.-Desc. Nodal Line

North Eliptic Polar View
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: discrete choice modelling (1)

simulation of individual choices in Transportation (or other)

(mode, route, time of departure,. . .)

An individual / assigns to alternative j the “utility”

Ujj = [ parameters x explaining factors | 4 [ random error |

[llustration :

Upys = distance — 1.2 X price of ticket — 2.1 X delay wrt to car travel + €
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: discrete choice modelling (2)

Probability that individual /i chooses alternative j rather than
alternative k given by

pI’Ob(U,'j > U,'k for all k)

Data: mobility surveys (MOBEL)

find the parameters in the utility function to
maximize likelihood of observed behaviours
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: discrete choice modelling (3)

Norma —— /
Lognormal S
Spling -~

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

ol Using standard statistics‘

01 <— I Using advanced optimization ’

0 T T T T T T
0 5 100 15 20 25 30 35 40 45

Estimation of the value of time lost in congested trafic
(with and without advanced optimization)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Poisson image denoising (1)

Consider a two dimensional image with noise proportional to signal
zjj = ujj + nf(uy)

where n is a random Gaussian noise. How to recover the original u;;?

use the pixel values as much as possible
while minimizing sharp transitions (gradients)

This leads to the optimization problem

min Z(u,-j — zjjlog(ujj)) + oz/Q |Vull

ijeQ
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Poisson image denoising (2)

Some spectacular results: a 512 x 512 picture with 95% noise
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Poisson image denoising (2)

Some spectacular results: a 512 x 512 picture with 95% noise

Chan and Chen (2007)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: shock simulation in video games

‘ Optimize the realism of the motion of multiple rigid bodies in space

= “complementarity problem”

Vqa®[q(t)]v(t) =

v(t
®(q(t)) > 0
(q(t) = positions, v(t) = d—ct’(t) = velocities)

= system of inequalities and equalities

used in realtime for :

Anitescu and Potra (1996)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: finance

THE COCA-COLA BOYCOTT (45 | CHINA'S INTERNET CENSORS (-2

@ risk management ) N AYA
& )

@ portofolio analysis

./zv]/' A ak /W(;W/X =
? FX markets ore math gee z ;{)X,(ﬂ of
drc d : g D \Ir]n;ll);v)(:l—x
09 N§gormqal rrrrrrrrrrr L h - 0 ‘;;k/rf % % 8Ly g—\
7 i L 1) 7720 ax =X,y
08 e d &, 1 (;—Ztan( 57)_217(,_ 14
07 i W N T2, + A )
06 /’z:_&f 'EI'/-‘V)V/’ vijdx 7, £ !
. J é”’,’, Z 2n Ak )
05 | e -1 0 "1\-01!]'(v'+ vtanx) 2]
1 % g 3
| Standard | —, ATH
[ .. »
02 — | Optimized XU
01 1 D
» 0
° 5 |
45 1 05 0 05 1 15
Investment distribution 5
for the BoJ 1991-2004 Everybody loves

an optimizer!
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Nonlinear optimization: motivation, past and perspectives History

Where does optimization come from?

“Nous sommes comme des nains juchés sur des épaules de géants, de telle
sorte que nous puissions voir plus de choses et de plus éloignées que n'en
voyaient ces derniers. Et cela, non point parce que notre vue serait
puissante ou notre taille avantageuse, mais parce que nous sommes portés
et exhaussés par la haute stature des géants.”

“We are like dwarfs standing on the shoulders of giants, such that we can
see more things and further away than they could. And this, not because
our sight would be more powerful or our height more advantageous, but

because we are carried and heigthened by the high stature of the giants.”

Bernard de Chartres (1130-1160)
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Nonlinear optimization: motivation, past and perspectives History

Euclid (300 BC) Al-Khwarizmi (
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Nonlinear optimization: motivation, past and perspectives History

Isaac Newton (1642-1727)  Leonhardt Euler (1707-1783)
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Nonlinear optimization: motivation, past and perspectives History

J. de Lagrange (1735-1813) Friedrich Gauss (1777-1855)
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Nonlinear optimization: motivation, past and perspectives History

Augustin Cauchy (1789-1857) George Dantzig (1914-2005)
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Nonlinear optimization: motivation, past and perspectives History

Michael Powell Roger Fletcher
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Nonlinear optimization: motivation, past and perspectives Basic concepts

Return to the mathematical problem

min f(x)

X

such that
c(x)>0

Difficulties:
@ the objective function f(x) is typically complicated (nonlinear)
@ it is also often costly to compute
@ there may be many variables

@ the constraints c(x) may defined a complicated geometry

Philippe Toint (Namur) April 2009 35 /323



Nonlinear optimization: motivation, past and perspectives Basic concepts

An example unconstrained problem

minimize :  f(a,8) = —10a? 4+ 106? + 4sin(af) — 2o + o*

00~

Two local minima: (—2.20,0.32) and (2.30,-0.34)

| How to find them? |
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Nonlinear optimization: motivation, past and perspectives Basic concepts

Trust-region methods

@ iterative algorithms

@ find local solutions only

Algorithm 1.1: The trust-region framework

Until an (approximate) solution is found:
Step 1: use a of the nonlinear function(s)
within where it can be trusted
Step 2: notion of sufficient decrease
Step 3: measure achieved and predicted reductions

Step 4: decrease the region radius if unsuccessful
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Nonlinear optimization: motivation, past and perspectives Illustration

minimize : f(a, 3) = —10a? 4+ 108% + 4sin(af) — 2a + o*

200

Two local minima: (—2.20,0.32) and (2.30,—-0.34)
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Nonlinear optimization: motivation, past and perspectives Illustration

Conto

xo =(0.71,-3.27) and f(xo) =97.630

urs of f Contours of mg around xg
(quadratic model)
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Nonlinear optimization: motivation, past and perspectives Illustration

’ k H Ay ‘ Sk ‘ f(Xk—I-Sk) ‘ Af/Amk ‘ Xk+1 ‘
0] 1 [(0.05093)] 43742 | 0.998 | xo+ s |
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Nonlinear optimization: motivation, past and perspectives Illustration

’ k H Ay ‘ Sk ‘ f(Xk + Sk) ‘ Af/Amk ‘ Xk4+1
0 1 | (0.05003) | 43742 | 0998 | 0 %
1 2 | (—062,1.78) | 2.306 1354 | x 1=
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Nonlinear optimization: motivation, past and perspectives

lllustration

‘ f(Xk—l-Sk) ‘ Af/Amk ‘ Xk+1

kD] s
0 1 | (0.05093) | 43.742 0.998 | % + %
1| 2 [ (-0621.78) | 2.306 1354 | & s
2| 4 | (321,000) | 6205 | —0.004 | x
\ S=——
2 \i ///
|
) (
v (\ (
, \
. \
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Nonlinear optimization: motivation, past and perspectives

lllustration

’ k H Ay ‘ Sk ‘ f(Xk + Sk) ‘ Af/Amk ‘ Xk4+1
0 1 (0.05,0.93) 43.742 0.998 Xo + So
1 2 | (-0.62,1.78) 2.306 1.354 X1+ s1
2 4 (3.21,0.00) 6.295 —0.004 X0
3 2 (1.90,0.08) —29.392 0.649 X2 + S
N S— a———— N
\\\ 4 .
T 7 AN 7
\ // \\\\ g
> ) 0 \ "/
/4 )
Y K\ ’ Y \\ '
W DA
———— \ \ ]
, /%2/—\\\}*\‘ \ N 7
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Nonlinear optimization: motivation, past and perspectives Illustration

’ k H Ay ‘ Sk ‘ f(Xk + Sk) ‘ Af/Amk ‘ Xk4+1
0 1 | (0.05003) | 43742 | 0998 | 0 %
1 2 | (—062,1.78) | 2.306 1354 | x 1=
2 4 | (321,000) | 6205 | —0.004 | x
3 2 | (1.90,0.08) | —29.392 | 0649 |0+
4 2 | (032,015) | —3L.131 | 0857 |x & s
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Nonlinear optimization: motivation, past and perspectives Illustration

’ k H JAP ‘ Sk ‘ f(Xk + Sk) ‘ Af/Amk ‘ Xk4+1
0 1| (0.05003) | 43742 | 0998 |01t s
11 2 | (-062,1.78) | 2.306 1354 | x + s
2 4 | (3.21,0.00) 6205 | —0004 | »x
312 | (1.90,008) | —29392 | 0649 |+
4\ 2 (0.32,0.15) —31.131 0.857 X3 + S3
51 4 | (-0.03,-0.02) | —31.176 1.009 X4 + S
/
\
A
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Nonlinear optimization: motivation, past and perspectives

lllustration

’ k H Ay ‘ Sk ‘ f(Xk + Sk) ‘ Af/Amk ‘ Xk4+1
0 1| (0.05003) | 43742 | 0998 |01t s
1 2 | (-0621.78) | 2.306 1354 |+ st
2 4 | (3.21,0.00) 6205 | —0004 | »x
3 2 | (1.90,0.08) | —29.392 | 0649 |
4 2 | (032,015) | —3L.131 | 0.857 |xs1ts5
51 4 | (-0.03,-0.02) | —31.176 1.009 X4 + s4
6 8 | (-002,000) | —31.179 | 1.013 |+ s
77/ 7
N /
I |
u\
\\J \
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Nonlinear optimization: motivation, past and perspectives

Path of iterates:
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Nonlinear optimization: motivation, past and perspectives Illustration

And then. ..

Does it (always) work?

The answer tomorrow!
(and subsequent days for a (biased) survey of new optimization methods)
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Trust region methods for unconstrained problems
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Lesson 2:

Trust-region methods
for unconstrained problems
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Trust region methods for unconstrained problems

The basic text for this course

TRUST-REGION
MEeTHODS
-

A. R. Conn, N. I. M. Gould and Ph. L. Toint,
Trust-Region Methods,
Nr 01 in the MPS-SIAM Series on Optimization,
SIAM, Philadelphia, USA, 2000.
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Trust region methods for unconstrained problems Background material

2.1: Background material
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Trust region methods for unconstrained problems Background material

Scalar mean-value theorems

Let S be an open subset of R”, and suppose f : S — R is
continuously differentiable throughout S. Then, if the segment
x+0se S forall 6 €0,1],

f(x+s) = f(x)+ (Vxf(x + as),s)

for some « € [0, 1].

Let S be an open subset of R”, and suppose f : S — R is twice
continuously differentiable throughout S. Then, if the segment
x+0s e S forall 6 €[0,1],

f(x+s) = f(x) + (Vxf(x),s) + (s, Vixf(x + as)s)

for some « € [0, 1].
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Trust region methods for unconstrained problems Background material

Vector mean-value theorem

Let S be an open subset of R”, and suppose F : S — R" is
continuously differentiable throughout S. Then, if the segment
x+0s eS8 forall 6§ e0,1],

1
F(x+s):F(x)-|-/0 ViF(x+ as)sda.
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Trust region methods for unconstrained problems Background material

Taylor's scalar approximation theorems (1)

Let S be an open subset of R”, and suppose f : S — R is
continuously differentiable throughout S. Suppose further that
V«f(x) is Lipschitz continuous at x, with Lipschitz constant
v(x) in some appropriate vector norm. Then, if the segment
x+0se S forall §€0,1],

|F(x +5) = m(x +5)| < $y(x)]s]1%,

where
m(x +s) = f(x) + (Vxf(x),s).
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Trust region methods for unconstrained problems Background material

Taylor's scalar approximation theorems (2)

Let S be an open subset of R”, and suppose f : S — R is twice
continuously differentiable throughout S. Suppose further that
Vxxf(x) is Lipschitz continuous at x, with Lipschitz constant
v(x) in some appropriate vector norm and its induced matrix
norm. Then, if the segment x + s € S for all 6 € [0, 1],

|f(x +5) = m(x +s)| < Ly(x)]Is],

where
m(x +s) =

f(x) + (Vxf(x),s) + L(s, Vi f(x)s).
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Trust region methods for unconstrained problems Background material

Taylor's vector approximation theorem

Let S be an open subset of R”, and suppose F : S — R" is
continuously differentiable throughout S. Suppose further that
V«F(x) is Lipschitz continuous at x, with Lipschitz constant
v(x) in some appropriate vector norm and its induced matrix
norm. Then, if the segment x 4+ fs € S for all § € [0, 1],

IF(x +5) = M(x + s)|| < 3v(x)lIs|I?,

where
M(x + s) = F(x) + V<F(x)s.

Philippe Toint (Namur) April 2009 50 / 323



Trust region methods for unconstrained problems Background material

Newton's method

Solve
F(x)=0

solve linear approximation

F(x)+J(x)s=0

@ quadratic local convergence

@ ...but not globally convergent

Yet the basis of everything that follows
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Trust region methods for unconstrained problems Background material

Unconstrained optimality conditions

Suppose that f € C!, and that x, is a local minimizer of f(x).
Then
Vxf(x:) =0.

Suppose that f € C?, and that x, is a local minimizer of f(x).
Then the above holds and the objective function's Hessian at
Xy IS positive semi-definite, that is

(s, Vixf(x:)s) > 0 for all s e R".

(s, Vixf(xs)s) >0 forall s#0eR"

= strict local solution

Philippe Toint (Namur) April 2009
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Trust region methods for unconstrained problems Background material

Constrained optimality conditions (1)

minimize f(x)

subject to  ¢i(x) =0, for i € &,
and ci(x) >0, for i €I,
Fi23)

/ o(x)=0

Philippe Toint (Namur)
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Trust region methods for unconstrained problems Background material

Constrained optimality conditions (2): first order

Ignore constraint qualification!

Suppose that f, ¢ € C!, and that x, is a local solution. Then
there exist a vector of Lagrange multipliers y, such that
vxf(x*) = Z [}/*]ivxci(x*)
iceuz
ci(xs) = 0 forall ieé&
Gi(x<) >0 and [y]; > 0 forall ieZ
and ci(x)[y«]i = 0 forall ieZ.
Lagrangian: ¢(x,y) = f(x Z yici(x

ieEUT
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Trust region methods for unconstrained problems Background material

Constrained optimality conditions (3): second order

Suppose that f,c € C2, and that x, is a local minimizer of f(x).
Then there exist a vector of Lagrange multipliers y, such that first-
order conditions hold and

(s, Viocl(xs, y:)s) >0 forall s € Ny
where N, is the set of vectors s such that
(5, Vxci(x:)) =0 forall ie& U{je Ax)NZ | [y«); > 0}
and

(5, Vxci(x:)) >0 forall ie{jeAlx)NT | [y«]j =0}

strict complementarity: (s, Vi l(X«, yx)s) > 0 for all s € Ny (s #0)
= strict local solution
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Trust region methods for unconstrained problems Background material

Optimatity conditions (convex 1)

Assume now that C is convex

normal cone of C at x € C,

NE) Yy eR" | (y,u—x) <0, YueC}

tangent cone of C at x € C

T(x) ¥ N(x)° = cl{f(u—x) | #>0 and ueC}
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Trust region methods for unconstrained problems Background material

Optimality conditions (convex 2)

The Moreau decomposition
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Trust region methods for unconstrained problems Background material

Optimatity conditions (convex 2)

Suppose that C # () is convex, closed, that f is continuously
differentiable in C, and that x is a first-order critical point for
the minimization of f over C. Then, provided that constraint
qualification holds,

—Vixf(x) € N(x).

Philippe Toint (Namur) April 2009 58 / 323



Trust region methods for unconstrained problems

Conjugate gradients

Background material

minimize a convex quadratic on successive nested Krylov subspaces

Qg
Xk+1

8k+1
B

Pk+1

Algorithm 2.1: Conjugate-gradients (CG)

Given xp, set gg = Hxp + ¢ and let pp = —go.
For k =0,1,..., until convergence, perform the iteration

115/ {px Hpx)
Xk + QP

8k + axHpx
lgx+1l3/ gkl
—8k+1 + BrkPk
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Trust region methods for unconstrained problems Background material

Preconditioning

change the variables X = Rx and define M = RTR.

Algorithm 2.2: Preconditioned CG
Given xg, set go = Hxp + ¢, and let vy = Mgy and py = —w.
For k =0,1,..., until convergence, perform the iteration
ax = (g vk)/{Pk, Hpk)
X1 = Xk T Qppk
8k+1 = &k + axHpxk
Vkyl = M_lgk+1
Bk = (8k+1s Vkr1)/(8ks Vi)
Pk+1 = —Vk+1+ BkPk
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Lanczos method

compute an orthonormal basis of the successive nested Krylov
subspaces
= makes Q,Z—HQ;( tridiagonal

Algorithm 2.3: Lanczos

Given rp, set yp = rp, g—1 = 0.

For k =0,1,..., perform the iteration,
Y = |lykll2
Gk = Yk/Vk
dx = (qk, Hqk)
Y+l = Hax — 6kq — YeGr—1
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Another view on the Conjugate-Gradients method

Conjugate Gradients = Lanczos + LDLT (Cholesky)

* * * * * * * * * *
* * * * * * * * * * *
Lanczos Cholesky
* * * * * * * * * X * *
— —
* * * * * * * * * * * *
* * * * * * * * * *

Conjugate gradients in one of the Krylov subspaces
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2.2: The trust-region algorithm
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The trust-region idea

use a model of the objective function

define a trust-region where it is thought adequate
B ={x € R" | [|x = x|k < As}

find a trial point by sufficiently decreasing the model in B
compute the objective function at the trial point
compare achived vs. predicted reductions

reduce Ay if unsatisfactory
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The basic trust-region algorithm

Algorithm 2.4: Basic trust-region algorithm (BTR)

Step 0: Initialization. xq and Ag given, compute f(xp) and set k = 0.

Step 1: Model definition. Choose || - ||x and define a model my in By.

Step 2: Step calculation. Compute s, that sufficiently reduces the
model my with x, + s, € By.

Step 3: Acceptance of the trial point. Compute f(xx + sx) and define

f(Xk) — f(Xk + Sk)
my(xk) — mi(xk + s)”

Pk =

If pic > m1, then define xx1 = Xk + s; otherwise define X1 = xk.
Step 4: Trust-region radius update.

[Alﬂ OO) if Pk Z 2,
AI(Jrl S [VZA/ﬂAk] if Pk € [7717772)7
(A 2A i px <
Increment k by one and go to Step 1.
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2.3: Basic convergence theory
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Assumptions

f e C?
o f(X) Z Ripf
o [[Viaf (X)[| < Kum

@ my € C2(Bk)

o mi(xx) = f(x«)

0 g & Vamy(xk) = Vif (xk)

0 ||Vixemp(X)|| < Kumn — 1 for all x € By

1

Kune

Xk < MIX[ < unel X1

...but use || - [[x = | - ||]2 in what follows!
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The Cauchy step

minimize my on the Cauchy arc

xS(8) € fx | x = x¢ — tgr, t >0 and x € By}

= the Cauchy point
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The Cauchy point for quadratic models

Three cases when minimizing the quadratic my along the Cauchy arc:

1

o

e [”g—i”,m]
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The Cauchy point for general models

1

Three cases when minimizing the general my along the Cauchy arc:

o k
) — ) 2 s o [”gk” ,Ak]
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The meaning of sufficient decrease

In both cases, we get:

Sufficient decrease condition:

my(xx) — mi(Xk + Sk) > Kmacl|8k || min {”g—’;”, Ak] ;

Immediate consequence:

Suppose that V,f(xx) # 0. Then my(xx + sx) < mk(xx) and
Sk 75 0.

= pk is well defined!
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The exact minimizer is OK

Suppose that, for all k, s, ensures that

Mk (xk) — Mk (Xk + k) Kamm [Mi (k) — Mic ()],

Then sufficient decrease is obtained.
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Taylor and minimum radius

For all k, |f(xk + sk) — me(xk + sk)| < ﬂubhAi,

Suppose that gx # 0 and that

A, < Pl = m)

Ruybh

Then iteration k is very successful and

Apy1 > Ay

Suppose that ||gk|| > kg > 0 for all k. Then is a constant
Kisq > 0 such that, for all k

Ay > Kipg.
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First-order convergence (1)

Suppose that there are only finitely many successful iterations.
Then xx = x. for all sufficiently large k and x, is first-order
critical.

Suppose that there are infinitely many successful iterations.
Then

liminf || Vxf(xk)|| = 0.

k—o00

idea: infinite descent if not critical
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First-order convergence (2)

Suppose that there are infinitely many successful iterations.

Then lim ||Vif(xk)|| = 0.
k—o0
y
lexll ¢ For 71 >0
°
[ ]
°® °
[ ]
D€ 8 o.....Q ................ n.o ..........
® [ )
[} o ° Y
[ ) ® 9
S 5"""""'"""."""""'""."6 """"""" ."; """
[ )
S HA > k
g’& K L1111 1y L1 1 . L1l L1
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Convex models (1)

Suppose that Amin[Vaxmk(x)] > € for all x € [xk, xx + sx] and
for some € > 0. Then

2
lIskll < ZHng'

idea: my curves upwards!

Suppose that {xy,} — x, and x, is first-order critical, and that
there is a constant k.., > 0 such that

min )\min[vxxmk(x)] > Fsmh
xEB)
whenever xi is sufficiently close to x, Suppose finally that

Vxf(xx) is nonsingular. Then the complete sequence of it-
erates {xx} converges to x..

idea: steps too short to escape local basin
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Convex models (2)

But. ..

4 4
3 3
2 2
1 1

IS

e Toint (Namur) April 2009 77 /323




Trust region methods for unconstrained problems Basic convergence theory

Asymptotically exact Hessians

Assume also that

klim IV (Xk) — Vemi(xk)|| = 0 whenever klim llgk|l = 0

Suppose that {xx,} — x. and x, is first-order critical, that
sk 7 0 for all k sufficiently large, and that V,f(x.) is positive
definite. Then the complete sequence of iterates {xx} con-
verges to x,, all iterations are eventually very successful and
the trust-region radius Ay is bounded away from zero.

idea: sufficient decrease implies that
mk(xk) — mk(xk + Sk) > :‘ﬁqu”SkH2 > 0.

Then Pk — 1.
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Second order: the eigen point

Assume 0 > 7 € o(Hy).

Then fine the eigen direction uy such that
(uk gk) <0, luklle = Dr (uk, Hieu) < KoneTk AT,

Minimize the model along uj, to compute the eigen point:
mi(xg) = my(xk + tpuk) = ng(i)nl] my(xx + tuy)
te(0,

°
e @---

Philippe Toint (Namur) April 2009 79 / 323



Trust region methods for unconstrained problems Basic convergence theory

Model decrease at the eigen point

Suppose: 0 > 7 € o(Hk), uk is an eigen direction and
[Viscmi(x) = Viaemie(y)|| < fienllx =y

for all x,y € Bk. Then
mk(xk) — mk(XE) Z —Rsod Tk min[r,f, Ai]

(quadratic or general model)

[ S Ofmm o
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Second order: convergence theorems

lim sup Amin [V f(xk)] > 0.

k—o00

Suppose that x, is an isolated limit point of the sequence of
iterates {xx}. Then x, is a second-order critical point.

Assume also that, for v3>1,

pk > m2 and Ay < A, — Dpia € [130k, 72 A]

Let x, be any limit point of the sequence of iterates. Then x,
is a second-order critical point.
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Different trust-region norms
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Using norms for scaling

change the variables

Then

Sqw=s

ms (x + w) & f(x + Sew) 2 F5(w),

By = {x +w | [[w] < A}
mi(x) = f(xi), gk = Vuf*(0) = S Vuf (x)
H} ~ Vuw F°(0) = S Ve f () Sk
Thus

mi (X + w)

I
~ ~H
NN S /S
X
X
— N N —
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Scaling: the geometry
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2.4: Solving the subproblem
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The subproblem

@ Euclidean norm
@ quadratic model (possibly non-convex)
o (drop the index k)

min q(s) = (g,s) + (s, Hs)
seR"

subject to [|s]j2 < A
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Possible approaches

exact minimization

truncated conjugate-gradients
CG + Lanczos (GLTR)
doglegs

eigenvalue based methods

(projection methods)
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The exact minimizer

Any global minimizer of g(s) subject to ||s||» = A satisfies the

equation
H()‘M)SM = -8,
where
e H(\Y) def + AMI is positive semi-definite,
e A\ >0 and

o N(||s"l2 —A) =0.
If H(AM) is positive definite, s™ is unique.

Note: AM is the Lagrange multiplier

Philippe Toint (Namur) April 2009 88 / 323



Trust region methods for unconstrained problems Solving the subproblem

The exact minimizer: a geometrical view
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Finding the exact minimizer

Eigenvalue decomposition of H:
H=U"AU

where A\ < Ay < --- < \,. Characterization implies that
AM > =)

Suppose that A > —\; and define

s(\) =—HW\) g =—-UT(A+M)"TuUg

New formulation (one dimensional):

Is(V)]2 < A

IsQIIZ = U (A+ AN Ugl3 = (A + A1) UglE =)
i=1

o
where 7; = [Ug];.

Philippe Toint (Namur) April 2009

(Ai +A)

2

90 / 323



Trust region methods for unconstrained problems Solving the subproblem

The convex case

30T

s(M)1I?
25 g
20+ g

solution curve
15+ =
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A nonconvex case

30T

Is(M)11?

20 7

_)\1

15
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The hard case: 4 =0

Is()II?

251 B

20 b
— )\

15 q
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Near the hard case: 73 =0

Solving the subproblem
y

304

Is(M)II?

25+

20+

154

104

1
1
\
\

Philippe Toint (Namur)

April 2009 94 / 323



Trust region methods for unconstrained problems Solving the subproblem

The secular equation

consider the secular equation

def 1 1
$) Y e — £ =0
[s(Mll2 A
25)
Then 1/Is(Mll2 -

—

: : DY

= apply Newton's method to ¢(A) = 0: AT = A — p(N)/¢'(N)
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The derivatives of ¢(\)

Solving the subproblem

Suppose g # 0. Then

where

SO = -

V)\S()\) =

Is()II3

—H(\)s(N).

@ ¢(A) is strictly increasing (A > —A\1), and concave.

(s(A), Vas(A))

Note: if H(A) = LLT and Lw = s(])), then

(s(A), Vas(A)) = (s(A), LT L™ s(N)) = [|w?
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Newton's method on the secular equation

Algorithm 2.5: Exact trust-region solver
Let A > —)\; and A > 0 be given.

@ Factorize H(\) = LLT.

Q@ Solve LLTs = —g.

© Solve Lw = s.
Islla =AY [ lIs3
Q Replace A by A + ( .
A w3
But ... more complications due to

@ bracketing the root (initial + update)
@ termination rule
@ may be preconditioned
Moré (1978), Moré-Sorensen (1983), Dollar-Gould-Robinson (2009)
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Approximate solution by truncated CG

-I CG never reenters the ¢, trust-region

3

May be preconditioned
Steihaug (1983), T. (1981)
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Approximate solution by the GLTR

ST might hit the boundary for steepest descent step = sometimes slow

solve the subproblem on the nested Krylov subspaces

Algorithm 2.6: Two-phase GLTR algorithm

@ as long as interior: conjugate-gradients

@ on the boundary: Lanczos method + subproblem solution in
Krylov space

(smooth transition)
Gould-Lucidi-Roma-T. (1999)
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Doglegs

use steepest descent and the full Newton'step (requires convexity?)

dogleg curve

double-dogleg curve

. " <~ trust-region boundary

Powell (1970), Dennis-Mei (1979)
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An eigenvalue approach

Rewrite
(H+AM)s = —g

as

(H g)(i)z—/\l\/ls

or (introducing the parameter 6)
H g s\ M 0 s
(e §)(1)=(55) (1)

= choose # such that

e \>0,
@ H 4+ AM positive semi-definite
o \(||sllm —A)=0 Rend|-Wolkowicz (1997), Rojas-Santos-Sorensen (1999)
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Derivative-free optimization,
infinite dimensions and filters
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3.1: Derivative-free optimization
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An application of trust-regions: unconstrained DFO

Consider the unconstrained problem

mXin f(x)

Gradient (and Hessian) of f(x) unavailable
@ physical measurement

@ object code
e typically small-scale (but not always. .. )
= “Derivative free optimization” (DFO)
f(x) typically very costly

‘Exploit each evaluation of f(x) to the utmost possible

considerable interest of practitioners

Philippe Toint (Namur) April 2009 106 / 323



Derivative free optimization, filters and other topics Derivative free optimization

Interpolation methods for DFO

Winfield (1973), Powell (1994)

Until “convergence”:

@ Use the available function values to build a polynomial
interpolation model my:
mi(yi) = f(yi) yi€Y;

@ Minimize the model in a “trust region”, yielding a new
potentially good point;

o Compute a new function value.

Y = interpolation set C { points y; at which f(y;) is known }
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A naive trust-region method for DFO: illustration
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A naive trust-region method for DFO: illustration
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A naive trust-region method for DFO: illustration
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A naive trust-region method for DFO: illustration
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Interpolation methods for DFO (2)

To be considered: \

o

poisedness of the interpolation set Y

°

@ choice of models (linear, quadratic, in between, beyond)
@ convergence theory
°

numerical performance
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Poisedness

Assume a model

mi(xx +5) = fi + (gk, s) + (s, Hks)

Thus
p=1+n+1in(n+1)=1(n+1)(n+2)

parameters to determine =- need p function values (| Y| = p)

Not sufficient! |

= need geometric conditions for the pointsin Y ...
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Poisedness: geometry with n =2, p =06

20—

18—

16—

14|

12—

10—

©
L
O == -
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O mim ===
- -=-9

L 4
1
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1
]

With these 6 data points in R3. .. ...
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Poisedness: geometry with n =2, p =06

...1s this the correct interpolation?
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Poisedness: geometry with n =2, p =06
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Poisedness: geometry with n =2, p =06
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Poisedness: geometry with n =2, p =06

The difference ... is zero on a quadratic curve containing Y'!
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Poisedness: geometry (2)

If {¢i(-)}7_; = basis for quadratic polynomials

P
Y oaidily) =fly) j=1....p

i=1

Possible poisedness measure:
#1(y1) - dp(1)
0(Y) = det : 5
o1(yp) -+ Pp(¥p)

Y (well) poised < [6(Y)| > €

@ scale for the spread of the y;’s
@ notion of geometry improvement
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Lagrange polynomials

Remarkable: | replace y_ by y; in Y:

— — I(y,,y_) is independent of the basis {oi(-)}0_,

where

1 ify=y
Vyey L(y,y—)={O if;/#i—

is the Lagrange fundamental polynomial

for quadratic interpolation, L(-, y) is a quadratic polynomial!
Powell (1994)
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Interpolation using Lagrange polynomials

use the Lagrange polynomials to define the (quadratic) interpolant
by

Kk +5) = > FY)Lk(k +5,)
yE€Yk

And then. ..

1 (k4 5) = mic(ie+ )| < 6 Y xe+ s = yIP| Lk (i + 5, )]
yEeYk

Philippe Toint (Namur) April 2009 114 / 323



Derivative free optimization, filters and other topics Derivative free optimization

Interpolation using Lagrange polynomials: construction

15
10
5
0.
2
0
15 2
2 5, 45 4 05 0 05

The original function. ..
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Interpolation using Lagrange polynomials: construction

S m———————

2 15 1 .05 0 0.5

...and the interpolation set
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Interpolation using Lagrange polynomials: construction

o \

o

The first Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The second Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The third Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The fourth Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The fifth Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The sixth Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The final interpolating quadratic
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Other algorithmic ingredients

@ include a new point in the interpolation set

e need to drop an existing interpolation point?
e select which one to drop: make Y "“as poised as possible”

- model/function minimizer may produce bad geometry!!
= geometry improvement procedure ...

@ trust-region radius management
trust region = By = {xx + s | ||s]| < Ak}
e standard: reduce A, when “no progress”

o DFO: more complicated! (Could reduce A to fast and prevent
convergence. . .)

= verify that Y is poised before reducing Ay
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Improving the geometry in a ball

@ attempt to reuse past points that are close to x
@ attempt to replace a distant point of Y

@ attempt to replace a close point of Y

good geometry for the current Ay < improvement impossible
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Self-correction at unsuccessful iterations (1)

At iteration k, define the set of exchangeable far points:

Fi={y e Yillly — x|l > Ak and Li(xx + sk, y) # 0}

and the set of exchangeable close points (for some m > 1):

Cre ={y € Yi\{x«} | lly—xkl| < Ak and |Li(xk+sk,y)| > 7}
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Self-correction at unsuccessful iterations (2)

Remarkably,

Whenever
@ iteration k is unsuccessful,
o Fr=10
o Ay is small w.r.t. ||gkll,
then Cy # 0.

(an improvement of the geometry by a factor 7 is always possible at
unsuccessful iterations when Ay is small and all exchangeable far points

have been considered)
= no need to reduce A, forever!
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Trust-region algorithm for DFO (1)

Algorithm 3.1: TR for DFO

Step 0: Initialization. Given: xo, Ao, Yo (— Lo(,y)). Set k = 0.
Step 1: Criticality test [complicated and not discussed here]

Step 2: Solve the subproblem. Compute s, that sufficiently reduces mi(xx + s)
within the trust region,

Step 3: Evaluation. Compute f(xx + s«) and

f(Xk) — f(Xk 4+ Sk)
mi(xk) — me(xk + sk)

pr =

Step 4: Define the next iterate and interpolation set.

the big question

Step 5: Update the Lagrange polynomials.
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Trust-region algorithm for DFO (2)

Algorithm 3.2: Step 4: Define xxy1 and Yiy1

Step 4a: Successful iteration. If px > n1, accept
Xk + Sk, increase Ak and exchange xx + sk with

y =argmax |ly — (xi + si) || Le(xk + sk, y)|
yEYk

Step 4b: Replace far point. If px < 11 (+ other technical condition) and Fi # (), reject
Xk + sk, keep Ay and exchange Xk + sk with

y = arg max ||y — (x + )1 | Lk (xk + s, )|
yEFk

Step 4c: Replace close point. If px < 11 (+ other technical condition) and Cix # ), reject
Xk + sk, keep Ak and exchange xi + sk with

y = argmax ||y — (x + s)|1*[ Lk O + s, )|
y€Cx

Step 4d: Decrease the radius. Otherwise, reject xx + sk, keep Yk, and reduce Ay.
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Global convergence results

If the model is at least fully linear, then

lim inf [[Vxf ()| = lim inf {|gi]| = 0

Scheinberg and T. (2009)
With more costly algorithm:

If the model is at least fully linear, then

lim |Vif(xi)ll = lim |lgll =0
k—o0 k—o0

If the model at least fully quadratic, then iterates converge to
2nd-order critical points
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For an efficient numerical method. ..

‘ Many more issues:‘

@ which Hessian approximation?
(full /vs diagonal or structured)

@ details of criticality tests difficult

@ details for numerically handling interpolation polynomials
(Lagrange, Newton),

o reference shifts,

good codes around: NEWUOA, DFO =- efficient solvers

Powell (2008 and previously), Conn, Scheinberg and T. (1998)
Conn, Scheinberg and Vicente (2008)
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Derivative free optimization
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3.2: Infinite dimensional problems
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Why consider infinite dimensions?

| Main motivation: |

@ large-scale finite dimensional problems often result from discretized
continuous ones (surfaces, time-trajectories, optimal control, ...)

@ behaviour on these problems dominated by infinite dimensional
properties

Need to investigate infinite dimensions to ensure consistency! ‘

Two main cases: Hilbert and spaces.
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Convergence in Hilbert spaces

The trust-region algorithm is well-defined and globally
convergent in Hilbert spaces.

@ Riescz representation theorem = )/ ~ )

@ Cauchy point results from one dimensional minimization
(but x}" may not exist!)

(]
ﬁk = 1—|— sup Hvxxmk( )HV,V”
x€EB
o
def . o (d,Hd)

m|n H
[ = de{/rjd;éo (d,d)
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Wht happens in Banach spaces ?

dual space different from the primal!

Need further assumptions:

o V,f(x) €V forall xe V.
@ Vi f is uniformly continuous from V to V.
@ Forevery x e {x e V| f(x) < f(x0)},

(Vxf (x), Vit (x)) = ([[Vuf (<)) [V f (X) v,

for some continuous monotonically increasing real ¢ from
[0, 0] to itself, independent of x and such that ¢(0) =0
and ¢(t) > 0 for t > 0.
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Convergence in Banach spaces, nevertheless

The last assumption implies

(—&x, &x) < —o(llgxllv)llgxllv

...and sufficient decrease follows!
Is this realistic?

The additional assumptions always hold for V = LP(Q) and
2 < p <00, when [|g|[1r(@) < Fus-

Under these additional assumptions, the trust-region algorithm
is well-defined and globally convergent in Banach spaces.
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3.3: Filter algorithms
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Monotonicity (1)

Global convergence theoretically ensured by
@ some global measure. ..

e unconstrained : f(xy)
o (constrained : some merit function at x)

@ ...with strong monotonic behaviour (Lyapunov function)
Also practically enforced by

@ algorithmic safeguards around Newton method
(linesearches, trust regions)
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Monotonicity (2)

But, unfortunately,

lclassical safeguards limit efficiency!

Of interest: | design less obstructive safeguards while

@ ensuring better numerical performance
(the Newton Liberation Front!)

@ continuing to guarantee global convergence properties

| Is this possible? ‘

Typically:
@ abandon strict monotonicity of usual measures

@ but insist on average behaviour instead
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Non-monotone trust-regions

f(xk+1) < f(xk) replaced by f(xxy1) < frp

with

fr(k) < fr(k—1)

Further issues:
e suitably define the “reference iteration” r(k)

@ adapt the trust-region algorithm: also compare achieved and
predicted reductions since reference iteration

T. (1997)
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Non-monotone TR algorithm

Algorithm 3.3: Non monotone TR algorithm (NMTR)
Step 0: Initialization. Given: xo, Ao, M1, M2, Y1, 72. Compute f(x), set k = 0.
Step 1: Model definition. Choose || - ||« and define my in B.

Step 2: Step calculation. Compute s, that sufficiently reduces my and xx + sk € Bk.

Step 3: Acceptance of the trial point. Define the reference iteration r(k) < k and

compute f(xk + sk),

= Z [mi(xi)) — mi(xi + si)],

’I ,S
Define ©
F(Xr(ky) — F(xk + sk) f(xe) — F(xk + sk)

Pk = max[

If px > m1, then define xk+1 = xk + sk; otherwise define xk11 = X«.

Step 4: Trust-region radius update. Set
[Ag, 00) if px >,
Ari1 € [k, Ak) if px € [m,m2),
[k, 2 k] if pr < 1.
Increment k by one and go to Step 1.

+ mic(xic) — mic(xi 4 si) " mic(xe) — mi(xe 4 sx)”
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Sufficient decrease for NMTR

k

F(Xp(k) = F(s1) > mkmac >, gl min [”%”,AJ}
j=p(k).j€S !

with p(k) = r(k) when p} > pf, or p(k) = k otherwise

A

e |« }
ITY ...“ ﬁ'- le .
T

K
F(x0) = F(Xi41) = Mimee Y lgel min [”g_ﬂh At] :
t=0,teS t
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Choosing the reference iteration (1)

Algorithm 3.4: Choosing r(k)
Step 3: Acceptance of the trial point.
Step 3a: update the iterate. Compute f(xx + sx) and set

— f(Xk + Sk) f(Xk) — f(Xk + Sk)
+ my(xk) — mi(xe + Sk)7 mi(xi) — mic(xk + sk) '

Pk = max

If px < m, then xx4+1 = xx and go to Step 4; otherwise xx+1 = xx + sk and
0c = 0c + mMi(xk) — M(xk1) and o, = o, + me(xk) — mi(xkt1)

Step 3b: update the best value. If f(xkt1) < fmin then set fo = fmin = F(Xk+1),
oc =0 and £ =0 and go to Step 4; otherwise, £ «+— ¢+ 1.

Step 3c: update the reference candidate. If f(xxt1) > fc, set fc = f(xk4+1) and
o. =0.

Step 3d: possibly reset the reference value. If £ = m, set 7, = f. and 0, = o..
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Choosing the reference iteration (2): example with m = 2

k

£000012010111212011112011200120
* * Kk * * *

o : reference iteration e : new best value
* : reference iteration redefined (/ = m)
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n unconstrained example

12 . . . . . .
0 10 20 30 40 50 60 70

Monotone and non-monotone TR (using LANCELOT B) on EXTROSNB

Philippe Toint (Namur) April 2009 138 / 323



Derivative free optimization, filters and other topics Filter algorithms

Introducing the filter

A fruitful alternative: |filter methods

Constrained optimization :

using the SQP step, at the same time:
e reduce the objective function f(x)
e reduce constraint violation 6(x)
= CONFLICT
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The filter point of view

Fletcher and Leyffer replace question:

‘What is a better point?‘

’What is a worse point?‘

Of course, y is worse than x when
f(x) < f(y) and 0(x) <6(y)

(y is dominated by x)

‘When is xx + sk acceptable? ‘

Fletcher and Leyffer (2002), Fletcher, Gould, Leyffer, T. and Wé&chter (2002)
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The standard filter

accept non-dominated points

‘ no monotonicity of merit function implied

£(x) 4

0 0(x)
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Filling up the standard filter

Note: filter area is bounded in the (f,6) space!

f(x) 4

1 fx)

4 ) — v0k

(1= 7)0x Ok

0

0(x)

= filter area (non)-monotonically decreasing
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The (unconstrained) feasibility problem

Find x such that

for general smooth ¢ and e.

Least-squares

Find x such that

minz:G,-2
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multidimensional filter (1)

(Simple) idea: | more dimensions in filter space

61(x)4

0 02(x)

(full dimension vs. grouping)
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A multidimensional filter (2)

Additionally

@ possibly consider unsigned filter entries
@ use a trust-region algorithm when

e trial point unacceptable
e convergence to non-zero solution

(= "internal” restoration)

| Sound convergence theory

Gould, Leyffer and T. (2005)
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Numerical experience: FILTRANE

@ Fortran 95 package
o large scale problems (CUTEr interface)
@ includes several variants of the method
o signed/unsigned filters
o Gauss-Newton, Newton or adaptive models
@ pure trust-region option
e uses preconditioned conjugate-gradients
+ Lanczos for subproblem solution
@ part of the GALAHAD library

Gould, Orban and T. (2003), Gould and T. (2007)
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Numerical experience (1)

o
©
T

I

o o o o ° o
w = w o ~ ©
: : T T : :
L L L L L L

fraction of problems for which solver in within a of best
o
N
T
L

—— Default
— - Pure trust region

1 2 3 4 5 6 7 8 9 10

Filter vs. trust-region (CPU time)
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Numerical experience (2)

o9t | i

0.8 4

0.7 7

0.6~ q

p(0)
o
o

|
|
|
|

o4r 4
03f 4

02F— — — 4

0.1 4

— Filter
— LANCELOT

1 2 3 4 5 6 7 8 9 10

Filter vs. LANCELOT B (CPU time)
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Numerical experience (3)

0.8 B

0.7 7

0.6~ q

p(0)
o
«»

|

0.4- q

0.2 4

0.1r -
— Filter
— - Unfettered
T T

1 2 3 4 5 6 7 8 9 10

Filter vs. free Newton (CPU time)
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Filter for unconstrained optimization

‘Again simple idea: ‘ use g;j instead of 6;

g1(:f

0 &2(x)

(full dimension vs. grouping)

Philippe Toint (Namur) April 2009 150 / 323



Derivative free optimization, filters and other topics Filter algorithms

A few complications. ..

But ...

‘g(x) = 0 not sufficient for nonconvex problems!

When negative curvature found:
o reset filter
@ set upper bound on acceptable f(x)

(or...add a dimension for f in the filter)

‘ reasonable convergence theory
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Numerical experience (1)

09

08f -

—— Default ]
Pure trust region
— — LANB

2 3 4 5 6 7 8 9 10

Filter vs. trust-region and LANCELOT B (iterations)
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Numerical experience: HEART6

log of residual

I
10 20 30 40 50 60 70 80
iterations

Filter vs. trust-region and LANCELOT B

Philippe Toint (Namur) April 2009 153 / 323



Derivative free optimization, filters and other topics Filter algorithms

Numerical experience: EXTROSNB

log of residual

I I I I
0 50 100 150 200 250 300
iterations

Filter vs. trust-region and LANCELOT B
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Numerical experience: LOBSTERZ

log of residual

—6F 4
-8l 4
-10 L L I I I
0 50 100 150 200 250 300
iterations

Filter vs. trust-region
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Conclusions

‘ derivative-free optimization possible and efficient ‘

| non-monotonicity definitely helpful |

| filter methods very efficient |

‘ Newton’s behaviour unexplained ‘

| ... more research needed? |
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Convex constraints and interior-point methods

Lesson 4:

Optimization with
convex constraints
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Convex constraints and interior-point methods Projections and the projected gradient path

4.1: Projection algorithms
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Convex constraints and interior-point methods Projections and the projected gradient path

Projections on simple convex domains (1)

y = Pe(y) y

©1Pe(y)

Pe(y) | Pely)

ot [xei if [y]i < [xdis
[PeW)]; = § i if Dxeli <[yl < [xali
[xoi if [li < [yli
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Convex constraints and interior-point methods Projections and the projected gradient path

Projections on simple convex domains (2)

... but also the ordered simplex ...

X3

use those simple projections!
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Convex constraints and interior-point methods Projections and the projected gradient path

The projected gradient path

Define the projected gradient path = the Cauchy arc

p(t,x) = Pe[x — tVxf(x)]

/,‘/ X — tmVxf(x)

p(t,X) = p(tm,X)
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Convex constraints and interior-point methods Projections and the projected gradient path

Two projections

Pr (o[ Vxf(x)]ZC° Pelx — Vi f(x)] — xeC°
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Convex constraints and interior-point methods Projections and the projected gradient path

Measuring criticality

Measure the gain in linearized objective function per step of length 6:

def .
L0) & V. f(x),d
X(X ) x+d€r9-'l,r|rd||§0< (X) >

0(t) = |Pr(x — tg(x)) — x|l m(x,0) = X(GX)
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Convex constraints and interior-point methods Projections and the projected gradient path

The y criticality measure

X)L x(e1)=| | min (VaF(x).d)

@ the feasible reduction in the linearized objective for unit steps

o reduces to ||Vxf(x)]||2 in the unconstrained case

Philippe Toint (Namur) April 2009 167 / 323



Convex constraints and interior-point methods Projections and the projected gradient path

The projected gradient path and y
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Convex constraints and interior-point methods Projections and the projected gradient path

The generalized Cauchy point

’Approximately minimize my(-) on the PG path‘

Find
def
XEC = P]:[Xk — t,fcgk] = Xi + SEC (t,fc > 0)

such that

Mi(xgS) < F(xk) + Kus(8k,> Si<)  (below linear approximation)
and either

mi(xg€) > f(xk) + Kus(gk, s-)  (above linear approximation)

or
1P (xscy[—8kIl < Kepol (gk, 5g7)| (close to path'’s end)

or
sl > Kealk  (close to TR boundary)
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Convex constraints and interior-point methods i ns and the projected gradient path

Searching for the GCP (1)

my(0 + s) = —3.57s; — 1.5sp — s3 + 5150 + 3522 + sps3 — 2s§ such that s < 1.5 and A < 2.8

Philippe Toint (Namur) April 2009 171




Convex constraints and interior-point methods i ns and the projected gradient path

Searching for the GCP (2)

my(0 + s) = —3.57s; — 1.5sp — s3 + 5150 + 3522 + sps3 — 2s§ such that s < 1.5 and A < 1.8
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Convex constraints and interior-point methods Projections and the projected gradient path

Useful properties

Piecewise search for x“ well-defined and finite

0(-,-), x(-,+) and m(-,-) are continuous
0(x,-) is non-decreasing

X(x,+) is non-decreasing

7(x,-) is non-increasing

X (k) < Xk, [IseE N + 201 Prugey[—gxd
—(8K: 5k) = X (xk, [|secll) = 0

0(xk; 1) 2 t[[Pr(x(ey) [= Vil (i)l

X(x) = x| < Lix =y
if Vxf(x) is continuous on a bounded level set

000 000O0CO0
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Convex constraints and interior-point methods Trust-region method for convex constraints

Cauchy decrease along the projected gradient path

‘The Cauchy condition: ‘ minimize my long the projected gradient path

my(xk) — me(xk + Sk) > KerXk Min [ Ay, 1]

Xk
L+ [[Hkll”

Idea: Linesearch conditions imply

M (xk) — Mi(XEC) = Kuvs| (8 SET) | = FuwsX (Xks [|SE°IT)
but need
(8K sk())]

||PT(P[Xk—thk])[7gk]H S K’epp Ak

Now define 7y def min[1, xk] < xk. Then

. Tk
mk(xk) — mk(x,fc) Z I-idcpﬂ'k min [E,Ak]
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Convex constraints and interior-point methods Trust-region method for convex constraints

How far can we turn the handle?

As above. ..

All limit points are first-order critical, i.e.

lim 7, =0
k—oo

But ...
does the active set settle ?

(needed for 2nd-order convergence or rate)
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Convex constraints and interior-point methods Trust-region method for convex constraints

Active constraints identification (1)

Require further assumptions: let £, = { limit points of {x.} }

® Vx. € Ly, {VxCi(x:)}ieA(x.) are linearly independent
o Vx, € Ly, —V,f(x) € ri{ N (x)}
o Vk, A(xg€) C A(xk + s«)

For each connected component of limit points £(x.) C L,
there exists a set A, C {1,..., m} for which

A(x.) = Ay for all x, € L(xx).

Idea: connectivity + uniqueness of Lagrange multipliers
= each L(x,) belongs to a single facet of C
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Convex constraints and interior-point methods Trust-region method for convex constraints

Active constraints identification (2)

There exists a ¢ € (0, 1) such that

dist(x,, £') > ¢
for every x, € L, and each compact connected component of
limit points £’ such that A(L") # A(x.).

Idea: continuity + compactness = well separated

There exist § € (0, 1¢), ¥ € (0,1), and k; > 0 such that, for
k > kq, there is a £*k such that

xk € V(Lik,0) = {x € R" | dist(x, Lsx) <}
and

A(x) C A(L.k) for all x € V(Lik, 9).

Idea: partition the complete sequence into convergent subsequences
= each xj near a unique L.k
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Convex constraints and interior-point methods Trust-region method for convex constraints

Active constraints identification (3)

There exists ko > kqi such that, if for some k > ko,

Jj € A(Lk) and j & A(xg),
then, for some ¢, € (0,1) independent of k and j,

Tk = €Ex.

|dea: complicated (uses criticality measures for incomplete constraint sets)
= incomplete local A(xx) implies not critical

There exists an active set A, such that
and, for all k sufficiently large,

A(xk) = A(x) = A,
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Convex constraints and interior-point methods Trust-region method for convex constraints

Further convergence results

...and now it works in 7 (xx) ( now continuous for large k ) with

Vsxmy remplaced by Vxxmﬁ ~ Vol (Xk, Vi)

@ convergence to isolated critical points

o (generalized) eigen-points for the Lagrangian
(needs consistent multiplier estimates!)

@ convergence to second-order points

o fast asymptotic rate of convergence
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Convex constraints and interior-point methods Barriers and interior points

4.2: Barrier methods
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Convex constraints and interior-point methods Barriers and interior points

A simple case

Consider and build

¢ (x, 1) 2 £(x) — e, log(x)) = szg X))

Under acceptable assumptions,
xi(pt) = arg min ¢*¥(x, p1)
X
converge to the solution of the problem

in f
e )

when p N\, 0.
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Convex constraints and interior-point methods Barriers and interior points

How it works

2
Example: miny x>0 120 [xf(xl 1) —x+ 1] +10(4 + x1)2 — 150

2

L
0.6 0.8 1.2

original objective function
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Convex constraints and interior-point methods Barriers and interior points

How it works. . .

2
Example: miny x>0 120 [xf(xl 1) =+ 1] +10(4 + x )2 — 150

2

1.8

1.6

14

1.2

1

0.8

0.6

0.4

0.2

0 y
0 0.2 0.4 0.6 . . . 16

original objective function + barrier (u = 50)
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Convex constraints and interior-point methods Barriers and interior points

How it works. . .

2
Example: miny x>0 120 [xf(xl 1) =+ 1] +10(4 + x )2 — 150

18

original objective function + barrier (u = 25)

Philippe Toint (Namur) April 2009 181 / 323



Convex constraints and interior-point methods Barriers and interior points

How it works. . .

2
Example: miny x>0 120 [xf(xl 1) =+ 1] +10(4 + x )2 — 150

2

TT

1.8
1.6
14

1.

N

i

0.

©

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1 12 1.4 1.6

original objective function + barrier (u = 10)
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Convex constraints and interior-point methods Barriers and interior points

How it works. . .

2
Example: miny x>0 120 [xf(xl 1) =+ 1] +10(4 + x )2 — 150

2

18

1.6

14

1.2

1

0.8

0.6

0.4

0.2

0
original objective function + barrier (= 5)
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Convex constraints and interior-point methods Barriers and interior points

How it works. . .

2
Example: miny x>0 120 [xf(xl 1) =+ 1] +10(4 + x )2 — 150

2

18

1.6

14

1.2

1

0.8

0.6

0.4

0.2

0

1.2 1.4

original objective function + barrier (= 2)
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Convex constraints and interior-point methods Barriers and interior points

Other barriers: reciprocals

(1), R(L) and R(2))
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Convex constraints and interior-point methods Barriers and interior points

The barrier function

S(x, 1) = F(x) + b(x, 1) = F(x) — (e, log(x))

Assume:

@ b(x, ) is defined for all x € ri{C} and all > 0, and is
C2(ri{C}) w.r.t. x.

@ Vi > 0,e> 0 (e, 1) > 1 such that

[ Vaocb(x, )| < Koon (€, 1)

Vx € C such that dist(x,dC) > e
© limp—c0 b(yp, 1) = +00 V> 0 and V{y,}52 such that

yp €ri{C} and lim dist(y,,dC) = 0.
p—00
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Convex constraints and interior-point methods Barriers and interior points

An elementary barrier algorithm

Algorithm 4.1: A simple barrier algorithm

Step 0: Initialization. Given: xg € ri{C}, o > 0. Set k = 0.

Step 1: Inner minimization. (Approximately) solve the problem
mXin ¢(X7 /’Lk)

by applying an , starting from
a suitable starting point x, o € 1i{C}.
Let xx+1 be the corresponding (approximate) solution.
Step 2: Update the barrier parameter. Choose px11 > 0 such that
lim p, =0.

k—o0

Increment k by one and return to Step 1.
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Convex constraints and interior-point methods Barriers and interior points

A first inner primal algorithm

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Algorithm 4.2: Inner primal 1

Initialization. Given: xk o » Do, M1, M2, Y1, Y2

Compute ¢(xo, p1k), set j = 0.

Model definition. Define myj of ¢(xkj + s, puk) in B j of the form
micj(xicj +8) = mij(xij +5) ;

Step calculation. Compute si; that sufficiently reduces my ; and

such that Xk,j + Sk,j € Bk,j.

Acceptance of the trial point.

Otherwise compute ¢(xk,j + sk, k) and

(X i) — P(Xk,j + Sy k)

M (Xkj) = M (Xej + Sk.j)

Then if pxj > n1, define xx j+1 = Xk,j + sk,j; otherwise define xx jy1 = Xk ;.

Pk,j =

Trust-region radius update. Set
[Akj; 00) if prj > 12,
Apjnn € 128k, Ak ] if prj € [m,m2),
[Akj 2Bkl i pej <
Increment / by one and go to Step 1.
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Convex constraints and interior-point methods Barriers and interior points

Models and assumptions

Use separate models for f and b!

Micj(xij + 5) = m j(xiej + 5) + mp j(xej + s),

Assume:

o Vk,e >0, Ikpomn(e, k) > 1 Vk,j >0,

HVXme’J-(X, Nk)” < K‘bbmh(ev Nk)

Vx € By j N C such that dist(x,dC) > e.
e Vk,j >0 Vx e By jNnri{C},

19 s0emf ;G <
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Convex constraints and interior-point methods Barriers and interior points

(Inner) convergence properties

There exists fne(k) € (0,1) such that
dist(xk j, 0C) > Kma(k)

for all j. Moreover, for all j and all x such that |[x — x ;|| <
(1 — gk )dist(x;, dC), we have that

| Vo b(x, )| < Foon(Sk Kman(K), 12k)

and
||Vxxm/€,j(xk,j> N)” < bemh(§k K‘mdb(k)7 ,Uk)

If Akj < (1 —k)Emar(k), then

|3(Xkj + Sk 1) — Micj(Xiej + k)| < Fuon(K) AT

...and all the nice convergence properties follow!
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Convex constraints and interior-point methods Barriers and interior points

Constrained Cauchy and eigen-points (1)

restrict the step, not the trust region!

But ... what of sufficient decrease 777
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Convex constraints and interior-point methods Barriers and interior points

Constrained Cauchy and eigen-points (2)

Redefine the Cauchy arc:

def
x(5(t) S {x | x = xuj—tgrj, t >0, tllgijll < (1—<k)di, and x € By},

. 8k,j
k)= mieg(655) = gl min [ €91, 25,0 — G,
)

...etc, etc, etc ...
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Convex constraints and interior-point methods Barriers and interior points

A second inner primal algorithm

Algorithm 4.3: Inner primal 2

Step O: Initialization. Given: xk,0 € ri{C}, Ak,0, M1, 72, 71, 72, sk € (0,1).
Compute ¢(xk,0, k), set j = 0.

Step 1: Model definition. Define my j(xk,j + s) = mf j(xcj + ) + mg j(xij + 5)

Step 2: Step calculation. Define dk; = dist(x« j, OC). Compute s ; such that

and such that it sufficiently reduces my_j
Step 3: Acceptance of the trial point. Compute ¢(xk,j + sk.j, k) and
P(Xkjy pik) = O(Xk.j + Skyj» 1k)
Mici(Xkj) = M (Xj + skj)
Then if Pk.j > 1, define Xk, j+1 = Xk,j + Skj; otherwise define Xk,j+1 = Xk,j-

Pk,j =

Step 4: Trust-region radius update. Set
AYNRS)) if prj = 12,
D1 € 128k, D] if prj € [m,m2),
Ak, 28k i prj <m.
Increment j by one and go to Step 1.
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Convex constraints and interior-point methods Barriers and interior points

The log barrier and its derivatives

Return to:

g 1)

The log barrier
b(X7 ,U,) = —,u(e, |Og(X)>

giving
¢ (x, ) = f(x) — p{e, log(x))

Using the notation X = diag(xi, ..., Xxn), we obtain that

Vib(x, ) = —puXte and Vacb(x, 1) = pX"2e
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Convex constraints and interior-point methods Barriers and interior points

The primal log-barrier algorithm

Algorithm 4.4: Primal log-barrier algorithm

Step 0: Initialization. Given: xo > 0, o > 0, and the eD(,u) and
€“(u). Set k = 0.

Step 1: Inner minimization. Choose a value ¢« € (0,1). Approximately minimize
the log-barrier function ¢'°8(x, uux) = f(x) — (e, log(x)) starting
from xx and using an inner algorithm in which

M (s + 5) = i (e, log(x))) — (X fe,s) + (s, X, 5))

Stop this algorithm as soon as an iterate xx,; = xk41 is found for which

and xx+1 > 0.

Step 2: Update the barrier parameter. Choose pik+1 > 0 such that
limk—oo ptk = 0. Increment k by one and return to Step 1.
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Convex constraints and interior-point methods Barriers and interior points

Convergence of the primal log-barrier algorithm (1)

OK for first order! ...but existence of limit points not guaranteed
Define

A subsequence {xy; } is consistently active w.r.t. the bounds if,
for each i =1,..., n, either

lim [x]; =0 or liminf[x]; > 0.
j—oo j—0o0

(Each bound constraint is asymptotically active or inactive for the
complete subsequence.)

Al < e {1, n} | Jim [ = 0}.

finite number of such subsequences = a partition of {x}
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Convex constraints and interior-point methods Barriers and interior points

Convergence of the primal log-barrier algorithm (2)

Finally,

Under appropriate assumptions,
ILnlL'lf[va(Xk)]" >0, (i=1,...,n).
Furthermore, for every consistently active subsequence {xy,},
Jim [Vief (o )li =0, (P  Afxi })

and
liminf(u, [V f(xx,)]u) >0
{—o00

for each u | [u]; = 0 whenever i € A{x,}.
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Convex constraints and interior-point methods Barriers and interior points

The primal-dual framework (1)

In practice, as xx \, 0, Vioemy j(xkj) + uka_f causes slow progress.
replace this by

VxMiej (k1) + X | Zi s

where Z) ; is a bounded positive diagonal.

Alternatively: | KKT conditions for original problem:

Vim(x)—z=0, XZ=0, x>0, z>0,

Perturb:

Vim(x)—z=0, XZ=pe x>0, z>0.
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Convex constraints and interior-point methods Barriers and interior points

The primal-dual framework (2)

Now write Newton's method for the perturbed problem:
Viocmiej(Xkj)Bxij — DBzij = —8kj + Zkj;

Xk’jAZk’j + ZkJAXkJ = pke — XkJZkJe,

Xk’j+AXkJZO, ZkJ+AZk’jZO.

Substituting the 2nd equation into the 1st:
[Vxxka(Xk,j) + Xk_,lek,j] Axij == [gk,j - Xy je

But
8ij — 1Xiej € = Vit (x, i)

Hence

[vxxmk,j(xk,j) + X;ZJ-le,j] Axyj = =V (x, k)
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Convex constraints and interior-point methods Barriers and interior points

The primal-dual inner algorithm (1)

Algorithm 4.5: Inner primal-dual algorithm

Step 0: Initialization. Given: xk,0 € ri{C}, » Do, M1, M2, Y172, Ske
Compute f(xx,0), set j = 0.

Step 1: Model definition. In By, define
M (Xkj + ) = micj(xe +5) — [<e7 log(xk.)) + (Xi)'e, 5)} -3

Step 2: Step calculation. Define di ; = dist(x,j, C). Compute a step sy,; such

that xxj + sk € Bk, diSt(Xk,j + Sk.j, 80) > Gkdy,j, and

| ekl
mp (k) —mi (ke j+sk,j) = NmHX{\lgk,jH min [?
kiJ

Step 3: Acceptance of the trial point. Compute ¢'°8(xx ; + Sk j, j1x) and

¢ (X, 11k) — &% (Xuej + Sk, 1k)
My (Xij) — Mij(Xkj + Sk.j)

Pk,j =

If prj = m, then X ji1 = Xkj + Sk j, else Xijy1 = Xk j.

. 2 2 22
Ay (1 — Ck)dk,j:| ) —Tk,j min [-rk,j, A (1=ck) dk,j] }
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Convex constraints and interior-point methods Barriers and interior points

The primal-dual inner algorithm (2)

Algorithm 4.6: Inner primal-dual algorithm (2)

Step 4: Trust-region radius update. Set

[Akj,00) if prj =2,
Apjir € {128k, Dyl if prj € [m,m2),
[k, 2Bk if pry <
Step 5: Update the dual variables. Increment j by one,go to
Step 1.
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Convex constraints and interior-point methods Barriers and interior points

The primal-dual outer algorithm

Algorithm 4.7: Outer primal-dual algorithm

Step 0: Initialization. Given: xo > 0, zp > 0, o > 0 and the
e®(n), € (p), €(u). Set k = 0.
Step 1: Inner minimization. Choose <x € (0,1). Approximately minimize ¢'8(x, px)
from xx using the primal-dual inner algorithm. Stop as soon as an iterate
(Xk,js 2k,j) = (Xk+1, Zk+1) is found for which
[Vf (k1) = zicsa || < €2 (),

Amin[Vaoof (%i11) + Xih Zisa] > —e™ (i)

Xk+1 > 0 and Zk+1 > 0.
Step 3: Update the barrier parameter. Choose pik+1 > 0 such that limy_ o px = 0.
Increment k by one and return to Step 1.

and

choosing z j = —uka_Jle = primal algorithm!

Philippe Toint (Namur) April 2009 199 / 323



Convex constraints and interior-point methods Barriers and interior points

Updating the dual variables

How to compute in practice? Newton equations give
Zrjrl = uXp te — X 1 Zi sk
Zk,j+1 = Kk j € kj LSk

... but what about z j,; > 07
Define

_ . ~1 ~1 ~1
Z= |Kymin <e’ Zk jy Mka,j—&—le) y Rzuu Max (ea Zk,js My~ €, ,U/kaJ_He)

and choose

Ziiel = Prlzijia] i Xijin = xej + sk
J+1 = ;
J Zk.,j if Xk j+1 = Xk js
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Convex constraints and interior-point methods Barriers and interior points

Properties of the dual variables

Then Zk j+1 > 0 and

1
[Zk ']I' < Rz MaX |:—7 1:| .
/ [xkjli

If, furthermore,
lim [|sc |l =0 when lim | g ;|| =0
j—00 j—00

then

lim "ZkJ_MkX;(_'le“ —0 if lim |l ] = 0.
j—o0 J Jj—o0

= asymptotically exact barrier Hessian for fixed p
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Convex constraints and interior-point methods Barriers and interior points

Scaling of the inner iterations

Ideally,

1Ty = 1 9 me ey =\ [+ X2 Zi 1)

Under the usual assumptions, || - || is uniformly equivalent to
the Euclidean norm for fixed k.

J T Sk

ri{C}

= all usual convergence properties for fixed k
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Convex constraints and interior-point methods Barriers and interior points

Scaling of the outer iterations (1)

Scaled tests:

[V f (k1) = Zkrallperny < €0 (k)

| Xk+1Zk+1 — prd]l2 < € (pk),

1

_1 _1
Amin | M 2 (Viodf (i) + Xig Zer )M 2 | = —€5 (),

with
def

Mis1 S Hier + X h Zira

But this matrix is unbounded when k  oc!
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Convex constraints and interior-point methods Barriers and interior points

Scaling of the outer iterations (2)

Fortunately,

Under the usual assumptions, the convergence properties are
preserved if

D
k—oo [k
and c
(i) Ve _ ;
k— o0 min,-[xk+1],- i
Moreover

If exact derivatives are used, the €®(1x) can be chosen to ensure
componentwise near quadratic rate of convergence.

This is quite remarkable!
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Convex constraints and interior-point methods Barriers and interior points

Barriers for general convex constraints

Now,
¢ (x, 1) = f(x) — ple, log(c(x)))

The primal-dual model becomes
M (X + k) = M (ks + Skj) + MR (X + Skj)s
with
mgi(xij+ s) = k(e log(c(xks))) — ma(C ™ (xk, ) e, ALk ,j)sk,))

+ 1Ak ) Sk [CH(30,j) Y JA(xK,j ) k)

m
=1 iilifskss ViGilxe,)se,s)

i=1

Quite a mouthful. .. but otherwise everything is OK!
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Convex constraints and interior-point methods Barriers and interior points

The outer primal-dual algorithm for convex constraints

m
def ,T -1
Vaocl(Xi,js Yiej) = Voof 0 j) = D Wk, 1i VoG ) Gij = AT (4, )CT 0%, ) Yie jACGK, )
i=1

Algorithm 4.8: Primal-dual algorithm for convex constraints

Step 0: Initialization Given: xo | ¢(x0) > 0, yo > 0, po > 0, €“(1), €°(p) and €5(p).
Set k = 0.

Step 1: Inner minimization Choose ¢« € (0,1). Approximately minimize
¢ (x, i) = £(x) — (e, log(c(x)))
from xi. Stop as soon as (Xk,j, Yk,j) = (Xk+1, Yk+1) is found such that
[V (xes1) — AT (xest) i || < €2 (i),

1€ (xks1) Yierre — puid || < € (pas),
Amin [Vl (Xk41, Y1) + Grt1] > —GE(,LLk)

and
(c(xk+1) Y1) = 0.

Step 3: Update the barrier parameter. Choose pik+1 > 0 such that
limk—oo ptk = 0. Increment k by one and return to Step 1.
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Lesson b:

Sparsity, partial separability

and multilevel methods:
exploiting problem structure
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The use of problem structure for large-scale applications

Outline

@ Sparsity and partial separability
@ Multilevel problems
© Bibliography
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The use of problem structure for large-scale applications Sparsity

5.1: Sparsity and

partial separability
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The use of problem structure for large-scale applications Sparsity

Sparsity

A matrix is sparse when the proportion and/or distribution of
its zero entries allows its efficient numerical usage

An (oriented) graph is asociated with every sparse (non)-
symmetric matrix

47 Isotopes
279 Rates
75.3% Sparse
Flows (#/sec)
1.85E+14
1.35E+11 LY

9.77E+07
7.09E+04

aete
thit i

00s000s0000050000000005500
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The use of problem structure for large-scale applications Sparsity

Main benefits of sparsity

lSparsity and optimization = Hessian (and) Jacobian matricesl

@ very important time/space savings in solving Newton's equations
(unconstrained or KKT)
@ factorizations (reduced fill-in)
@ iterative methods (fast matrixxvector products)
@ sometimes important in approximations schemes
@ derivative-free methods (makes the number of function evaluations =
linear in the number of variables)
@ finite-difference approximations
© quasi Newton methods

@ a path for parallel computations

exploiting sparsity = an active algorithmic industry!
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The use of problem structure for large-scale applications Sparsity

The Curtis-Powell-Reid algorithm for estimating sparse

Jacobians

Finite differences for a Jacobian column:

c(x + hej) — c(x)
h

How many finite differences for estimating a 5 x 5 Jacobian

with the structure:

Je,- ~

. .
° .
o o o ?
[ ] [ ]
o o .

Philippe Toint (Namur) April 2009 214 / 323



The use of problem structure for large-scale applications Sparsity

The Curtis-Powell-Reid algorithm for estimating sparse

Jacobians

Finite differences for a Jacobian column:

c(x + hej) — c(x)
h

Je,- ~

How many finite differences for estimating a 5 x 5 Jacobian

with the structure:

Philippe Toint (Namur) April 2009

214 / 323



The use of problem structure for large-scale applications Sparsity

The Curtis-Powell-Reid algorithm for estimating sparse

Jacobians

Finite differences for a Jacobian column:

c(x + hej) — c(x)
h

Je,- ~

How many finite differences for estimating a 5 x 5 Jacobian

with the structure:

Philippe Toint (Namur) April 2009

214 / 323



The use of problem structure for large-scale applications Sparsity

The Curtis-Powell-Reid algorithm for estimating sparse

Jacobians

Finite differences for a Jacobian column:

c(x + hej) — c(x)
h

Je,- ~

How many finite differences for estimating a 5 x 5 Jacobian

with the structure:

Philippe Toint (Namur) April 2009

214 / 323



The use of problem structure for large-scale applications Sparsity

The Curtis-Powell-Reid algorithm for estimating sparse

Jacobians

Finite differences for a Jacobian column:

c(x + hej) — c(x)
h

Je,- ~

How many finite differences for estimating a 5 x 5 Jacobian

with the structure:

c(x + her + hes) — c(x) J
Co o ~
h h h

Jes =~

c(x + hey + hes) — c(x) Jeu c(x + hes) — ¢(x)

3 finite-differences! Curtis, Powell and Reid (1974), Steihaug et al.
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The use of problem structure for large-scale applications Sparsity

The CPR algorithm for estimating sparse Jacobians

Algorithm 5.1: CPR algorithm

Build the column groups.
Place the columns in as few groups as possible such that
two columns in the same group have their nonzero entries in
different rows

Estimate the finite differences.

Q Build a difference vector h =} o6, hiej
@ Compute v = c(x + h) — c(x)

Reconstruct the Jacobian.

Jij =~ % for all j such that j € group

i
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The use of problem structure for large-scale applications Sparsity

A graph colouring interpretation

Consider the intersection graph for the columns:
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The use of problem structure for large-scale applications Sparsity

A graph colouring interpretation

Consider the intersection graph for the columns:

W

minimize the number of colours,

such that adjacent nodes have different colours

can build column groups using heuristic algorithms for graph colouring
Coleman and Moré, (1983)
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The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (1)

Question: | How many finite differences for estimating a 8 x 8 symmetric
Hessian with the structure:

L] [ ] [ )
[ ] [ )
L] [ ] L] L]
[ ] [ ) ° ?
L] L] o [ ]
L] [ ] [ ) (]
[ ) L]
[ ) () (]
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The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (1)

How many finite differences for estimating a 8 x 8 symmetric

Hessian with the structure:

Exploiting symmetry in CPR ( a direct method)

Powell and T (1979), Coleman and Moré (1984)
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The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Can we do better?
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The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Can we do better?

Apply CPR on the lower triangular part of the Hessian
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The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Can we do better?

But what about the conflicts with the upper triangular part?
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The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Can we do better?

[ ] ° [ ]
[ ) [ )
° ° L] L]
L] ° ]
(] ° [ ] °
L] L] L] L]
L] ° L]
* * *

A more efficient substitution method. ..

Powell and T (1979), Coleman and Moré (1984) for a graph interpretation
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Estimating sparse Hessians (2)

Can we do better?

[ ] ° L]
L] °
* * o L]
L] ° L]
(] ° L] °
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L] L]
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The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Can we do better?

* (] L]
* ]
[ ] (] ° °
L] ° L]
L[] ° (]
L] L] L] L]
[ ] ° L]
° L] °

A more efficient substitution method. ..

Powell and T (1979), Coleman and Moré (1984) for a graph interpretation
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The use of problem structure for large-scale applications Sparsity

Optimized version for PDE stencils

the 5-points Laplacian operator in 2D

(non-symmetric and symmetric)
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The use of problem structure for large-scale applications Sparsity

Partial separability

A more geometric concept: Griewank and T. (1982)

f(x) is partially separable iff

p
f(x)= Z fi(Uix) where the matrices U; are of low rank
i=1

e if U; = disjoint columns of the identity matrix = (totally) separable

@ common case: U; = overlapping columns of the identity matrix

P
Fx) = filxs)

element functions, element variables, internal variables u; = U;x
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The use of problem structure for large-scale applications Sparsity

Sources and examples of partially separable functions

Example 1:
f(x1,x2,x3,xa) = fi(x1, x2) + fo(x2, x3, xa) + f3(xa, X5)

Example 2:

f(x1,x2,x3,xa) = A(3x1 +x) + H(—2x2+ x3 —2x4, xa + 3x5)
——— —_———

u uz us

e (nearly) all discretized problems
@ most problems in econometric modelling,

@ ...and a lot more because. ..
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The use of problem structure for large-scale applications Sparsity

Properties of partially separable functions

If f(x) has a sparse Hessian matrix and is sufficiently smooth,
then it is partially separable

(but not conversely: ex : f(x1,...,xn) = > 11 fi(Xi) + fap1(x1 + -+ 4+ xp)

If f(x) =30 fi(Uix) =35, fi(ui), then

p
Vif(x) = > Ul Vifi(ur)
i=1

P
Vi (X) =Y U7 Vaucfi(ui) Ui
=il

(easy to compute, sparsity determined by U;)
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The use of problem structure for large-scale applications Sparsity

The three points Laplacian operator

On a regular geometric grid

2 -1 2 -1
1 2 -1 -1 1 1 -1
-1 2 -1 11
1 2 -1 = +
-1 2 -1
-1 2
1 -1
+ -1 1 + 1 -1 +
11 1 -1

Sum of rank one submatrices (u; = xj+1 — X;)!
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The use of problem structure for large-scale applications Sparsity

Using the partially separable structure

IVery useful for: |

@ quasi-Newton Hessian matrix = sum of elementwise quasi-Newton
low rank submatrices (partitioned updating),

elementwise models in DFO (number of functions evaluations only
dependent of the maximum number of internal variables!),

optimally efficient finite-difference approximations,

(structured trust-regions),

expressing large-scale models.

‘ LANCELOT based on an extension of this concept
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The use of problem structure for large-scale applications Sparsity

Exploitation of the computational tree

use computational tree for f(x) for solving Newton's equations

@ use chain-rule at the top of the computational tree
e multiplicative decompositions (and partially separable)
@ often available from the problem modelling itself

Substantial computational gains

unpublished (?) by T. Coleman (2008)
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The use of problem structure for large-scale applications Multilevel problems

5.3: Multilevel problems
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The use of problem structure for large-scale applications Multilevel problems

Multilevel Optimization: The Problem

min f(x)

x€R”

e f: R™ — R nonlinear, € C? and bounded below
@ No convexity assumption

@ Results from the discretization of some infinite-dimensional problem
on a relatively fine grid for instance (n large)

— lterative search of a first-order critical point x, (s.t. Vf(x.) = 0)
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The use of problem structure for large-scale applications Multilevel problems

Hierarchy of problem descriptions

Assume now that a hierarchy of problem descriptions is available, linked by

known operators

‘ Finest problem description

Restriction | R P 1 Prolongation

‘ Fine problem description

Restriction | R P 1 Prolongation

Restriction | R P T Prolongation

| Coarse problem description

Restriction | R P 1 Prolongation

| Coarsest problem description
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The use of problem structure for large-scale applications Multilevel problems

Grid transfer operators

R; : R" — R"-1

Prolongation

P;: R™-1 — R

SN

ik
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The use of problem structure for large-scale applications Multilevel problems

Sources for such problems

Parameter estimation in

o discretized ODEs

o discretized PDEs

Optimal control problems
@ Optimal surface design (shape optimization)

@ Data assimilation in weather forecast (different levels of physics in the
models)
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The use of problem structure for large-scale applications Multilevel problems

The minimum surface problem

1 1
min / / (1+ (Dxv)? + (8yv)2)% dx dy
v 0 JO

with the boundary conditions: — Discretization using a finite

fx), y=0 0<x<1 element basis

00, x=0, 0<y<1 A
f(x), y=1, 0<x<1
0, x=1 0<y<l1

where

y

f(x)=xx(1—-x)
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The use of problem structure for large-scale applications Multilevel problems

The solution at different levels

n =312 = 961 n = 632 = 3969 n= 1272 = 16129
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The use of problem structure for large-scale applications Multilevel problems

The main issue

| Hierarchy of problem descriptionsl lglobalization technique‘

N /

| Efficiency — Robustness‘

4

[llustration within a trust-region framework

(Unconstrained case)
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The use of problem structure for large-scale applications Multilevel problems

Past and recent developments

Line-search

@ Fisher (1998), Frese-Bouman-Sauer (1999), Nash (2000)
@ Lewis-Nash (2000, 2002)

@ Oh-Milstein-Bouman-Webb (2003)

@ Wen-Goldfarb (2007, 2008)

@ Gratton-T (2007)

@ Gratton-Sartenaer-T (2006, 2008)

@ Gratton-Mouffe-T-Weber Mendonga (2009)
@ Gratton-Mouffe-Sartenaer-T-Tomanos (2009)
@ T-Tomanos-Weber Mendonga (2009)

@ Gross-Krause (2008)
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The use of problem structure for large-scale applications Multilevel problems

On the side of multigrid methods

Consider the linear system (discrete Poisson equation, for instance):

~ (residual equation)

where
@ e=x,—Xx (error) @ x, (exact solution)
e r=b— Ax (residual) e X (approximation)

Expansion of e in Fourier modes shows high (oscillatory) and low (smooth)
frequency components:

Fourier modes
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The use of problem structure for large-scale applications Multilevel problems

Relaxation methods

Basic iterative methods:

e correct the ith component of xi in the order 1,2,....n

e to annihilate the it" component of ry

n

beetli= o (= D2 aybudi + 8]

T\ =LA

[isali = — Z aj[Xt1li — Z aij[xii + [bli

j=i+1

— Solve the equations of the linear system one by one
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The use of problem structure for large-scale applications Multilevel problems

Smoothing effect

Very effective methods at “smoothing”, i.e., eliminating the
high-frequency (oscillatory) components of the error:

NN
AR INIIAARY
TR LT
SIS
S AN TIATTIASS
i R

IS5
) "f"’"“
o0
%

20

error of error after 10 error after 100
initial guess GS iterations GS iterations

But they leave the low-frequency (smooth) components relatively
unchanged
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The use of problem structure for large-scale applications Multilevel problems

Multigrid in linear algebar

Assume now (two levels):

° IA fine grid (f) description‘ Ae=r — Afef =rf

° ‘A coarse grid (c¢) description‘ Ace€ = r€

° ‘Linked by transfer operators‘ A¢ = RATP, e =Ref, rc=Rrf
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The use of problem structure for large-scale applications Multilevel problems

Coarse grid principle

Smooth error modes on a fine grid
“look less smooth” on a coarse grid

—— When relaxation begins to stall at the finer level:

@ Move to the coarser grid where the smooth error modes appear more

oscillatory

@ Apply a relaxation at the coarser level:

e more efficient

o substantially less expensive
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The use of problem structure for large-scale applications Multilevel problems

Two-grid correction scheme

Annihilate oscillatory error level by level:

smooth - -
o Sl e <
IR P 1

= smooth smooth
Oscil. coarse € — (recur) — Smooth coarse €

: P and R are not othogonal projectors!

A very efficient method for some linear systems
(when A(smooth modes) € smooth modes)

Philippe Toint (Namur) April 2009 240 / 323



The use of problem structure for large-scale

Does it work?

applications

Multilevel problems

Smoothing on fine grid only:

000
/g RN
o AT
RS S NN
SIS 1SS S w
o

SRS
SRS
S

k =100

April 2009
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cle
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W-cycle
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The use of problem structure for large-scale applications Multilevel problems

Mesh Refinement

@ | Solve the problem on the coarsest level K -

= Good starting point for the next fine level

° | Do the same on each level K

= Good starting point for the finest level

° ‘ Finally solve the problem on the finest level ‘
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The use of problem structure for large-scale applications Multilevel problems

Full Multigrid Scheme

|Combination of Mesh Refinement and V-cycles‘

I*‘ > - >
° O > b J’
0

o]
A . )
1 U] U] il
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The use of problem structure for large-scale applications Multilevel problems

Return to optimization

‘ Hierarchy of problem descriptions‘ ‘Trust—region technique‘

N /

‘ Efficiency — Robustness ‘

4

Multilevel optimization method‘

Multilevel Moré-Sorensen algorithm: (Hx + Al) s = —gi
T-Tomanos-Weber Mendonga, 2009
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The use of problem structure for large-scale applications Multilevel problems

The framework

Assume that we have:

@ A hierarchy of problem descriptions of f:

{fitico  with  f(x) = f(x)

o Transfer operators, for i =1,...,r:

o |R: R" — R"

(the restriction)

o |PiR" —R"

(the prolongation)

Terminology: a particular 7 is referred to as a level
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The use of problem structure for large-scale applications Multilevel problems

The idea

;21{1" fr(x) = f(x)

— at xg:

minimize Taylor's model of f, around x
in the trust region of radius Ay

L or (whenever suitable and desirable)

at xi: ‘compute Vi (xx) (possibly Hy) ‘ ‘trial step sk

Restriction | R P T Prolongation

use f,_1 to construct a coarse local model of £,
and minimize it within the trust region of radius Ay

— If more than two levels are available (r > 1), do this recursively
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The use of problem structure for large-scale applications Multilevel problems

Example of recursion with 5 levels (r = 4)

Level 4

Level 3

Level 2

Level 1

Level 0

i: level index (0 < i <r)

Notation:
k: index of the current iteration within level /
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The use of problem structure for large-scale applications Multilevel problems

Construction of the coarse local models

[ffi#0 for i=0,...,r—1]

@ Impose first-order coherence via a correction term:

e Impose second-order coherence®™) via two correction terms:
’g|0w = Rgup and Hiow = RHupP

(*) Not needed to derive first-order global convergence

Iffi=0 for i=0,...,r—1]

@ Galerkin model: Restricted version of the quadratic model at the
upper level
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The use of problem structure for large-scale applications Multilevel problems

Preserving the trust-region constraint (1)

Aup - Hmlo )k T Iluwﬁ”

]

— min [A;gw, Ayp — HX/ow,k — Xlow,0

Note: Motivation to switch to co-norm
Gratton, Sartenear, T (2008)
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The use of problem structure for large-scale applications Multilevel problems

Preserving the trust-region constraint (2)

In infinity norm:

Biow k

Llow,0

Llow,k

R(Buyp)

min [A;gwy Aup - HX/ow,k - X/OW.,O”}

Gratton, Mouffe, T, Weber Mendon¢a (2008)

Philippe Toint (Namur) April 2009 252 / 323



The use of problem structure for large-scale applications Multilevel problems

Use the coarse model whenever suitable

o When | [lgiowll < [[Rgupll = % llgupll|  (“Coarsening condition” )
and

o When |[lgiowll < | Reupll > €row
and

@ When
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The use of problem structure for large-scale applications Multilevel problems

Use the coarse model whenever desirable

lTaonr model (Taylor step)l lCoarse model (recursive step)l

! !

lAIternate for efficiency (multigrid) |

|

‘ Be as flexible as possible‘

| Leave the choice even when the coarse model is suitable|

Philippe Toint (Namur) April 2009 254 / 323



The use of problem structure for large-scale applications Multilevel problems

Recursive multilevel trust-region algorithm (RMTR)

At iteration k (until convergence):

° either a Taylor or (if suitable) a coarse local model

(first-order coherent):
o Taylor model: compute a Taylor step

o Coarse local model: lapply the algorithm recursively

@ Evaluate the change in the objective function
@ If achieved decrease ~ predicted decrease, then

e accept the trial point
e possibly enlarge the trust region

else

o keep the current point
o shrink the trust region

o | Impose current trust region C upper level trust region
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The use of problem structure for large-scale applications Multilevel problems

Global convergence

| Based on the trust-region technologyl

@ Uses the sufficient decrease argument (imposed in Taylor's iterations)

@ Plus the coarsening condition (||Rgupll > & ||gupll)

Main result

lim [lgr il =0
k—o00

Gratton, Sartenaer, (2008)
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The use of problem structure for large-scale applications In more details

Intermediate results

At iteration (i, k) we associate the set:

Level 4 L
Level 3 X0
Py
Level 2 YO L. 52 03 A 5 6 *
Py

Level 1 12 .3 4 5 ... o *

Ry P Ry Py
Level 0 0 = 0 1 2 *
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The use of problem structure for large-scale applications In more details

Let

Vi, k) = { (. 6) € R(i, k) | Amje > kg k

|Ajc}

“sufficient decrease”

Then, at a non critical point and if the trust region is small enough:

— Back to “classical” trust-region arguments
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The use of problem structure for large-scale applications In more details

Premature termination

For a recursive iteration (i, k):

A minimization sequence at level / — 1 initiated at iteration (i, k)
denotes all successive iterations at level i — 1
until a return is made to level /

Level 4

Level B YO . e e >
Ps
Level 2 YO o 32 8 e 5 6 *
Py
Ry Py
Level O 0 I
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The use of problem structure for large-scale applications In more details

Properties of RMTR

@ Each minimization sequence contains at least one successful iteration

@ Premature termination in that case does not affect the convergence
results at the upper level

Which allows

@ Stop a minimization sequence after a preset number of successful
iterations

@ Use fixed lower-iterations patterns like the V or W cycles in multigrid
methods
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The use of problem structure for large-scale applications In more details

A practical RMTR algorithm: Taylor iterations

|At the coarsest level \

° using the exact Moré-Sorensen method

(small dimension)

At finer levels
° using a smoothing technique from multigrid

(to reduce the high frequency residual /gradient components)
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The use of problem structure for large-scale applications In more details

SCM Smoothing

Adaptation of the Gauss-Seidel smoothing technique to optimization:

e Sequential Coordinate Minimization (SCM smoothing)

Successive one-dimensional minimizations of the model
along the coordinate axes when positive curvature

@ Cost: 1 SCM smoothing cycle & 1 matrix-vector product
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The use of problem structure for large-scale applications In more details

Three issues

@ How to | impose sufficient decrease in the model ‘ ?

@ How to | impose the trust-region constraintl ?

@ What to ‘do if a negative curvature is encountered ‘ ?
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The use of problem structure for large-scale applications In more details

IStart the first SCM smoothing cycle‘

@ by minimizing along the largest gradient component
(enough to ensure sufficient decrease)

lPerform (at most) p SCM smoothing cycles‘

@ while inside the trust region (reasonable cost)

Terminate

@ when an approximate minimizer is found (Stop)
@ when the trust-region boundary is passed (Stop at the boundary)

@ when a direction of negative curvature is encountered
(move to the boundary and Stop)
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The use of problem structure for large-scale applications In more details

Convergence to weak minimizers

SCM smoothing limits its exploration of the model's curvature to the
coordinate axes — only guarantees asymptotic positive curvature:

o along the coordinate axes at the finest level (i = r)

@ along the the prolongation of the coordinate axes at levels
i=1,...,r—1

@ along the prolongation of the coarsest subspace (i = 0)

| “Weak" minimizers‘

Gratton, Sartenaer, T (2006)
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The use of problem structure for large-scale applications Numerical results

Some numerical flavor

Gratton, Mouffe, Sartenaer, T, Tomanos (2009)

Standard Newton trust-region algorithm (TCG)
Applied at the finest level

Algorithm RMTR
Applied at the finest level

Standard Newton trust-region algorithm (TCG)
Applied successively from coarsest to finest level(*)

Algorithm RMTR
Applied successively from coarsest to finest level*)
(*) Starting point at level i + 1 obtained by prolongating the solution at level
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The use of problem structure for large-scale applications Numerical results

Test problem characteristics

Problem name ny r Type Description
DNT 511 | 8 | 1-D, quadratic Dirichlet-to-Neumann transfer problem
P2D 1.046.529 | 9 | 2-D, quadratic Poisson model problem

P3D 250.047 | 5 | 3-D, quadratic Poisson model problem
DEPT 1.046.529 | 9 | 2-D, quad ratic Elastic-plastic torsion problem
DPJB* 1.046.529 | 9 | 2-D, quadratic Journal bearing problem
DODC 65.025 | 7 | 2-D, convex Optimal design problem
MINS-SB 1.046.529 | 9 | 2-D, convex Minimium surface problem
MINS-OB 65.025 | 7 | 2-D, convex Minimium surface problem
MINS-DMSA 65.025 | 7 | 2-D, convex Minimium surface problem
IGNISC 65.025 | 7 | 2-D, convex Combustion problem

DSSC 1.046.529 | 9 | 2-D, convex Combustion problem

BRATU 1.046.529 | 9 | 2-D, convex Combustion problem
MINS-BC* 65.025 | 7 | 2-D, convex Minimium surface problem
MEMBR* 393.984 | 9 | 2-D, convex Membrane problem

NCCS 103.050 | 7 | 2-D, nonconvex | Optimal control problem
NCCO 103.050 | 7 | 2-D, nonconvex | Optimal control problem
MOREBV 1.046.529 | 9 | 2-D, nonconvex | Boundary value problem

*: with bound constraints
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The use of problem structure for large-scale applications Numerical results

Performance profiles (CPU time)

— FM ||
=— MR
— MF

—— AF
0 1 1 1 1 1 1 1 1 T

10 20 30 40 50 60 70 80 90 100
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The use of problem structure for large-scale applications Numerical results

Zoom on on efficiency (CPU time)

1
0.8 ]
0.6 l_l_a
0.4 ]
0.2 m— M |

: — VR ]

0 | | | | | | | T

1 2 3 4 5 6 7 8 9 10
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The use of problem structure for large-scale applications Numerical results

CPU times

Problem name AF MF MR FM

DNT 5.2 24 .4 4.6 6.7
P2D 1122.8 72.8 569.7 26.0
P3D 626.1 475 18.3 28.8
DEPT 1364.4 69.5 95.4 8.6
DPJB 3600.0 | 1390.0 2477 83.6
DODC 894.8 58.6 184.2 36
MINS-SB 3600.0 | 3600.0 | 3600.0 | 153.9
MINS-OB 1445.6 70.4 116.7 27.5
MINS-DMSA 1196.8 73.4 289.6 18.2
IGNISC 2330.4 | 398.3 488.2 | 398.2
DSSC 3183.8 | 1051.6 122.3 12.1
BRATU 2314.1 236.8 91.7 10.1
MINS-BC 2706.4 | 161.8 524.6 | 140.0
MEMBR 1082.0 | 335.2 292.4 | 154.0
NCCS 3600.0 | 3600.0 279.5 | 331.9
NCCO 3600.0 | 3600.0 | 3589.6 | 224.2
MOREBV 3600.0 | 704.9 | 3600.0 41.7

Best Second best
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The use of problem structure for large-scale applications

Numerical results

A glimpse at the solution process

Figure 2
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Lesson 6:

Cubic and quadratic
regularization methods:
a path towards
nonlinear step control
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Regularization methods and nonlinear step control

Outline

© Regularization for unconstrained problems

@ cubic
@ quadratic

@ Nonlinear step control

© Cubic regularization for constrained problems
@ Conclusions

© Bibliography
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Regularization techniques
for unconstrained Problems
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

The problem

We return to the unconstrained nonlinear programming problem:
minimize f(x)
for x € R" and f : R” — R smooth.
Important special case: the nonlinear least-squares problem
minimize f(x) = 1||F(x)|?

for x € R" and F : R" — R™ smooth.
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Unconstrained optimization — a “mature” area?

minirlgnize f(x) where f € C' (maybe C?)
xe

Currently two main competing (but similar) methodologies

o | Linesearch methods|

e compute a descent direction s, from xi
@ set X1 = Xk + Sk to improve f

@ | Trust-region methods ‘

e compute a step sx from x, to improve a model my of f
within the trust-region ||sk|| < A

o set xx11 = Xx + Sk if mi and f “agree” at xx + s

o otherwise set xx11 = xx and reduce the radius A
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

A useful theoretical observation

Consider trust-region method where

‘ model = true objective function

Then
@ model and objective always agree

@ trust-region radius goes to infinity
= |a linesearch method \

Nice consequence:

‘ A unique convergence theory! ‘

(Shultz/Schnabel /Byrd, 1985, T., 1988
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

The keys to convergence theory for trust regions

The Cauchy condition:

my(xk) — m(xk + sk) > Krr||gk|| min [%7 Ak]

The bound on the stepsize:

sl <A

And we derive:

Global convergence to first/second-order critical points
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Is there anything more to say?

Observe the following: if

@ f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f(x+s) = f(x)+(s,g(x)) + (s, H(x)s)
+ 31— a)(s, [H(x + as) — H(x)]s) da
< f(x) + (s, 8(x)) + 4(s, H(x)s) + iL][|s]3

m(s)

— reducing m from s = 0 improves f since m(0) = f(x). ‘
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

The cubic regularization

Change from

min  f(x) + (s,8(x)) + (s, H(x)s) s.t. ||s]| < A

s

to

min  f(x) + (s, g(x)) + i(s, H(x)s) + o|s]®

s

o is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard /Erdmann, Nesterov/Polyak, Cartis/Gould/T)
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Cubic regularization highlights

| Flx+5) < m(s) = £(x) +sTg(x) + 3T H(x)s + 3L]Is]l3

@ Nesterov and Polyak minimize m globally

o N.B. m may be non-convex!
o efficient scheme to do so if H has sparse factors

@ global (ultimately rapid) convergence to a 2nd-order critical point of f

@ better worst-case function-evaluation complexity than previously
known

Obvious questions: ‘

@ can we avoid the global Lipschitz requirement?

@ can we approximately minimize m and retain good worst-case
function-evaluation complexity?

@ does this work well in practice?
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Cubic overestimation

o fec(C?
o f, g and H at xi are fi, gx and H,
@ symmetric approximation By to Hy

@ By and Hy bounded at points of interest

Use

@ cubic overestimating model at xx
_ T T 3
mi(s) = fic+ 5 8k + 35" Bis + Joulsl2
e oy is the iteration-dependent regularisation weight

o easily generalized for regularisation in My-norm ||s||p, = \/sT Mis
where M is uniformly positive definite
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Adaptive Regularization with Cubic (ARC)

Algorithm 6.1: The ARC Algorithm

Step 0: Initialization: xg and og > 0 given. Set kK =0

Step 1: Step computation: Compute s, for which | my(sk) < my(sy)

Cauchy point: s = —agg, & aj = arg min my(—agk)
acRy

f(xk) — F(xk + sk)
f(Xk) — mk(sk)

Step 2: Step acceptance: Compute py =

Xk + Sk if Pk >

and set x = .
ktl { Xk otherwise

Step 3: Update the regularization parameter:

Ok4+1 €
(0, 04] if p > very successful
[0k, y10K] if < pk < successful
[v10k, Y20«] otherwise unsuccessful
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Local convergence theory for cubic regularization (1)

The Cauchy condition:

18] Al
1+ [[Hill”\ ok

mi(xk) — mi(xk + sk) > Kerllgkl| min

The bound on the stepsize:

H
lsell < 3max |10l [l
Ok Ok

(Cartis/Gould/T)
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Local convergence theory for cubic regularization (2)

And therefore. . .

I =
Jim {lgk|l =0

Under stronger assumptions can show that

If s, minimizes my over subspace with orthogonal basis Qj,

lim Q/ H,Q, =0
k—o0
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Fast convergence

For fast asymptotic convergence = need to improve on Cauchy point:
minimize over Krylov subspaces
. . 1
o g stopping-rule: [[Vsmy(si )| < min(1, [|gl|2)llgxll
o s stopping-rule: [[Vsmy(si)|| < min(1, [|sk]| )llgkll

If By satisfies the Dennis-Moré condition

1(Bk — Hi)skll/ skl — O whenever ||gx|| — 0
and xx — X, with positive definite H(x;)

= Q-superlinear convergence of xx under the g- and s-rules

If additionally H(x) is locally Lipschitz around x, and
1(Bk — Hi)sill = O(llsk1*)

= Q-quadratic convergence of x; under the s-rule

Philippe Toint (Namur) April 2009 289 / 323



Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Function-evaluation complexity

How many function evaluations (iterations) are needed to ensure that

gkl < €?

@ so long as for very successful iterations o411 < y304 for v3 <1
= basic ARC algorithm requires at most

P‘—g—‘ function evaluations
€

for some k¢ independent of €

o if H is globally Lipschitz, the s-rule is applied and additionally sy is
the global (line) minimizer of my(ask) as a function of «
— ARC algorithm requires at most

(2—72} function evaluations
€

for some kg independent of
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Minimizing the model

‘ m(s)=f+sTg+ 1s"Bs+ lofs|3

Derivatives:

e \=ols|2
o Vom(s) =g+ Bs+ As

o Vim(s) =B+ Al + X <H§H> <H§H> T

Optimality: | any global minimizer s, of m satisfies

(B4 Al)s. = —g
o A = olls.ll

@ B+ A,/ is positive semi-definite
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The (adapted) secular equation

Require
and
Define s(\):
(B+X)s(A\) =—g
and find scalar A as the root of secular equations
A 1 o A
sA)[[2—42=0 o +—~+——-5=0 o A —0=0
Il =7 [ECY] SO
@ values and derivatives of s(\) satisfy linear systems with symmetric
positive definite B + A/
@ need to be able to factorize B + A/
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Plots of secular functions against A

Example: g = (0.25 1)7, H = diag(—1 1) and 0 =2

A 1 o A

Il =5 =0 1y "2 =0 sy 770
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Large problems — approximate solutions

Seek instead global minimizer of m(s) in a j-dimensional (j < n) subspace
SCR”

g € S = ARC algorithm globally convergent

Q orthogonal basis for § = s = Qu where

u= arg mli?r} fF+u™(QTg)+ ™ (QTBQ)u+ u|3
ue

— use secular equation to find u

if S is the Krylov space generated by {Big}{:;é
— QTBQ = T, tridiagonal
= can factor T + A/ to solve secular equation even if j is large

@ using g- or s-stopping rule = fast asymptotic convergence for ARC

using s-stopping rule = good function-evaluation complexity for
ARC
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The main features of adaptive cubic regularization

And the result is. ..

| longer steps on ill-conditioned problems |

‘ similar (very satisfactory) convergence analysis ‘

| best function-evaluation complexity for nonconvex problems |

| excellent performance and reliability |
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Numerical experience — small problems using Matlab

Performance Profile: iteration count — 131 CUTETr problems

09 e ==

0.8

0.4" b

fraction of problems for which method within a of best

01f ACO - g stopping rule (3 failures) H
= = = ACO - s stopping rule (3 failures)
= = trust-| reglon (€] fallures)
0 I I I I T
1 15 2 25 3 35 4 4.5 5
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The quadratic regularization for NLS (ARQ)

Consider the Gauss-Newton method for nonlinear least-squares problems

Change from

min %HC(X)Hz + (s, J(x) Tc(x)) + (s, J(x)TJ(x)s) st. ||s| <A

to

min  [lc(x) + J(x)s| + 1o]s|?

o is the (adaptive) regularization parameter

(idea by Nesterov)
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Quadratic regularization: reformulation

Note that

min  [lc(x) + J(x)sl + 3o ls]?

=

min v+ lo|s||> such that |[lc(x)+ J(x)s|? = v?
v,s

)

exact penalty function for the problem of minimizing ||s|| subject to
c(x) + J(x)s = 0.
Iterative techniques. . . as for the cubic case (Cartis, Gould,T.):

’solve the problem in nested Krylov subspaces‘

@ Lanczos — factorization of tridiagonal matrices
° scalar secular equation (solution by Newton's method)
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The keys to convergence theory for quadratic regularization

The Cauchy condition:

e [ el 97l
el ™" [T 1375l ol

m(x,) — m(xk +Sk) > Kqr

The bound on the stepsize:

||5k|| < EHJIZ—C/(H
= 2 ol
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Convergence theory for the quadratic regularization

Convergence results:

Global convergence to first-order critical points

Quadratic convergence to roots

Valid for

@ general values of m and n,

@ exact/approximate subproblem solution
(Bellavia/Cartis/Gould /Morini/T.)
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6.2: A unifying concept:
nonlinear stepsize control
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Towards a unified global convergence theory

@ recover a unified global convergence theory

@ possibly open the door for new algorithms

@ cast all three methods into a TR framework

@ allow this TR to be updated nonlinearly
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Towards a unified global convergence theory (2)

Given
@ 3 continuous first-order criticality measures 9(x), ¢(x), x(x)

@ an adaptive stepsize parameter ¢

define a ‘generalized radius A(6, x(x)) ‘ such that

A(-, x) is CY, strictly increasing and concave,
A(0, x) = 0 for all x,

A(J, ) is non-increasing

5%%(67 X) < "QAA(& X)
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6.3: Cubic regularization
for constrained problems
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The constrained case

lCan we apply regularization to the constrained case?

Consider the constrained nonlinear programming problem:

minimize f(x)
xecF

for x € R" and f : R" — R smooth, and where

F is convex.

@ exploit (cheap) projections on convex sets
@ define using the generalized Cauchy point idea

@ prove global convergence + function-evaluation complexity
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Constrained step computation (1)

min  f(x) + (s,g(x)) + i(s, H(x)s) + 1o]s]®

s

subject to
x+seF

o is the (adaptive) regularization parameter

Criticality measure: ‘ (as before)

va(X)v d) ’

min
x+deF,|d||<1
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The generalized Cauchy point for ARC

Cauchy step: | Goldstein-like piecewise linear seach on my along the

gradient path projected onto F

Find
def
XEC = P}'[Xk — t,fcgk] = Xk + S,fc (tﬁc > 0)
such that
mi(x£9) < F(xk) + Kuns(8k, SEC)  (below linear approximation)
and either

mi(xg) > f(xk) + Ks(gk, Sg°)  (above linear approximation)

or
1Pruscy 8l < ol s§)] (close to path’s end)

no trust-region condition!
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Searching for the ARC-GCP

5 T T
| |

my(0 +s) = —3.57s; — 1.5sp — s3 + 515 + 3522 + sp83 — 2s§+% HSH3 such that s < 1.5
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Remember the same for a quadratic model?

my(0 + s) = —3.57s; — 1.5sp — s3 + 5150 + 3522 + sps3 — 2s§ such that s < 1.5 and A < 2.8
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A constrained regularized algorithm

Algorithm 6.2: ARC for Convex Constraints (COCARC)

Step 0: Initialization. xo € F, o¢ given. Compute f(xp), set k = 0.
Step 1: Generalized Cauchy point. If x, not critical, find the
xg¢ by on the
regularized

Step 2: Step calculation. Compute s, and x,j def Xk + Sk such
that mi(x) < my(x£°).
Step 3: Acceptance of the trial point. Compute f(x,") and py.
If px > m1, then xkr1 = Xk + Sk; otherwise Xx41 = Xk-
Step 4: Regularisation parameter update. Set
(O,Uk] if Pk > 72,
ok+1 € 9 ok, 1104] if pk € [m,m2),
[Viok, v20k]  if pk < m.
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Local convergence theory for COCARC

The Cauchy condition:

: Xk Xk
_ > _ =1
my(xk) — m(Xk + Sk) > KcrXk MIN [1 A\ o }

The bound on the stepsize:

||sk|] < 3 max

1 1
1Al (xk\® (x)?
ox \ox) \ok

And therefore. . .

lim xx =0
=

(Cartis/Gould/T)
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Function-Evaluation Complexity for COCARC (1)

But

What about function-evaluation complexity?

If, for very successful iterations, oxi1 < 30 for 73 < 1,
the COCARC algorithm requires at most

P‘—g—‘ function evaluations
€

(for some k¢ independent of €) to achieve xx < €

Do the nicer bounds for unconstrained optimization extend to the
constrained case?
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Function-evaluation complexity for COCARC (2)

As for unconstrained, impose a termination rule on the subproblem
solution:

e Do not terminate solving min,, . r my(x; + s) before

XY < min(Kueps 1561 X6

where

min
x+deF ||d||<1

(.mu(20.)

c.f. the “s-rule” for unconstrained

Note: OK at local constrained model minimizers
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Walking through the pass...

feasible

-3+

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

A “beyond the pass” constrained problem with
3
m(x,y) = —x — &y — x* — &y + 1[<* + y?]2
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Walking through the pass...with a sherpa

feasible

A piecewise descent path from xj to x,j on

3
m(x,y) = —x = {&y = 55 = oy’ + 1 + ¥
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Function-Evaluation Complexity for COCARC (2)

Assume also
o Xy — x;r in a bounded number of feasible descent substeps
o [[Hi — Vot ()|l < sl
o V,«f(:) is globally Lipschitz continuous
o {xx} bounded

The COCARC algorithm requires at most

{"3”(/2—‘ function evaluations
€

(for some k¢ independent of €) to achieve yx < €

Caveat: cost of solving the subproblem
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Conclusions for lesson 6

@ Much left to do...but very interesting
@ Unconstrained nonliear stepsize control could lead to very
methods. Example:
Yk = ¢k = Xk = gkl A0, x) = V/6x
@ Meaningful numerical evaluation still needed for many of these
algorithms
@ Many issues regarding regularizations still unresolved
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Conclusions
Not covered in the course

non-smooth techniques

specifically convex problems

penalty functions

augmented Lagrangians

affine scaling methods

general sequential quadratic programming (SQP)

systems of nonlinear equations

Many thanks to you all for your patience!
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