
Advanced Algorithms in Nonlinear Optimization

Philippe Toint

Department of Mathematics, University of Namur, Belgium

(philippe.toint@fundp.ac.be)

Belgian Francqui Chair, Leuven, April 2009

Outline

1 Nonlinear optimization: motivation, past and perspectives

2 Trust region methods for unconstrained problems

3 Derivative free optimization, filters and other topics

4 Convex constraints and interior-point methods

5 The use of problem structure for large-scale applications

6 Regularization methods and nonlinear step control

7 Conclusions

Philippe Toint (Namur) April 2009 2 / 323

Acknowledgements

This course would not have been possible without

the Francqui Foundation and the Katholieke Universiteit Leuven,

Moritz Diehl, Dirk Roose and Stefan Vandewalle (the gentle
organizers),

Fabian Bastin, Stefania Bellavia, Cinzia Cirillo, Coralia Cartis, Andy
Conn, Nick Gould, Serge Gratton, Sven Leyffer, Vincent Malmedy,
Benedetta Morini, Mélodie Mouffe, Annick Sartenaer, Katya
Scheinberg, Dimitri Tomanos, Melissa Weber-Mendonça (my patient
co-authors).

Ke Chen, Patrick Laloyaux (who supplied pictures)

My grateful thanks to them all.

Philippe Toint (Namur) April 2009 3 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

What is optimization?

The best choice subject to constraints

best ⇒ criterion, objective function
choice ⇒ variables whose value may be chosen
constraints ⇒ restrictions on allowed values of the variables

Philippe Toint (Namur) April 2009 4 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

More formally

variables ⇒ x = (x1, x2, . . . , xn)
objective function ⇒ minimize/maximize f (x)
constraints ⇒ c(x) ≥ 0

Note: maximize f (x) equivalent to minimize −f (x).

min
x

f (x)

such that
c(x) ≥ 0

(the general nonlinear optimization problem)
(+ conditions on x , f and c)

Philippe Toint (Namur) April 2009 5 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Nature optimizes

Philippe Toint (Namur) April 2009 6 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

People optimize (daily)

Philippe Toint (Namur) April 2009 7 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: PAL design (1)

Design of modern Progressive Adaptive Lenses:

vary optical power of lenses while minimizing astigmatism

�¼í£ÿiö�äæç � ü * b 	øí£é½èæäæí¬ê�ö\è�í¬ã.âøãiõ�äæçzõkä�ïiìzè�íù.ç
ñVã}ûjç^ä�ã.â�ï @�BDC

a) astigmatismpower b)

�¼í£ÿiö�äæç � ü&� b ï ����çzõkä�ïiìzè�í¬ùiçZñVã}ûjç^ä^ü²ê��Iýøñ\èæí!"
ì�ïiò�ç`äæäæãiä �mïié½èæí£ÿ.÷´ïBèæí£éæ÷ �zü&�Nò¬ö�çQí£â�å�í¬ì�ïBèæç^éXò£ã}ûjç^é¦è
ùBïiò£ö�ç`é¼õkã.ä=ä½ç`õkäæïiì`èæí¬ù.çNñVã}ûjç^ä �2ï �¼ïiâ�å ã.ñ�è�í£ì^ïiò8ç^ä "
äæã.ä½éA�mê+�$äæç`éæñgç^ìzè�í¬ùiç^òó.ô=ä½ç^åIí£â\å�í£ì^ïBè�ç`éq÷´ï���í£÷´ïiò
ùBïiò£ö�ç`é^ü

�¼í£ÿiö�äæç � ü&� é½ð�ã}ûséEèæð�çfõkä½ã.â�èEõmïBì^çúãiõ ï è�ó8ñ�í£ì^ïiòa÷�ö�òè�í!"[õkã�ì^ïiò¾ò¬ç^â�é`ü ��ð�ç ä½ç`õkäæïiì`èæí¬ù.çfñgãPûjç^ä�í£é
å�í£é½ñ�ò�ï�óiç^å·ì^ã.ò¬ã.äJç^â�ì`ã�å�ç`å·ã.âpè�ð�ç¾ò£ç`õ�è^ü �jò£ö�ç4í£â�å�í¬ì�ïBèæç^é�ò¬ã}ûNç`ä^ô\ä½ç^å;ð�í¬ÿ.ð�ç`äjùBïiò£ö\ç^é�ãiõXñgã}ûNç`ä^ü ��ð\ç
ñVã}ûjç^ä�í¬â�ì^ä½ç�ïié½ç^é�é½÷´ã8ãièæð�ò¬ó�õkä½ã.÷ è�ð�ç�ö�ñ�ñgç^ä�õmïBä$ù8í£é½í£ã.â ïiäæç^ïEè�ãEè�ð�ç´ò£ã}ûNç`äqâ�ç^ïiä�ù8í¬éæí£ãiâ�ïiä½ç�ï\ü
ýøñ\è�í¬ì�ïiòjç^äæä½ã.äæé �2ïié¦è�í£ÿi÷�ïBèæí£é½÷ �aïiä½çpéæð�ã}ûsâ ã.â�è�ð\çpäæí¬ÿ.ð�è ãiõ � ü&��ü�u0ä½äæã.ä½é²ïBèqèæð�çpõmïiä�ïBâ�å â�ç�ïiä
ù8í£éæí¬ã.â´ïiäæç^ï�ïiâ\åpïiò¬ã.â�ÿaè�ð�ç�÷´ïií£â ù8í£çzûsí£â�ÿ$ò£í¬â�çsïiäæç�ùiç^ä½óLé½÷�ïiò¬ò[ü �¶í£ÿ.ö�ä½ç � ü *�é½ð�ã}ûséjè�ð\ç�ùBïiä½í�ïBèæí£ã.â
ãiõ¶÷´ç^ïiâEì`ö�ä½ùBïBèæö�äæç$ïiò¬ã.â�ÿ�èæð�ç
÷�ïií¬âpù8í£ç`ûsí¬â�ÿ²ò£í¬â�çiü

����� � ��!#"$!#%'&)(*",+��1! &0+�25= 2 4R!��	��
 �� !�= ("$"$25" 4"	�=�%'&0+�25=�!�9
��ç`ñ�äæç`éæç`â�èæí£â�ÿ è�ð�ç·õkäæã.â�èLéæö\ä½õmïiì`çRãiõøïfò¬ç^â�éLê�ó èæð�ç�ÿ.ä�ïiñ\ð ãiõøïfõkö�â\ì`è�í¬ã.â�� b���� � ô�ûsí¬èæð
å�ã.÷´ïií£â ����� � ìxð�ãiéæç^âEïiésï å�í¬éæìiô�ûNçaì^ïiâ;õkã.äæ÷�ö\ò�ïBèæç¾è�ð�çøè�ïié)�́ ãiõ¶ì^ã.÷Lñ�ö\èæí£â�ÿ ïBâEïBñ�ñ�äæãiñ�äæí£ïBè�ç
õkäæã.â�è�éæö\ä½õmïiì`ç$ãBõ¶èæð�ç
ò£ç^â\é4ïBé4ï�ùBïiä½í�ïBèæí£ã.â³ïBòVñ�ä½ã.ê�ò¬ç^÷ õkãiä�è�ð�çaõkö�â�ìzè�í¬ã.â�� b
� ��ð�çfå�ç^é½í£ä½ç^åZå�í£é¦è�ä½í£ê�ö\èæí£ã.âTãBõq÷Lç�ïiâZì`ö�ä½ùBïBèæö�äæçúã.âTè�ð\çfÿiä�ïiñ�ðZãiõ�� í£é;é½ñVç`ì^í���ç^å ê�óTï
õkö�â�ìzè�í¬ã.â6U b������ ü

� � çqéæñgç^ì`í¬õ�ó;ûjç^í¬ÿ.ð�è4õkö�â\ì`è�í¬ã.â�é��! #" b$�%� � ô&�! #" � õkãiä�ñgç^â�ïiò£í�	^í£â\ÿLé½ö�ä½õmïBì^ç�ïié½èæí£ÿ.÷´ï�"
è�í¬éæ÷�ïBâ�å·å�ç`ù8í�ïSè�í£ãiâ�ãBõ¶èæð�ç
ñ�äæç`éæì^ä½í£êgç^å�÷´ç^ïiâ·ì^ö�ä¦ùBïBè�ö�ä½ç
äæç^é½ñ(ü

� ��ð�çJ��ö³ïiò£íè�ópãiõ5è�ð\ç$é½ö�ä½õmïBì^ç
í£é�÷Lç�ïié½ö�äæç`åEê�ó;èæð�çaõkã.ò£ò¬ãPûsí¬â�ÿ�ç`äæäæãiä�õkö�â�ì`èæí£ã.â�ïiò(' b
' �)�?� b V+*-,.� �0/ X f / � � � m1" � / X m�/ �� f U � � q32 � � ü (��

�

Loos, Greiner, Seidel (1997)

Philippe Toint (Namur) April 2009 8 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: PAL design (2)

Achievements: Loos, Greiner, Seidel (1997)

�

uncorrected short distance
long distance PAL

Philippe Toint (Namur) April 2009 9 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: PAL design (3)

Is this nonlinear (≈ difficult)?

Assume the lens surface is z = z(x , y). The optical power is

p(x , y) =
N3

2

[(
1 +

[
∂z

∂x

]2
)
∂2z

∂y2
+

(
1 +

[
∂z

∂y

]2
)
∂2z

∂x2
− 2

∂z

∂x

∂z

∂y

∂2z

∂x∂y

]
where

N = N(x , y) =
1√

1 +
[
∂z
∂x

]2
+
[
∂z
∂y

]2
.

The surface astigmatism is then

a(x , y) = −2

√√√√p(x , y)− N4

(
∂z

∂x

∂z

∂y
−
[
∂2z

∂x∂y

]2
)

Philippe Toint (Namur) April 2009 10 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Food sterilization (1)

A common problem in the food processing industry:

keep a max of vitamins while killing a prescribed fraction of the bacteria

heating in steam/hot water autoclaves

Sachs (2003)

Philippe Toint (Namur) April 2009 11 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Food sterilization (2)

Model: coupled PDEs
Concentration of micro-organisms and other nutrients:

∂C

∂t
(x , t) = −K [θ(x , t)]C (x , t),

where θ(x , t) is the temperature, and where

K [θ] = K1e
−K2

“
1
θ
− 1
θr

”
(Arrhenius equation)

Evolution of temperature:

ρc(θ)
∂θ

∂t
= ∇ · [k(θ)∇θ],

(with suitable boundary conditions: coolant, initial temperature,. . .)

Philippe Toint (Namur) April 2009 12 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: biological parameter estimation (1)

K-channel in a the model of a neuron membrane:

Sansom (2001)

Doyle et al. (1998)

Philippe Toint (Namur) April 2009 13 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: biological parameter estimation (2)

Where are these neurons?

in a Pacific spiny lobster!

Simmers, Meyrand and Moulin (1995)

Philippe Toint (Namur) April 2009 14 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: biological parameter estimation (3)

After gathering experimental data (applying a current to the cell):

estimate the biological model parameters that best fit experiments

Model:

Activation: p independent gates

Deactivation: nh gates with different dynamics

nh + 2 coupled ODEs for the voltage, the activation level, the partial
inactivations levels

5-points BDF for ≈ 50000 time steps

⇒ very nonlinear!

Philippe Toint (Namur) April 2009 15 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (1)

(Attempt to) predict. . .

tomorrow’s weather

the ocean’s average temperature
next month

future gravity field

future currents in the ionosphere

. . .

Philippe Toint (Namur) April 2009 16 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (2)

Data: temperature, wind, pressure, . . . everywhere and at all times!

May involve up to 250000000 variables!

Philippe Toint (Namur) April 2009 17 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)

The principle:

−2.5 −2 −1.5 −1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

temp. vs. days

• Known situation 2.5 days ago
and background prediction

Philippe Toint (Namur) April 2009 18 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)

The principle:

−2.5 −2 −1.5 −1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

temp. vs. days

• Known situation 2.5 days ago
and background prediction
• Record temperature for the past 2.5 days

Philippe Toint (Namur) April 2009 18 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations

−2.5 −2 −1.5 −1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

temp. vs. days

• Known situation 2.5 days ago
and background prediction
• Record temperature for the past 2.5 days
• Run the model to minimize difference

I between model and observations

min
x0

1

2
‖x0 − xb‖2

B−1 +
1

2

N∑
i=0

‖HM(ti , x0)− bi‖2
R−1

i
.

Philippe Toint (Namur) April 2009 18 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations

−2.5 −2 −1.5 −1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

temp. vs. days

• Known situation 2.5 days ago
and background prediction
• Record temperature for the past 2.5 days
• Run the model to minimize difference

I between model and observations
• Predict temperature for the next day

Philippe Toint (Namur) April 2009 18 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (4)

Analysis of the ocean’s heat content: CERFACS (2009)

Much better fit!

Philippe Toint (Namur) April 2009 19 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: aeronautical structure design

minimize weight while maintaining structural integrity

mass reduction during optimization

SAMTECH (2009)

Philippe Toint (Namur) April 2009 20 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: asteroid trajectory matching

find today’s asteroid whose orbital parameters
match best one observed 50 years ago

Milani, Sansaturio et al. (2005)

Philippe Toint (Namur) April 2009 21 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: discrete choice modelling (1)

Context: simulation of individual choices in Transportation (or other)
(mode, route, time of departure,. . .)

Random utility theory

An individual i assigns to alternative j the “utility”

Uij = [parameters × explaining factors] + [random error]

Illustration :

Ubus = distance− 1.2× price of ticket− 2.1× delay wrt to car travel + ε

Philippe Toint (Namur) April 2009 22 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: discrete choice modelling (2)

Probability that individual i chooses alternative j rather than
alternative k given by

prob (Uij ≥ Uik for all k)

Data: mobility surveys (MOBEL)

find the parameters in the utility function to
maximize likelihood of observed behaviours

Philippe Toint (Namur) April 2009 23 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: discrete choice modelling (3)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

Normal
Lognormal

Spline

← Using advanced optimization

← Using standard statistics

Estimation of the value of time lost in congested trafic
(with and without advanced optimization)

Philippe Toint (Namur) April 2009 24 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Poisson image denoising (1)

Consider a two dimensional image with noise proportional to signal

zij = uij + nf (uij)

where n is a random Gaussian noise. How to recover the original uij?

use the pixel values as much as possible
while minimizing sharp transitions (gradients)

This leads to the optimization problem

min
u

∑
ij∈Ω

(uij − zij log(uij)) + α

∫
Ω
‖∇u‖

Philippe Toint (Namur) April 2009 25 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Poisson image denoising (2)

Some spectacular results: a 512 × 512 picture with 95% noise

Chan and Chen (2007)

Philippe Toint (Namur) April 2009 26 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Poisson image denoising (2)

Some spectacular results: a 512 × 512 picture with 95% noise

Chan and Chen (2007)

Philippe Toint (Namur) April 2009 26 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: shock simulation in video games

Optimize the realism of the motion of multiple rigid bodies in space

⇒ “complementarity problem”

∇qΦ[q(t)]v(t) ≥ 0

Φ(q(t)) ≥ 0

(q(t) = positions, v(t) = dq
dt (t) = velocities)

⇒ system of inequalities and equalities

used in realtime for video animation

Anitescu and Potra (1996)

Philippe Toint (Namur) April 2009 27 / 323

Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: finance

1 risk management

2 portofolio analysis

3 FX markets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1.5 -1 -0.5 0 0.5 1 1.5

Normal
Spline

← Optimized

Standard →

Investment distribution
for the BoJ 1991-2004

4 . . .

Everybody loves
an optimizer!

Philippe Toint (Namur) April 2009 28 / 323

Nonlinear optimization: motivation, past and perspectives History

Where does optimization come from?

“Nous sommes comme des nains juchés sur des épaules de géants, de telle
sorte que nous puissions voir plus de choses et de plus éloignées que n’en
voyaient ces derniers. Et cela, non point parce que notre vue serait
puissante ou notre taille avantageuse, mais parce que nous sommes portés
et exhaussés par la haute stature des géants.”

“We are like dwarfs standing on the shoulders of giants, such that we can
see more things and further away than they could. And this, not because
our sight would be more powerful or our height more advantageous, but
because we are carried and heigthened by the high stature of the giants.”

Bernard de Chartres (1130-1160)

Philippe Toint (Namur) April 2009 29 / 323

Nonlinear optimization: motivation, past and perspectives History

Euclid (300 BC) Al-Khwarizmi (783-850)

Philippe Toint (Namur) April 2009 30 / 323

Nonlinear optimization: motivation, past and perspectives History

Isaac Newton (1642-1727) Leonhardt Euler (1707-1783)

Philippe Toint (Namur) April 2009 31 / 323

Nonlinear optimization: motivation, past and perspectives History

J. de Lagrange (1735-1813) Friedrich Gauss (1777-1855)

Philippe Toint (Namur) April 2009 32 / 323

Nonlinear optimization: motivation, past and perspectives History

Augustin Cauchy (1789-1857) George Dantzig (1914-2005)

Philippe Toint (Namur) April 2009 33 / 323

Nonlinear optimization: motivation, past and perspectives History

Michael Powell Roger Fletcher

Philippe Toint (Namur) April 2009 34 / 323

Nonlinear optimization: motivation, past and perspectives Basic concepts

Return to the mathematical problem

min
x

f (x)

such that
c(x) ≥ 0

Difficulties:

the objective function f (x) is typically complicated (nonlinear)

it is also often costly to compute

there may be many variables

the constraints c(x) may defined a complicated geometry

Philippe Toint (Namur) April 2009 35 / 323

Nonlinear optimization: motivation, past and perspectives Basic concepts

An example unconstrained problem

minimize : f (α, β) = −10α2 + 10β2 + 4 sin(αβ)− 2α + α4

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Two local minima: (−2.20, 0.32) and (2.30,−0.34)

How to find them?

Philippe Toint (Namur) April 2009 36 / 323

Nonlinear optimization: motivation, past and perspectives Basic concepts

Trust-region methods

iterative algorithms

find local solutions only

Algorithm 1.1: The trust-region framework

Until an (approximate) solution is found:

Step 1: use a model of the nonlinear function(s)

within region where it can be trusted

Step 2: notion of sufficient decrease

Step 3: measure achieved and predicted reductions

Step 4: decrease the region radius if unsuccessful

Philippe Toint (Namur) April 2009 37 / 323

Nonlinear optimization: motivation, past and perspectives Illustration

minimize : f (α, β) = −10α2 + 10β2 + 4 sin(αβ)− 2α + α4

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Two local minima: (−2.20, 0.32) and (2.30,−0.34)

Philippe Toint (Namur) April 2009 38 / 323

Nonlinear optimization: motivation, past and perspectives Illustration

x0 = (0.71,−3.27) and f (x0) = 97.630

Contours of f Contours of m0 around x0

(quadratic model)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Philippe Toint (Namur) April 2009 39 / 323

Nonlinear optimization: motivation, past and perspectives Illustration

k ∆k sk f (xk + sk) ∆f /∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Philippe Toint (Namur) April 2009 40 / 323

Nonlinear optimization: motivation, past and perspectives Illustration

k ∆k sk f (xk + sk) ∆f /∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Philippe Toint (Namur) April 2009 40 / 323

Nonlinear optimization: motivation, past and perspectives Illustration

k ∆k sk f (xk + sk) ∆f /∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Philippe Toint (Namur) April 2009 40 / 323

Nonlinear optimization: motivation, past and perspectives Illustration

k ∆k sk f (xk + sk) ∆f /∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2

3 2 (1.90, 0.08) −29.392 0.649 x2 + s2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Philippe Toint (Namur) April 2009 40 / 323

Nonlinear optimization: motivation, past and perspectives Illustration

k ∆k sk f (xk + sk) ∆f /∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2

3 2 (1.90, 0.08) −29.392 0.649 x2 + s2

4 2 (0.32, 0.15) −31.131 0.857 x3 + s3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Philippe Toint (Namur) April 2009 40 / 323

Nonlinear optimization: motivation, past and perspectives Illustration

k ∆k sk f (xk + sk) ∆f /∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2

3 2 (1.90, 0.08) −29.392 0.649 x2 + s2

4 2 (0.32, 0.15) −31.131 0.857 x3 + s3

5 4 (−0.03,−0.02) −31.176 1.009 x4 + s4

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Philippe Toint (Namur) April 2009 40 / 323

Nonlinear optimization: motivation, past and perspectives Illustration

k ∆k sk f (xk + sk) ∆f /∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2

3 2 (1.90, 0.08) −29.392 0.649 x2 + s2

4 2 (0.32, 0.15) −31.131 0.857 x3 + s3

5 4 (−0.03,−0.02) −31.176 1.009 x4 + s4

6 8 (−0.02, 0.00) −31.179 1.013 x5 + s5

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Philippe Toint (Namur) April 2009 40 / 323

Nonlinear optimization: motivation, past and perspectives Illustration

Path of iterates: From another x0:

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Philippe Toint (Namur) April 2009 41 / 323

Nonlinear optimization: motivation, past and perspectives Illustration

And then. . .

Does it (always) work?

The answer tomorrow!
(and subsequent days for a (biased) survey of new optimization methods)

Thank you to you for your attention

Philippe Toint (Namur) April 2009 42 / 323

Trust region methods for unconstrained problems

Philippe Toint (Namur) April 2009 43 / 323

Trust region methods for unconstrained problems

H(

Lesson 2:

Trust-region methods
for unconstrained problems

Philippe Toint (Namur) April 2009 43 / 323

Trust region methods for unconstrained problems

The basic text for this course

A. R. Conn, N. I. M. Gould and Ph. L. Toint,
Trust-Region Methods,

Nr 01 in the MPS-SIAM Series on Optimization,
SIAM, Philadelphia, USA, 2000.

Philippe Toint (Namur) April 2009 44 / 323

Trust region methods for unconstrained problems Background material

2.1: Background material

Philippe Toint (Namur) April 2009 45 / 323

Trust region methods for unconstrained problems Background material

Scalar mean-value theorems

Let S be an open subset of IRn, and suppose f : S → IR is
continuously differentiable throughout S. Then, if the segment
x + θs ∈ S for all θ ∈ [0, 1],

f (x + s) = f (x) + 〈∇x f (x + αs), s〉

for some α ∈ [0, 1].

Let S be an open subset of IRn, and suppose f : S → IR is twice
continuously differentiable throughout S. Then, if the segment
x + θs ∈ S for all θ ∈ [0, 1],

f (x + s) = f (x) + 〈∇x f (x), s〉+ 1
2
〈s,∇xx f (x + αs)s〉

for some α ∈ [0, 1].

Philippe Toint (Namur) April 2009 46 / 323

Trust region methods for unconstrained problems Background material

Vector mean-value theorem

Let S be an open subset of IRn, and suppose F : S → IRm is
continuously differentiable throughout S. Then, if the segment
x + θs ∈ S for all θ ∈ [0, 1],

F (x + s) = F (x) +

∫ 1

0
∇xF (x + αs)s dα.

Philippe Toint (Namur) April 2009 47 / 323

Trust region methods for unconstrained problems Background material

Taylor’s scalar approximation theorems (1)

Let S be an open subset of IRn, and suppose f : S → IR is
continuously differentiable throughout S. Suppose further that
∇x f (x) is Lipschitz continuous at x , with Lipschitz constant
γ(x) in some appropriate vector norm. Then, if the segment
x + θs ∈ S for all θ ∈ [0, 1],

|f (x + s)−m(x + s)| ≤ 1
2
γ(x)‖s‖2,

where
m(x + s) = f (x) + 〈∇x f (x), s〉.

Philippe Toint (Namur) April 2009 48 / 323

Trust region methods for unconstrained problems Background material

Taylor’s scalar approximation theorems (2)

Let S be an open subset of IRn, and suppose f : S → IR is twice
continuously differentiable throughout S. Suppose further that
∇xx f (x) is Lipschitz continuous at x , with Lipschitz constant
γ(x) in some appropriate vector norm and its induced matrix
norm. Then, if the segment x + θs ∈ S for all θ ∈ [0, 1],

|f (x + s)−m(x + s)| ≤ 1
6
γ(x)‖s‖3,

where
m(x + s) =

f (x) + 〈∇x f (x), s〉+ 1
2
〈s,∇xx f (x)s〉.

Philippe Toint (Namur) April 2009 49 / 323

Trust region methods for unconstrained problems Background material

Taylor’s vector approximation theorem

Let S be an open subset of IRn, and suppose F : S → IRm is
continuously differentiable throughout S. Suppose further that
∇xF (x) is Lipschitz continuous at x , with Lipschitz constant
γ(x) in some appropriate vector norm and its induced matrix
norm. Then, if the segment x + θs ∈ S for all θ ∈ [0, 1],

‖F (x + s)−M(x + s)‖ ≤ 1
2
γ(x)‖s‖2,

where
M(x + s) = F (x) +∇xF (x)s.

Philippe Toint (Namur) April 2009 50 / 323

Trust region methods for unconstrained problems Background material

Newton’s method

Solve
F (x) = 0

Idea: solve linear approximation

F (x) + J(x)s = 0

quadratic local convergence

. . . but not globally convergent

Yet the basis of everything that follows

Philippe Toint (Namur) April 2009 51 / 323

Trust region methods for unconstrained problems Background material

Unconstrained optimality conditions

Suppose that f ∈ C 1, and that x∗ is a local minimizer of f (x).
Then

∇x f (x∗) = 0.

Suppose that f ∈ C 2, and that x∗ is a local minimizer of f (x).
Then the above holds and the objective function’s Hessian at
x∗ is positive semi-definite, that is

〈s,∇xx f (x∗)s〉 ≥ 0 for all s ∈ IRn.

〈s,∇xx f (x∗)s〉 > 0 for all s 6= 0 ∈ IRn

⇒ strict local solution

Philippe Toint (Namur) April 2009 52 / 323

Trust region methods for unconstrained problems Background material

Constrained optimality conditions (1)

minimize f (x)
subject to ci (x) = 0, for i ∈ E,
and ci (x) ≥ 0, for i ∈ I,

Active set:

r r

r

x1

rx2

rx3

C

F∅

F{3}�

F{1,3}HHY

F{2,3}
���

F{2}j

F{1}6
F{1,2}*

c1(x) = 0

c2(x) = 0

c3(x) = 0

A(x1) = {1, 2}
A(x2) = ∅
A(x3) = {3}

Philippe Toint (Namur) April 2009 53 / 323

Trust region methods for unconstrained problems Background material

Constrained optimality conditions (2): first order

Ignore constraint qualification!

Suppose that f , c ∈ C 1, and that x∗ is a local solution. Then
there exist a vector of Lagrange multipliers y∗ such that

∇x f (x∗) =
∑

i∈E∪I
[y∗]i∇xci (x∗)

ci (x∗) = 0 for all i ∈ E
ci (x∗) ≥ 0 and [y∗]i ≥ 0 for all i ∈ I

and ci (x∗)[y∗]i = 0 for all i ∈ I.

Lagrangian: `(x , y) = f (x)−
∑

i∈E∪I
yici (x)

Philippe Toint (Namur) April 2009 54 / 323

Trust region methods for unconstrained problems Background material

Constrained optimality conditions (3): second order

Suppose that f , c ∈ C 2, and that x∗ is a local minimizer of f (x).
Then there exist a vector of Lagrange multipliers y∗ such that first-
order conditions hold and

〈s,∇xx`(x∗, y∗)s〉 ≥ 0 for all s ∈ N+

where N+ is the set of vectors s such that

〈s,∇xci (x∗)〉 = 0 for all i ∈ E
⋃
{j ∈ A(x∗)

⋂
I | [y∗]j > 0}

and

〈s,∇xci (x∗)〉 ≥ 0 for all i ∈ {j ∈ A(x∗)
⋂
I | [y∗]j = 0}

strict complementarity: 〈s,∇xx`(x∗, y∗)s〉 > 0 for all s ∈ N+ (s 6= 0)
⇒ strict local solution

Philippe Toint (Namur) April 2009 55 / 323

Trust region methods for unconstrained problems Background material

Optimatity conditions (convex 1)

Assume now that C is convex

normal cone of C at x ∈ C,

N (x)
def
= {y ∈ IRn | 〈y , u − x〉 ≤ 0, ∀u ∈ C}

tangent cone of C at x ∈ C

T (x)
def
= N (x)0 = cl{θ(u − x) | θ ≥ 0 and u ∈ C}

Philippe Toint (Namur) April 2009 56 / 323

Trust region methods for unconstrained problems Background material

Optimality conditions (convex 2)

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

The Moreau decomposition

Philippe Toint (Namur) April 2009 57 / 323

Trust region methods for unconstrained problems Background material

Optimatity conditions (convex 2)

Suppose that C 6= ∅ is convex, closed, that f is continuously
differentiable in C, and that x∗ is a first-order critical point for
the minimization of f over C. Then, provided that constraint
qualification holds,

−∇x f (x∗) ∈ N (x∗).

Philippe Toint (Namur) April 2009 58 / 323

Trust region methods for unconstrained problems Background material

Conjugate gradients

Idea: minimize a convex quadratic on successive nested Krylov subspaces

Algorithm 2.1: Conjugate-gradients (CG)

Given x0, set g0 = Hx0 + c and let p0 = −g0.
For k = 0, 1, . . . , until convergence, perform the iteration

αk = ‖gk‖2
2/〈pk ,Hpk〉

xk+1 = xk + αkpk

gk+1 = gk + αkHpk

βk = ‖gk+1‖2
2/‖gk‖2

2

pk+1 = −gk+1 + βkpk

Philippe Toint (Namur) April 2009 59 / 323

Trust region methods for unconstrained problems Background material

Preconditioning

Idea: change the variables x = Rx and define M = RTR.

Algorithm 2.2: Preconditioned CG

Given x0, set g0 = Hx0 + c , and let v0 = M−1g0 and p0 = −v0.
For k = 0, 1, . . . , until convergence, perform the iteration

αk = 〈gk , vk〉/〈pk ,Hpk〉
xk+1 = xk + αkpk

gk+1 = gk + αkHpk

vk+1 = M−1gk+1

βk = 〈gk+1, vk+1〉/〈gk , vk〉
pk+1 = −vk+1 + βkpk

Philippe Toint (Namur) April 2009 60 / 323

Trust region methods for unconstrained problems Background material

Lanczos method

Idea: compute an orthonormal basis of the successive nested Krylov
subspaces

⇒ makes QT
k HQk tridiagonal

Algorithm 2.3: Lanczos

Given r0, set y0 = r0, q−1 = 0.
For k = 0, 1, . . ., perform the iteration,

γk = ‖yk‖2

qk = yk/γk

δk = 〈qk ,Hqk〉
yk+1 = Hqk − δkqk − γkqk−1

Philippe Toint (Namur) April 2009 61 / 323

Trust region methods for unconstrained problems Background material

Another view on the Conjugate-Gradients method

Conjugate Gradients = Lanczos + LDLT (Cholesky)

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Lanczos
→

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

Cholesky
→

∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

×

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗| {z }

Conjugate gradients in one of the Krylov subspaces

Philippe Toint (Namur) April 2009 62 / 323

Trust region methods for unconstrained problems The Trust-region algorithm

2.2: The trust-region algorithm

Philippe Toint (Namur) April 2009 63 / 323

Trust region methods for unconstrained problems The Trust-region algorithm

The trust-region idea

use a model of the objective function

define a trust-region where it is thought adequate

Bk = {x ∈ IRn | ‖x − xk‖k ≤ ∆k}

find a trial point by sufficiently decreasing the model in Bk

compute the objective function at the trial point

compare achived vs. predicted reductions

reduce ∆k if unsatisfactory

Philippe Toint (Namur) April 2009 64 / 323

Trust region methods for unconstrained problems The Trust-region algorithm

The basic trust-region algorithm

Algorithm 2.4: Basic trust-region algorithm (BTR)

Step 0: Initialization. x0 and ∆0 given, compute f (x0) and set k = 0.
Step 1: Model definition. Choose ‖ · ‖k and define a model mk in Bk .
Step 2: Step calculation. Compute sk that sufficiently reduces the

model mk with xk + sk ∈ Bk .
Step 3: Acceptance of the trial point. Compute f (xk + sk) and define

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1, then define xk+1 = xk + sk ; otherwise define xk+1 = xk .
Step 4: Trust-region radius update.

∆k+1 ∈

 [∆k ,∞) if ρk ≥ η2,
[γ2∆k ,∆k] if ρk ∈ [η1, η2),
[γ1∆k , γ2∆k] if ρk < η1.

Increment k by one and go to Step 1.

Philippe Toint (Namur) April 2009 65 / 323

Trust region methods for unconstrained problems Basic convergence theory

2.3: Basic convergence theory

Philippe Toint (Namur) April 2009 66 / 323

Trust region methods for unconstrained problems Basic convergence theory

Assumptions

f ∈ C 2

f (x) ≥ κlbf

‖∇xx f (x)‖ ≤ κufh

mk ∈ C 2(Bk)

mk(xk) = f (xk)

gk
def
= ∇xmk(xk) = ∇x f (xk)

‖∇xxmk(x)‖ ≤ κumh − 1 for all x ∈ Bk

1
κune
‖x‖k ≤ ‖x‖ ≤ κune‖x‖k

. . . but use ‖ · ‖k = ‖ · ‖2 in what follows!

Philippe Toint (Namur) April 2009 67 / 323

Trust region methods for unconstrained problems Basic convergence theory

The Cauchy step

Idea: minimize mk on the Cauchy arc

xC
k (t)

def
= {x | x = xk − tgk , t ≥ 0 and x ∈ Bk}.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

⇒ the Cauchy point

Philippe Toint (Namur) April 2009 68 / 323

Trust region methods for unconstrained problems Basic convergence theory

The Cauchy point for quadratic models

Three cases when minimizing the quadratic mk along the Cauchy arc:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−7

−6

−5

−4

−3

−2

−1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−7

−6

−5

−4

−3

−2

−1

0

1

mk(xk)−mk(xC
k) ≥ 1

2
‖gk‖min

[
‖gk‖
βk

,∆k

]

Philippe Toint (Namur) April 2009 69 / 323

Trust region methods for unconstrained problems Basic convergence theory

The Cauchy point for general models

Three cases when minimizing the general mk along the Cauchy arc:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−7

−6

−5

−4

−3

−2

−1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−7

−6

−5

−4

−3

−2

−1

0

1

mk(xk)−mk(xAC
k) ≥ κdcp‖gk‖min

[
‖gk‖
βk

,∆k

]

Philippe Toint (Namur) April 2009 70 / 323

Trust region methods for unconstrained problems Basic convergence theory

The meaning of sufficient decrease

In both cases, we get:

Sufficient decrease condition:

mk(xk)−mk(xk + sk) ≥ κmdc‖gk‖min

[
‖gk‖
βk

,∆k

]
,

Immediate consequence:

Suppose that ∇x f (xk) 6= 0. Then mk(xk + sk) < mk(xk) and
sk 6= 0.

⇒ ρk is well defined!

Philippe Toint (Namur) April 2009 71 / 323

Trust region methods for unconstrained problems Basic convergence theory

The exact minimizer is OK

Suppose that, for all k, sk ensures that

mk(xk)−mk(xk + sk)κamm[mk(xk)−mk(xM
k)],

Then sufficient decrease is obtained.

−21

−5.2

5

20

30

45

60

80

−5.2

5

20
30

45

60

−5.2

−21

5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Philippe Toint (Namur) April 2009 72 / 323

Trust region methods for unconstrained problems Basic convergence theory

Taylor and minimum radius

For all k , |f (xk + sk)−mk(xk + sk)| ≤ κubh∆2
k ,

Suppose that gk 6= 0 and that

∆k ≤
κmdc‖gk‖(1− η2)

κubh

.

Then iteration k is very successful and

∆k+1 ≥ ∆k .

Suppose that ‖gk‖ ≥ κlbg > 0 for all k . Then is a constant
κlbd > 0 such that, for all k

∆k ≥ κlbd.

Philippe Toint (Namur) April 2009 73 / 323

Trust region methods for unconstrained problems Basic convergence theory

First-order convergence (1)

Suppose that there are only finitely many successful iterations.
Then xk = x∗ for all sufficiently large k and x∗ is first-order
critical.

Suppose that there are infinitely many successful iterations.
Then

lim inf
k→∞

‖∇x f (xk)‖ = 0.

idea: infinite descent if not critical

Philippe Toint (Namur) April 2009 74 / 323

Trust region methods for unconstrained problems Basic convergence theory

First-order convergence (2)

Suppose that there are infinitely many successful iterations.

Then lim
k→∞

‖∇x f (xk)‖ = 0.

For η1>06‖gk‖

2ε

ε

- kS
-{ti}

{`i} - - - -
-K

s
s s

s s
s s s

s
s s s s

s s
s

s
s s s

s
s s s s

s s
s s s

Philippe Toint (Namur) April 2009 75 / 323

Trust region methods for unconstrained problems Basic convergence theory

Convex models (1)

Suppose that λmin[∇xxmk(x)] ≥ ε for all x ∈ [xk , xk + sk] and
for some ε > 0. Then

‖sk‖ ≤
2

ε
‖gk‖.

idea: mk curves upwards!

Suppose that {xki
} → x∗ and x∗ is first-order critical, and that

there is a constant κsmh > 0 such that

min
x∈Bk

λmin[∇xxmk(x)] ≥ κsmh

whenever xk is sufficiently close to x∗ Suppose finally that
∇xx f (x∗) is nonsingular. Then the complete sequence of it-
erates {xk} converges to x∗.

idea: steps too short to escape local basin

Philippe Toint (Namur) April 2009 76 / 323

Trust region methods for unconstrained problems Basic convergence theory

Convex models (2)

But. . .

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Philippe Toint (Namur) April 2009 77 / 323

Trust region methods for unconstrained problems Basic convergence theory

Asymptotically exact Hessians

Assume also that

lim
k→∞

‖∇xx f (xk)−∇xxmk(xk)‖ = 0 whenever lim
k→∞

‖gk‖ = 0

Suppose that {xki
} → x∗ and x∗ is first-order critical, that

sk 6= 0 for all k sufficiently large, and that ∇xx f (x∗) is positive
definite. Then the complete sequence of iterates {xk} con-
verges to x∗, all iterations are eventually very successful and
the trust-region radius ∆k is bounded away from zero.

idea: sufficient decrease implies that

mk(xk)−mk(xk + sk) ≥ κmqd‖sk‖2 > 0.

Then ρk → 1.
Philippe Toint (Namur) April 2009 78 / 323

Trust region methods for unconstrained problems Basic convergence theory

Second order: the eigen point

Assume 0 > τk ∈ σ(Hk).

Then fine the eigen direction uk such that

〈uk , gk〉 ≤ 0, ‖uk‖k = ∆k 〈uk ,Hkuk〉 ≤ κsncτk∆2
k ,

Minimize the model along uk to compute the eigen point:
mk(xE

k) = mk(xk + tE
kuk) = min

t∈(0,1]
mk(xk + tuk)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Philippe Toint (Namur) April 2009 79 / 323

Trust region methods for unconstrained problems Basic convergence theory

Model decrease at the eigen point

Suppose: 0 > τk ∈ σ(Hk), uk is an eigen direction and

‖∇xxmk(x)−∇xxmk(y)‖ ≤ κlch‖x − y‖
for all x , y ∈ Bk . Then

mk(xk)−mk(xE
k) ≥ −κsodτk min[τ2

k ,∆
2
k].

(quadratic or general model)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Philippe Toint (Namur) April 2009 80 / 323

Trust region methods for unconstrained problems Basic convergence theory

Second order: convergence theorems

lim sup
k→∞

λmin[∇xx f (xk)] ≥ 0.

Suppose that x∗ is an isolated limit point of the sequence of
iterates {xk}. Then x∗ is a second-order critical point.

Assume also that, for γ3>1,

ρk ≥ η2 and ∆k ≤ ∆max → ∆k+1 ∈ [γ3∆k , γ4∆k]

Let x∗ be any limit point of the sequence of iterates. Then x∗
is a second-order critical point.

Philippe Toint (Namur) April 2009 81 / 323

Trust region methods for unconstrained problems Basic convergence theory

Different trust-region norms

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Philippe Toint (Namur) April 2009 82 / 323

Trust region methods for unconstrained problems Basic convergence theory

Using norms for scaling

Idea: change the variables
Skw = s

Then
mS

k(xk + w) ≈ f (xk + Skw)
def
= f S(w),

BS
k = {xk + w | ‖w‖ ≤ ∆k}.

mS
k(xk) = f (xk), g S

k = ∇w f S(0) = ST
k ∇x f (xk)

HS
k ≈ ∇ww f S(0) = ST

k ∇xx f (xk)Sk .

Thus

mS
k(xk + w) = f (xk) + 〈g S

k ,w〉+ 1
2
〈w ,HS

kw〉
= f (xk) + 〈ST

k ∇x f (xk),w〉+ 1
2
〈w ,ST

k HkSkw〉
= f (xk) + 〈∇x f (xk), Skw〉+ 1

2
〈Skw ,HkSkw〉

= f (xk) + 〈∇x f (xk), s〉+ 1
2
〈s,Hks〉

= mk(xk + s)

Philippe Toint (Namur) April 2009 83 / 323

Trust region methods for unconstrained problems Basic convergence theory

Scaling: the geometry

0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

Philippe Toint (Namur) April 2009 84 / 323

Trust region methods for unconstrained problems Solving the subproblem

2.4: Solving the subproblem

Philippe Toint (Namur) April 2009 85 / 323

Trust region methods for unconstrained problems Solving the subproblem

The subproblem

Assume

Euclidean norm

quadratic model (possibly non-convex)

(drop the index k)

min
s∈IRn

q(s) ≡ 〈g , s〉+ 1
2
〈s,Hs〉

subject to ‖s‖2 ≤ ∆

Philippe Toint (Namur) April 2009 86 / 323

Trust region methods for unconstrained problems Solving the subproblem

Possible approaches

exact minimization

truncated conjugate-gradients

CG + Lanczos (GLTR)

doglegs

eigenvalue based methods

(projection methods)

Philippe Toint (Namur) April 2009 87 / 323

Trust region methods for unconstrained problems Solving the subproblem

The exact minimizer

Any global minimizer of q(s) subject to ‖s‖2 = ∆ satisfies the
equation

H(λM)sM = −g ,

where

H(λM)
def
= H + λMI is positive semi-definite,

λM ≥ 0 and

λM(‖sM‖2 −∆) = 0.

If H(λM) is positive definite, sM is unique.

Note: λM is the Lagrange multiplier

Philippe Toint (Namur) April 2009 88 / 323

Trust region methods for unconstrained problems Solving the subproblem

The exact minimizer: a geometrical view

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Philippe Toint (Namur) April 2009 89 / 323

Trust region methods for unconstrained problems Solving the subproblem

Finding the exact minimizer

Eigenvalue decomposition of H:

H = UT ΛU

where λ1 ≤ λ2 ≤ · · · ≤ λn. Characterization implies that

λM ≥ −λ1

Suppose that λ > −λ1 and define

s(λ) = −H(λ)−1g = −UT (Λ + λI)−1Ug

New formulation (one dimensional):

‖s(λ)‖2 ≤ ∆

‖s(λ)‖2
2 = ‖UT (Λ + λI)−1Ug‖2

2 = ‖(Λ + λI)−1Ug‖2
2 =

n∑
i=1

γ2
i

(λi + λ)2

where γi = [Ug]i .

Philippe Toint (Namur) April 2009 90 / 323

Trust region methods for unconstrained problems Solving the subproblem

The convex case

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5
0

5

10

15

20

25

30

‖s(λ)‖2

λ

solution curve@
@

@
@@I

�
�
�
�
�
�
�
�
��

?

Philippe Toint (Namur) April 2009 91 / 323

Trust region methods for unconstrained problems Solving the subproblem

A nonconvex case

−4 −3 −2 −1 0 1 2 3 4 5 6
0

5

10

15

20

25

30

‖s(λ)‖2

λ

−λ1
�

Philippe Toint (Namur) April 2009 92 / 323

Trust region methods for unconstrained problems Solving the subproblem

The hard case: γ1 = 0

−4 −3 −2 −1 0 1 2 3 4 5 6
0

5

10

15

20

25

30

‖s(λ)‖2

λ

−λ1
�

no root larger than 2

root near 2.2���

Philippe Toint (Namur) April 2009 93 / 323

Trust region methods for unconstrained problems Solving the subproblem

Near the hard case: γ1 ≈ 0

0

5

10

15

20

25

30

1 2 3

γ = 1
γ = 0.1

γ = 0.01
γ = 0.00001

6
‖s(λ)‖2

-
λ

Philippe Toint (Namur) April 2009 94 / 323

Trust region methods for unconstrained problems Solving the subproblem

The secular equation

Idea: consider the secular equation

φ(λ)
def
=

1

‖s(λ)‖2
− 1

∆
= 0

Then

0.5

1

1.5

2

2.5

2 3 4

γ = 1
γ = 0.1

γ = 0.01
 γ = 0.00001

61/‖s(λ)‖2

-
λ

⇒ apply Newton’s method to φ(λ) = 0 : λ+ = λ− φ(λ)/φ′(λ)
Philippe Toint (Namur) April 2009 95 / 323

Trust region methods for unconstrained problems Solving the subproblem

The derivatives of φ(λ)

Suppose g 6= 0. Then

φ(λ) is strictly increasing (λ > −λ1), and concave.

φ′(λ) = −〈s(λ),∇λs(λ)〉
‖s(λ)‖3

2

where
∇λs(λ) = −H(λ)−1s(λ).

Note: if H(λ) = LLT and Lw = s(λ), then

〈s(λ),∇λs(λ)〉 = 〈s(λ), L−TL−1s(λ)〉 = ‖w‖2

Philippe Toint (Namur) April 2009 96 / 323

Trust region methods for unconstrained problems Solving the subproblem

Newton’s method on the secular equation

Algorithm 2.5: Exact trust-region solver

Let λ > −λ1 and ∆ > 0 be given.

1 Factorize H(λ) = LLT .

2 Solve LLT s = −g .

3 Solve Lw = s.

4 Replace λ by λ+

(
‖s‖2 −∆

∆

)(
‖s‖2

2

‖w‖2
2

)
.

But . . . more complications due to

bracketing the root (initial + update)

termination rule

may be preconditioned

Moré (1978), Moré-Sorensen (1983), Dollar-Gould-Robinson (2009)

Philippe Toint (Namur) April 2009 97 / 323

Trust region methods for unconstrained problems Solving the subproblem

Approximate solution by truncated CG

Fact: CG never reenters the `2 trust-region

1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

May be preconditioned
Steihaug (1983), T. (1981)

Philippe Toint (Namur) April 2009 98 / 323

Trust region methods for unconstrained problems Solving the subproblem

Approximate solution by the GLTR

ST might hit the boundary for steepest descent step ⇒ sometimes slow

Idea: solve the subproblem on the nested Krylov subspaces

Algorithm 2.6: Two-phase GLTR algorithm

as long as interior: conjugate-gradients

on the boundary: Lanczos method + subproblem solution in
Krylov space

(smooth transition)
Gould-Lucidi-Roma-T. (1999)

Philippe Toint (Namur) April 2009 99 / 323

Trust region methods for unconstrained problems Solving the subproblem

Doglegs

Idea: use steepest descent and the full Newton’step (requires convexity?)

r
0

sDD

sD

sC

sN

� trust-region boundary

@
@
@I

double-dogleg curve

@@R

dogleg curve

Powell (1970), Dennis-Mei (1979)

Philippe Toint (Namur) April 2009 100 / 323

Trust region methods for unconstrained problems Solving the subproblem

An eigenvalue approach

Rewrite
(H + λM)s = −g

as

(H g)

(
s
1

)
= −λMs

or (introducing the parameter θ)(
H g
gT θ

)(
s
1

)
= (−λ)

(
M 0
0 1

)(
s
1

)

⇒ choose θ such that

λ ≥ 0,

H + λM positive semi-definite

λ(‖s‖M −∆) = 0 Rendl-Wolkowicz (1997), Rojas-Santos-Sorensen (1999)

Philippe Toint (Namur) April 2009 101 / 323

Trust region methods for unconstrained problems Bibliography

Bibliography for lesson 2 (1)

J. E. Dennis and H. H. W. Mei,
Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values,
Journal of Optimization Theory and Applications, 28(4):453-482, 1979.

H. S. Dollar, N. I. M. Gould and D. P. Robinson,
On solving trust-region and other regularised subproblems in optimization,
Rutherford-Appleton Laboratory, Chilton, UK, Report RAL-TR-2009-003, 2009.

S. M. Goldfeldt, R. E. Quandt and H. F. Trotter,
Maximization by quadratic hill-climbing,
Econometrica, 34:541-551, 1966.

N. I. M. Gould, S. Lucidi, M. Roma and Ph. L. Toint,
Solving the trust-region subproblem using the Lanczos method,
SIAM Journal on Optimization, 9(2):504-525, 1999.

K. Levenberg,
A Method For The Solution Of Certain Problems In Least Squares,
Quarterly Journal on Applied Mathematics, 2:164–168, 1944.

D. Marquardt,
An Algorithm For Least-Squares Estimation Of Nonlinear Parameters,
SIAM Journal on Applied Mathematics, 11:431-441, 1963.

J. J. Moré,
The Levenberg-Marquardt algorithm: implementation and theory,
Numerical Analysis, Dundee 1977 (A. Watson, ed.), Springer Verlag, Heidelberg, 1978.

J. J. Moré,
Recent developments in algorithms and software for trust region methods,
in “Mathematical Programming: The State of the Art” (A. Bachem, M. Grötschel and B. Korte, eds.), Springer Verlag,
Heidelberg, pp. 258-287, 1983.

J. J. Moré and D. C. Sorensen,
Computing A Trust Region Step,
SIAM Journal on Scientific and Statistical Computing, 4(3):553-572, 1983.

Philippe Toint (Namur) April 2009 102 / 323

Trust region methods for unconstrained problems Bibliography

Bibliography for lesson 2 (2)

D. D. Morrison,
Methods for nonlinear least squares problems and convergence proofs,
Proceedings of the Seminar on Tracking Programs and Orbit Determination, (J. Lorell and F. Yagi, eds.), Jet Propulsion
Laboratory, Pasadena, USA, pp. 1-9, 1960.

M. J. D. Powell,
A New Algorithm for Unconstrained Optimization,
in “Nonlinear Programming” (J. B. Rosen, O. L. Mangasarian and K. Ritter, eds.), Academic Press, London, pp. 31-65,
1970.

F. Rendl and H. Wolkowicz,
A Semidefinite Framework for Trust Region Subproblems with Applications to Large Scale Minimization,
Mathematical Programming, 77(2):273-299, 1997.

M. Rojas, S. A. Santos and D. C. Sorensen,
A new matrix-free algorithm for the large-scale trust-region subproblem,
CAAM, Rice University, TR99-19, 1999.

D. Winfield,
Function and functional optimization by interpolation in data tables,
Ph.D. Thesis, Harvard University, Cambridge, USA, 1969.

Philippe Toint (Namur) April 2009 103 / 323

Derivative free optimization, filters and other topics

Lesson 3:

Derivative-free optimization,
infinite dimensions and filters

Philippe Toint (Namur) April 2009 104 / 323

Derivative free optimization, filters and other topics Derivative free optimization

3.1: Derivative-free optimization

Philippe Toint (Namur) April 2009 105 / 323

Derivative free optimization, filters and other topics Derivative free optimization

An application of trust-regions: unconstrained DFO

Consider the unconstrained problem

min
x

f (x)

Gradient (and Hessian) of f (x) unavailable

physical measurement

object code

typically small-scale (but not always. . .)

⇒ “Derivative free optimization” (DFO)
f (x) typically very costly

Exploit each evaluation of f (x) to the utmost possible

considerable interest of practitioners

Philippe Toint (Namur) April 2009 106 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation methods for DFO

Idea: Winfield (1973), Powell (1994)

Until “convergence”:

Use the available function values to build a polynomial
interpolation model mk :

mk(yi) = f (yi) yi ∈ Y ;

Minimize the model in a “trust region”, yielding a new
potentially good point;

Compute a new function value.

Y = interpolation set ⊆ { points yi at which f (yi) is known }

Philippe Toint (Namur) April 2009 107 / 323

Derivative free optimization, filters and other topics Derivative free optimization

A naive trust-region method for DFO: illustration

−2−1.5−1−0.500.511.522.53

−2

−1

0

1

2

3

0

5

10

15

20

25

30

35

40

45

50

Philippe Toint (Namur) April 2009 108 / 323

Derivative free optimization, filters and other topics Derivative free optimization

A naive trust-region method for DFO: illustration

−2−1.5−1−0.500.511.522.53

−2

−1

0

1

2

3

0

5

10

15

20

25

30

35

40

45

50

Philippe Toint (Namur) April 2009 108 / 323

Derivative free optimization, filters and other topics Derivative free optimization

A naive trust-region method for DFO: illustration

−2−1.5−1−0.500.511.522.53

−2

−1

0

1

2

3

0

5

10

15

20

25

30

35

40

45

50

Philippe Toint (Namur) April 2009 108 / 323

Derivative free optimization, filters and other topics Derivative free optimization

A naive trust-region method for DFO: illustration

−2−1.5−1−0.500.511.522.53

−2

−1

0

1

2

3

0

5

10

15

20

25

30

35

40

45

50

Philippe Toint (Namur) April 2009 108 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation methods for DFO (2)

To be considered:

poisedness of the interpolation set Y

choice of models (linear, quadratic, in between, beyond)

convergence theory

numerical performance

Philippe Toint (Namur) April 2009 109 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Poisedness

Assume a quadratic model

mk(xk + s) = fk + 〈gk , s〉+ 1
2
〈s,Hks〉

Thus
p = 1 + n + 1

2
n(n + 1) = 1

2
(n + 1)(n + 2)

parameters to determine ⇒ need p function values (|Y | = p)

Not sufficient!

⇒ need geometric conditions for the points in Y . . .

Philippe Toint (Namur) April 2009 110 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Poisedness: geometry with n = 2, p = 6

−2

−1

0

1

2

−2−1.5−1−0.500.511.52
0

2

4

6

8

10

12

14

16

18

20

With these 6 data points in IR3.

Philippe Toint (Namur) April 2009 111 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Poisedness: geometry with n = 2, p = 6

. . . is this the correct interpolation?

Philippe Toint (Namur) April 2009 111 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Poisedness: geometry with n = 2, p = 6

. . . or this?

Philippe Toint (Namur) April 2009 111 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Poisedness: geometry with n = 2, p = 6

. . . or this?

Philippe Toint (Namur) April 2009 111 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Poisedness: geometry with n = 2, p = 6

The difference ... is zero on a quadratic curve containing Y !

Philippe Toint (Namur) April 2009 111 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Poisedness: geometry (2)

If {φi (·)}pi=1 = basis for quadratic polynomials

p∑
i=1

αiφi (yj) = f (yj) j = 1, . . . , p

Possible poisedness measure:

δ(Y) = det

 φ1(y1) · · · φp(y1)
...

...
φ1(yp) · · · φp(yp)

Y (well) poised ⇔ |δ(Y)| ≥ ε

scale for the spread of the yi ’s

notion of geometry improvement

Philippe Toint (Namur) April 2009 112 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Lagrange polynomials

Remarkable: replace y− by y+ in Y :

δ(Y+)

δ(Y)
= L(y+, y−) is independent of the basis {φi (·)}pi=1

where

∀y ∈ Y L(y , y−) =

{
1 if y = y−
0 if y 6= y−

is the Lagrange fundamental polynomial

Note: for quadratic interpolation, L(·, y) is a quadratic polynomial!
Powell (1994)

Philippe Toint (Namur) April 2009 113 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation using Lagrange polynomials

Idea: use the Lagrange polynomials to define the (quadratic) interpolant
by

mk(xk + s) =
∑
y∈Yk

f (y)Lk(xk + s, y)

And then. . .

‖f (xk + s)−mk(xk + s)‖ ≤ κ
∑
y∈Yk

‖xk + s− y‖2|Lk(xk + s, y)|

Philippe Toint (Namur) April 2009 114 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation using Lagrange polynomials: construction

The original function. . .

Philippe Toint (Namur) April 2009 115 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation using Lagrange polynomials: construction

. . . and the interpolation set

Philippe Toint (Namur) April 2009 115 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation using Lagrange polynomials: construction

The first Lagrange polynomial

Philippe Toint (Namur) April 2009 115 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation using Lagrange polynomials: construction

The second Lagrange polynomial

Philippe Toint (Namur) April 2009 115 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation using Lagrange polynomials: construction

The third Lagrange polynomial

Philippe Toint (Namur) April 2009 115 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation using Lagrange polynomials: construction

The fourth Lagrange polynomial

Philippe Toint (Namur) April 2009 115 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation using Lagrange polynomials: construction

The fifth Lagrange polynomial

Philippe Toint (Namur) April 2009 115 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation using Lagrange polynomials: construction

The sixth Lagrange polynomial

Philippe Toint (Namur) April 2009 115 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Interpolation using Lagrange polynomials: construction

The final interpolating quadratic

Philippe Toint (Namur) April 2009 115 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Other algorithmic ingredients

include a new point in the interpolation set

need to drop an existing interpolation point?
select which one to drop: make Y “as poised as possible”

Note: model/function minimizer may produce bad geometry!!
⇒ geometry improvement procedure . . .

trust-region radius management

trust region = Bk = {xk + s | ‖s‖ ≤ ∆k}

standard: reduce ∆k when “no progress”
DFO: more complicated! (Could reduce ∆ to fast and prevent
convergence. . .)

⇒ verify that Y is poised before reducing ∆k

Philippe Toint (Namur) April 2009 116 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Improving the geometry in a ball

∆
k

attempt to reuse past points that are close to xk

attempt to replace a distant point of Y

attempt to replace a close point of Y

good geometry for the current ∆k ⇔ improvement impossible

Philippe Toint (Namur) April 2009 117 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Self-correction at unsuccessful iterations (1)

At iteration k , define the set of exchangeable far points:

Fk = {y ∈ Yk | ‖y − xk‖ > ∆k and Lk(xk + sk , y) 6= 0}

and the set of exchangeable close points (for some π > 1):

Ck = {y ∈ Yk\{xk} | ‖y−xk‖ ≤ ∆k and |Lk(xk+sk , y)| ≥ π}

Philippe Toint (Namur) April 2009 118 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Self-correction at unsuccessful iterations (2)

Remarkably,

Whenever

iteration k is unsuccessful,

Fk = ∅
∆k is small w.r.t. ‖gk‖,

then Ck 6= ∅.

(an improvement of the geometry by a factor π is always possible at
unsuccessful iterations when ∆k is small and all exchangeable far points
have been considered)

⇒ no need to reduce ∆k forever!

Philippe Toint (Namur) April 2009 119 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Trust-region algorithm for DFO (1)

Algorithm 3.1: TR for DFO

Step 0: Initialization. Given: x0, ∆0, Y0 (→ L0(·, y)). Set k = 0.

Step 1: Criticality test [complicated and not discussed here]

Step 2: Solve the subproblem. Compute sk that sufficiently reduces mk(xk + s)
within the trust region,

Step 3: Evaluation. Compute f (xk + sk) and

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
.

Step 4: Define the next iterate and interpolation set.

the big question

Step 5: Update the Lagrange polynomials.

Philippe Toint (Namur) April 2009 120 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Trust-region algorithm for DFO (2)

Algorithm 3.2: Step 4: Define xk+1 and Yk+1

Step 4a: Successful iteration. If ρk ≥ η1, accept
xk + sk , increase ∆k and exchange xk + sk with

y = arg max
y∈Yk

‖y − (xk + sk)‖2|Lk(xk + sk , y)|

Step 4b: Replace far point. If ρk < η1 (+ other technical condition) and Fk 6= ∅, reject
xk + sk , keep ∆k and exchange xk + sk with

y = arg max
y∈Fk

‖y − (xk + sk)‖2|Lk(xk + sk , y)|

Step 4c: Replace close point. If ρk < η1 (+ other technical condition) and Ck 6= ∅, reject
xk + sk , keep ∆k and exchange xk + sk with

y = arg max
y∈Ck

‖y − (xk + sk)‖2|Lk(xk + sk , y)|

Step 4d: Decrease the radius. Otherwise, reject xk + sk , keep Yk , and reduce ∆k .

Philippe Toint (Namur) April 2009 121 / 323

Derivative free optimization, filters and other topics Derivative free optimization

Global convergence results

If the model is at least fully linear, then

lim inf
k→∞

‖∇x f (xk)‖ = lim inf
k→∞

‖gk‖ = 0

Scheinberg and T. (2009)

With more costly algorithm:

If the model is at least fully linear, then

lim
k→∞

‖∇x f (xk)‖ = lim
k→∞

‖gk‖ = 0

If the model at least fully quadratic, then iterates converge to
2nd-order critical points

Philippe Toint (Namur) April 2009 122 / 323

Derivative free optimization, filters and other topics Derivative free optimization

For an efficient numerical method. . .

Many more issues:

which Hessian approximation?
(full/vs diagonal or structured)

details of criticality tests difficult

details for numerically handling interpolation polynomials
(Lagrange, Newton),

reference shifts,

. . .

good codes around: NEWUOA, DFO ⇒ efficient solvers

Powell (2008 and previously), Conn, Scheinberg and T. (1998)

Conn, Scheinberg and Vicente (2008)

Philippe Toint (Namur) April 2009 123 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Derivative free optimization

On the ever famous banana function. . .

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5
−10

−5

0

5

10

15

20

25

Philippe Toint (Namur) April 2009 124 / 323

Derivative free optimization, filters and other topics Infinite dimensional problems

3.2: Infinite dimensional problems

Philippe Toint (Namur) April 2009 125 / 323

Derivative free optimization, filters and other topics Infinite dimensional problems

Why consider infinite dimensions?

Main motivation:

large-scale finite dimensional problems often result from discretized
continuous ones (surfaces, time-trajectories, optimal control, . . .)

behaviour on these problems dominated by infinite dimensional
properties

Need to investigate infinite dimensions to ensure consistency!

Two main cases: Hilbert and Banach spaces.

Philippe Toint (Namur) April 2009 126 / 323

Derivative free optimization, filters and other topics Infinite dimensional problems

Convergence in Hilbert spaces

The trust-region algorithm is well-defined and globally
convergent in Hilbert spaces.

Riescz representation theorem ⇒ V ′ ≈ V
Cauchy point results from one dimensional minimization
(but xM

k may not exist!)

βk
def
= 1 + sup

x∈Bk

‖∇xxmk(x)‖V,V ′ ,

λmin[H]
def
= inf

d∈V,d 6=0

〈d ,Hd〉
〈d , d〉

Philippe Toint (Namur) April 2009 127 / 323

Derivative free optimization, filters and other topics Infinite dimensional problems

Wht happens in Banach spaces ?

Problem: dual space different from the primal!

Need further assumptions:

∇x f (x) ∈ V for all x ∈ V.

∇x f is uniformly continuous from V to V.

For every x ∈ {x ∈ V | f (x) ≤ f (x0)},

〈∇x f (x),∇x f (x)〉 ≥ φ(‖∇x f (x)‖V ′)‖∇x f (x)‖V ,

for some continuous monotonically increasing real φ from
[0,∞] to itself, independent of x and such that φ(0) = 0
and φ(t) > 0 for t > 0.

Philippe Toint (Namur) April 2009 128 / 323

Derivative free optimization, filters and other topics Infinite dimensional problems

Convergence in Banach spaces, nevertheless

The last assumption implies

〈−gk , gk〉 ≤ −φ(‖gk‖V ′)‖gk‖V

. . . and sufficient decrease follows!
Is this realistic?

The additional assumptions always hold for V = Lp(Ω) and
2 ≤ p <∞, when ‖g‖Lp(Ω) ≤ κubg.

Under these additional assumptions, the trust-region algorithm
is well-defined and globally convergent in Banach spaces.

Philippe Toint (Namur) April 2009 129 / 323

Derivative free optimization, filters and other topics Filter algorithms

3.3: Filter algorithms

Philippe Toint (Namur) April 2009 130 / 323

Derivative free optimization, filters and other topics Filter algorithms

Monotonicity (1)

Global convergence theoretically ensured by

some global measure. . .

unconstrained : f (xk)
(constrained : some merit function at xk)

. . . with strong monotonic behaviour (Lyapunov function)

Also practically enforced by

algorithmic safeguards around Newton method
(linesearches, trust regions)

Philippe Toint (Namur) April 2009 131 / 323

Derivative free optimization, filters and other topics Filter algorithms

Monotonicity (2)

But, unfortunately,

classical safeguards limit efficiency!

Of interest: design less obstructive safeguards while

ensuring better numerical performance
(the Newton Liberation Front!)

continuing to guarantee global convergence properties

Is this possible?

Typically:

abandon strict monotonicity of usual measures

but insist on average behaviour instead

Philippe Toint (Namur) April 2009 132 / 323

Derivative free optimization, filters and other topics Filter algorithms

Non-monotone trust-regions

Idea: f (xk+1) < f (xk) replaced by f (xk+1) < fr(k)

with

fr(k) < fr(k−1)

Further issues:

suitably define the “reference iteration” r(k)

adapt the trust-region algorithm: also compare achieved and
predicted reductions since reference iteration

T. (1997)

Philippe Toint (Namur) April 2009 133 / 323

Derivative free optimization, filters and other topics Filter algorithms

Non-monotone TR algorithm

Algorithm 3.3: Non monotone TR algorithm (NMTR)

Step 0: Initialization. Given: x0, ∆0, η1, η2, γ1, γ2. Compute f (x0), set k = 0.

Step 1: Model definition. Choose ‖ · ‖k and define mk in Bk .

Step 2: Step calculation. Compute sk that sufficiently reduces mk and xk + sk ∈ Bk .

Step 3: Acceptance of the trial point. Define the reference iteration r(k) ≤ k and
compute f (xk + sk),

σh
k =

k−1X
i=r(k)
i∈S

[mi (xi)−mi (xi + si)],

Define

ρk = max

»
f (xr(k))− f (xk + sk)

σh
k + mk(xk)−mk(xk + sk)

,
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
.

–
.

If ρk ≥ η1, then define xk+1 = xk + sk ; otherwise define xk+1 = xk .

Step 4: Trust-region radius update. Set

∆k+1 ∈
8<:

[∆k ,∞) if ρk ≥ η2,
[γ2∆k ,∆k) if ρk ∈ [η1, η2),
[γ1∆k , γ2∆k] if ρk < η1.

Increment k by one and go to Step 1.

Philippe Toint (Namur) April 2009 134 / 323

Derivative free optimization, filters and other topics Filter algorithms

Sufficient decrease for NMTR

f (xp(k))− f (xk+1) ≥ η1κmdc

kX
j=p(k),j∈S

‖gj‖min

»‖gj‖
βj

,∆j

–
with p(k) = r(k) when ρh

k ≥ ρc
k , or p(k) = k otherwise

6
f (xk)

- kS

r
r r

r
r

r r
r

r r r r r
r r

r r
r r r

r
r r r r

r r
r r r

�

6

6

6

6

�

��

�

f (x0)− f (xk+1) ≥ η1κmdc

k∑
t=0,t∈S

‖gt‖min

[
‖gt‖
βt

,∆t

]
.

Philippe Toint (Namur) April 2009 135 / 323

Derivative free optimization, filters and other topics Filter algorithms

Choosing the reference iteration (1)

Algorithm 3.4: Choosing r(k)

Step 3: Acceptance of the trial point.
Step 3a: update the iterate. Compute f (xk + sk) and set

ρk = max

»
fr − f (xk + sk)

σr + mk(xk)−mk(xk + sk)
,

f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

–
.

If ρk < η1, then xk+1 = xk and go to Step 4; otherwise xk+1 = xk + sk and

σc = σc + mk(xk)−mk(xk+1) and σr = σr + mk(xk)−mk(xk+1)

Step 3b: update the best value. If f (xk+1) < fmin then set fc = fmin = f (xk+1),
σc = 0 and ` = 0 and go to Step 4; otherwise, `← `+ 1.

Step 3c: update the reference candidate. If f (xk+1) > fc , set fc = f (xk+1) and
σc = 0.

Step 3d: possibly reset the reference value. If ` = m, set fr = fc and σr = σc .

Philippe Toint (Namur) April 2009 136 / 323

Derivative free optimization, filters and other topics Filter algorithms

Choosing the reference iteration (2): example with m = 2

6

f (xk)

- kS

d
d d d d d d

r
r r

r
r

r
r

r
r r

r r r
r r

r
r

r r r
r

r r r r
r r

r r r

�

�

�
�

�

�

` 0 0 0 0 1 2
?

0 1 0 1 1 1 2
?

1 2
?

0 1 1 1 1 2
?

0 1 1 2
?

0 0 1 2
?

0

• : reference iteration • : new best value
? : reference iteration redefined (l = m)

Philippe Toint (Namur) April 2009 137 / 323

Derivative free optimization, filters and other topics Filter algorithms

An unconstrained example

0 10 20 30 40 50 60 70
-12

-10

-8

-6

-4

-2

0

2

Monotone and non-monotone TR (using LANCELOT B) on EXTROSNB

Philippe Toint (Namur) April 2009 138 / 323

Derivative free optimization, filters and other topics Filter algorithms

Introducing the filter

A fruitful alternative: filter methods

Constrained optimization :

using the SQP step, at the same time:

reduce the objective function f (x)

reduce constraint violation θ(x)

⇒ CONFLICT

Philippe Toint (Namur) April 2009 139 / 323

Derivative free optimization, filters and other topics Filter algorithms

The filter point of view

Fletcher and Leyffer replace question:

What is a better point?

by:

What is a worse point?

Of course, y is worse than x when

f (x) ≤ f (y) and θ(x) ≤ θ(y)

(y is dominated by x)

When is xk + sk acceptable?

Fletcher and Leyffer (2002), Fletcher, Gould, Leyffer, T. and Wächter (2002)

Philippe Toint (Namur) April 2009 140 / 323

Derivative free optimization, filters and other topics Filter algorithms

The standard filter
Idea: accept non-dominated points

no monotonicity of merit function implied

6

0

f (x)

-
θ(x)

r
r

r r
Philippe Toint (Namur) April 2009 141 / 323

Derivative free optimization, filters and other topics Filter algorithms

Filling up the standard filter

Note: filter area is bounded in the (f , θ) space!

6

0

f (x)

-
θ(x)

r

θk(1− γ)θk

f (xk)

f (xk)− γθk

⇒ filter area (non)-monotonically decreasing

Philippe Toint (Namur) April 2009 142 / 323

Derivative free optimization, filters and other topics Filter algorithms

The (unconstrained) feasibility problem

Feasibility

Find x such that
c(x) ≥ 0

e(x) = 0

for general smooth c and e.

Least-squares

Find x such that
min

∑
θ2
i

Philippe Toint (Namur) April 2009 143 / 323

Derivative free optimization, filters and other topics Filter algorithms

A multidimensional filter (1)

(Simple) idea: more dimensions in filter space

6

0

θ1(x)

-
θ2(x)

q
q

q q
(full dimension vs. grouping)

Philippe Toint (Namur) April 2009 144 / 323

Derivative free optimization, filters and other topics Filter algorithms

A multidimensional filter (2)

Additionally

possibly consider unsigned filter entries

use a trust-region algorithm when

trial point unacceptable
convergence to non-zero solution

(⇒ “internal” restoration)

Sound convergence theory

Gould, Leyffer and T. (2005)

Philippe Toint (Namur) April 2009 145 / 323

Derivative free optimization, filters and other topics Filter algorithms

Numerical experience: FILTRANE

Fortran 95 package

large scale problems (CUTEr interface)

includes several variants of the method

signed/unsigned filters
Gauss-Newton, Newton or adaptive models
pure trust-region option
uses preconditioned conjugate-gradients
+ Lanczos for subproblem solution

part of the GALAHAD library
Gould, Orban and T. (2003), Gould and T. (2007)

Philippe Toint (Namur) April 2009 146 / 323

Derivative free optimization, filters and other topics Filter algorithms

Numerical experience (1)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 s

ol
ve

r
in

 w
ith

in
 α

 o
f b

es
t

Default
Pure trust region

Filter vs. trust-region (CPU time)

Philippe Toint (Namur) April 2009 147 / 323

Derivative free optimization, filters and other topics Filter algorithms

Numerical experience (2)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
LANCELOT

Filter vs. LANCELOT B (CPU time)

Philippe Toint (Namur) April 2009 148 / 323

Derivative free optimization, filters and other topics Filter algorithms

Numerical experience (3)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Unfettered

Filter vs. free Newton (CPU time)

Philippe Toint (Namur) April 2009 149 / 323

Derivative free optimization, filters and other topics Filter algorithms

Filter for unconstrained optimization

Again simple idea: use gi instead of θi

6

0

g1(x)

-
g2(x)

q
q

q q
(full dimension vs. grouping)

Philippe Toint (Namur) April 2009 150 / 323

Derivative free optimization, filters and other topics Filter algorithms

A few complications. . .

But . . .

g(x) = 0 not sufficient for nonconvex problems!

When negative curvature found:

reset filter

set upper bound on acceptable f (x)

(or. . . add a dimension for f in the filter)

reasonable convergence theory

Philippe Toint (Namur) April 2009 151 / 323

Derivative free optimization, filters and other topics Filter algorithms

Numerical experience (1)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Default
Pure trust region
LANB

Filter vs. trust-region and LANCELOT B (iterations)

Philippe Toint (Namur) April 2009 152 / 323

Derivative free optimization, filters and other topics Filter algorithms

Numerical experience: HEART6

0 10 20 30 40 50 60 70 80
−14

−12

−10

−8

−6

−4

−2

0

2

4

lo
g

of
 r

es
id

ua
l

iterations

Filter vs. trust-region and LANCELOT B

Philippe Toint (Namur) April 2009 153 / 323

Derivative free optimization, filters and other topics Filter algorithms

Numerical experience: EXTROSNB

0 50 100 150 200 250 300
−6

−4

−2

0

2

4

6

lo
g

of
 r

es
id

ua
l

iterations

Filter vs. trust-region and LANCELOT B

Philippe Toint (Namur) April 2009 154 / 323

Derivative free optimization, filters and other topics Filter algorithms

Numerical experience: LOBSTERZ

0 50 100 150 200 250 300
−10

−8

−6

−4

−2

0

2

4

6

lo
g

of
 r

es
id

ua
l

iterations

Filter vs. trust-region

Philippe Toint (Namur) April 2009 155 / 323

Derivative free optimization, filters and other topics Filter algorithms

Conclusions

derivative-free optimization possible and efficient

non-monotonicity definitely helpful

filter methods very efficient

Newton’s behaviour unexplained

. . . more research needed?

Philippe Toint (Namur) April 2009 156 / 323

Derivative free optimization, filters and other topics Bibliography

Bibliography for lesson 3 (1)

1 A. R. Conn, K. Scheinberg and Ph. L. Toint,
A Derivative Free Optimization Algorithm in Practice,
Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St.
Louis, Missouri, September 1998.

2 A. R. Conn, K. Scheinberg and L. N. Vicente,
Introduction to Derivative-free Optimization,
SIAM-MPS Series on Optimization, 2008.

3 R. Fletcher and S. Leyffer,
Nonlinear Programming without a penalty function,
Mathematical Programming A, 91(2):239-269, 2002.

4 R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint and A. Wächter,
Global Convergence of Trust-Region SQP-Filter Algorithms for Nonlinear Programming,
SIAM Journal on Optimization, 13(3):635-659, 2002.

5 N. I. M. Gould and S. Leyffer and Ph. L. Toint,
A Multidimensional Filter Algorithm for Nonlinear Equations and Nonlinear Least-Squares,
SIAM Journal on Optimization, 15(1):17-38, 2005.

6 N. I. M. Gould, D. Orban and Ph. L. Toint,
GALAHAD—a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization, ACM Transactions on
Mathematical Software, 29(4):353-372, 2003.

7 N. I. M. Gould,C. Sainvitu and Ph. L. Toint,
A Filter-Trust-Region Method for Unconstrained Optimization,
SIAM Journal on Optimization, 16(2):341-357, 2005.

8 N. I. M. Gould and Ph. L. Toint,
FILTRANE, a Fortran 95 filter-trust-region package for solving systems of nonlinear equalities, nonlinear inequalities
and nonlinear least-squares problems,
ACM Transactions on Mathematical Software, 33(1):3-25, 2007.

9 M. J. D. Powell,
A direct search optimization method that models the objective by quadratic interpolation,
Presentation at the 5th Stockholm Optimization Days, Stockholm, 1994.

Philippe Toint (Namur) April 2009 157 / 323

Derivative free optimization, filters and other topics Bibliography

Bibliography for lesson 3 (2)

10 M. J. D. Powell,
Developments of NEWUOA for minimization without derivatives,
IMA Journal of Numerical Analysis, 28(4):649-664, 2008.

11 K. Scheinberg and Ph. L. Toint,
Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization,
Report TR09/06, FUNDP, Namur, 2009.

12 Ph. L. Toint,
A non-monotone trust-region algorithm for nonlinear optimization subject to convex constraints,
Mathematical Programming, 77(1):69-94, 1997.

13 D. Winfield,
Function Minimization by Interpolation in a Data Table,
Journal of the IMA, 12:339-347, 1973.

Philippe Toint (Namur) April 2009 158 / 323

Convex constraints and interior-point methods

Lesson 4:

Optimization with
convex constraints

Philippe Toint (Namur) April 2009 159 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

4.1: Projection algorithms

Philippe Toint (Namur) April 2009 160 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

Projections on simple convex domains (1)

r
y

rPC(y)

r
y

rPC(y)

ry = PC(y)

r
y

r PC(y)

r
y

r
r

r
ry

r
y

[PC(y)]i
def
=

[x`]i if [y]i ≤ [x`]i ,
[y]i if [x`]i < [y]i < [xu]i ,
[xu]i if [xu]i ≤ [y]i

Philippe Toint (Namur) April 2009 161 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

Projections on simple convex domains (2)

r
y

r PC(y)

ry = PC(y)

r
y r

ry r

Philippe Toint (Namur) April 2009 162 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

Projections on simple convex domains (2)

. . . but also the ordered simplex . . .

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x1x2

x3

Idea: use those simple projections!

Philippe Toint (Namur) April 2009 163 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

The projected gradient path

Define the projected gradient path = the Cauchy arc

p(t, x) = PC[x − t∇x f (x)]

x − tm∇x f (x)r
p(t, x) = p(tm, x)r

C
x

∇x f (x)

Philippe Toint (Namur) April 2009 164 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

Two projections

PT (x)[−∇x f (x)]6∈C 0 PC[x −∇x f (x)]− x∈C 0

Philippe Toint (Namur) April 2009 165 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

Measuring criticality

Measure the gain in linearized objective function per step of length θ:

χ(x , θ)
def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤θ

〈∇x f (x), d〉
∣∣∣∣

θ(t) = ‖PF (x − tg(x))− x‖ π(x , θ) =
χ(x)

θ

Philippe Toint (Namur) April 2009 166 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

The χ criticality measure

χ(x)
def
= χ(x , 1) =

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇x f (x), d〉
∣∣∣∣

the feasible reduction in the linearized objective for unit steps

reduces to ‖∇x f (x)‖2 in the unconstrained case

Philippe Toint (Namur) April 2009 167 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

The projected gradient path and χ

xk
r

xk + dk
r

χk

↙projected path

Philippe Toint (Namur) April 2009 168 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

The generalized Cauchy point

Approximately minimize mk(·) on the PG path

Find
xGC
k = PF [xk − tGC

k gk]
def
= xk + sGC

k (tGC
k > 0)

such that

mk(xGC
k) ≤ f (xk) + κubs〈gk , s

GC
k 〉 (below linear approximation)

and either

mk(xGC
k) ≥ f (xk) + κlbs〈gk , s

GC
k 〉 (above linear approximation)

or
‖PT (xGC

k)[−gk]‖ ≤ κepp|〈gk , s
GC
k 〉| (close to path’s end)

or
‖sGC

k ‖ ≥ κfrd∆k (close to TR boundary)

Philippe Toint (Namur) April 2009 169 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

Searching for the GCP (1)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

mk (0 + s) = −3.57s1 − 1.5s2 − s3 + s1s2 + 3s2
2 + s2s3 − 2s2

3 such that s ≤ 1.5 and ∆ ≤ 2.8

Philippe Toint (Namur) April 2009 170 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

Searching for the GCP (2)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

mk (0 + s) = −3.57s1 − 1.5s2 − s3 + s1s2 + 3s2
2 + s2s3 − 2s2

3 such that s ≤ 1.5 and ∆ ≤ 1.8

Philippe Toint (Namur) April 2009 171 / 323

Convex constraints and interior-point methods Projections and the projected gradient path

Useful properties

Piecewise search for xGC
k well-defined and finite

1 θ(·, ·), χ(·, ·) and π(·, ·) are continuous

2 θ(x , ·) is non-decreasing

3 χ(x , ·) is non-decreasing

4 π(x , ·) is non-increasing

5 χ(xk) ≤ χ(xk , ‖sGC
k ‖) + 2‖PT (xGC

k)[−gk]‖
6 −〈gk , s

GC
k 〉 = χ(xk , ‖sGC

k ‖) ≥ 0

7 θ(xk , t) ≥ t ‖PT (x(t))[−∇x f (xk)]‖
8 |χ(x)− χ(y)| ≤ L‖x − y‖

if ∇x f (x) is continuous on a bounded level set

Philippe Toint (Namur) April 2009 172 / 323

Convex constraints and interior-point methods Trust-region method for convex constraints

Cauchy decrease along the projected gradient path

The Cauchy condition: minimize mk long the projected gradient path

mk(xk)−mk(xk + sk) ≥ κCRχk min

[
χk

1 + ‖Hk‖
,∆k , 1

]

Idea: Linesearch conditions imply

mk(xk)−mk(xGC
k) ≥ κubs|〈gk , s

GC
k 〉| = κubsχ(xk , ‖sGC

k ‖)
but need

‖PT (P[xk−tjgk])[−gk]‖ ≤ κepp

|〈gk , sk(tj)〉|
∆k

Now define πk
def
= min[1, χk] ≤ χk . Then

mk(xk)−mk(xGC
k) ≥ κdcpπk min

[
πk

βk
,∆k

]
Philippe Toint (Namur) April 2009 173 / 323

Convex constraints and interior-point methods Trust-region method for convex constraints

How far can we turn the handle?

As above. . .

All limit points are first-order critical, i.e.

lim
k→∞

πk = 0

But . . .

does the active set settle ?

(needed for 2nd-order convergence or rate)

Philippe Toint (Namur) April 2009 174 / 323

Convex constraints and interior-point methods Trust-region method for convex constraints

Active constraints identification (1)

Require further assumptions: let L∗ = { limit points of {xk} }

∀x∗ ∈ L∗, {∇xci (x∗)}i∈A(x∗) are linearly independent

∀x∗ ∈ L∗, −∇x f (x∗) ∈ ri{N (x∗)}
∀k , A(xGC

k) ⊆ A(xk + sk)

For each connected component of limit points L(x∗) ⊆ L∗,
there exists a set A∗ ⊆ {1, . . . ,m} for which

A(x∗) = A∗ for all x∗ ∈ L(x∗).

Idea: connectivity + uniqueness of Lagrange multipliers
⇒ each L(x∗) belongs to a single facet of C

Philippe Toint (Namur) April 2009 175 / 323

Convex constraints and interior-point methods Trust-region method for convex constraints

Active constraints identification (2)

There exists a ψ ∈ (0, 1) such that

dist(x∗,L′) ≥ ψ
for every x∗ ∈ L∗ and each compact connected component of
limit points L′ such that A(L′) 6= A(x∗).

Idea: continuity + compactness ⇒ well separated

There exist δ ∈ (0, 1
4
ψ), ψ ∈ (0, 1), and k1 ≥ 0 such that, for

k ≥ k1, there is a L∗k such that

xk ∈ V(L∗k , δ) = {x ∈ IRn | dist(x ,L∗k) ≤ δ}
and

A(x) ⊆ A(L∗k) for all x ∈ V(L∗k , δ).

Idea: partition the complete sequence into convergent subsequences
⇒ each xk near a unique L∗k

Philippe Toint (Namur) April 2009 176 / 323

Convex constraints and interior-point methods Trust-region method for convex constraints

Active constraints identification (3)

There exists k2 ≥ k1 such that, if for some k ≥ k2,

j ∈ A(L∗k) and j 6∈ A(xGC
k),

then, for some ε∗ ∈ (0, 1) independent of k and j ,

πk ≥ ε∗.

Idea: complicated (uses criticality measures for incomplete constraint sets)
⇒ incomplete local A(xk) implies not critical

(more technical arguments here)

There exists an active set A∗, such that

∀x∗ ∈ L∗ A(x∗) = A∗
and, for all k sufficiently large,

A(xk) = A(xGC
k) = A∗

Philippe Toint (Namur) April 2009 177 / 323

Convex constraints and interior-point methods Trust-region method for convex constraints

Further convergence results

. . . and now it works in T (xk) (now continuous for large k) with

∇xxmk remplaced by ∇xxm
`
k ≈ ∇xx`(xk , yk)

convergence to isolated critical points

(generalized) eigen-points for the Lagrangian
(needs consistent multiplier estimates!)

convergence to second-order points

fast asymptotic rate of convergence

Philippe Toint (Namur) April 2009 178 / 323

Convex constraints and interior-point methods Barriers and interior points

4.2: Barrier methods

Philippe Toint (Namur) April 2009 179 / 323

Convex constraints and interior-point methods Barriers and interior points

A simple case

Consider C = {x ∈ IRn | x ≥ 0} and build

φlog(x , µ)
def
= f (x)− µ〈e, log(x)〉 = f (x)− µ

n∑
i=1

log(xi)

Under acceptable assumptions,

x∗(µ) = arg min
x
φlog(x , µ)

converge to the solution of the problem

min
x∈C

f (x)

when µ↘ 0.

Philippe Toint (Namur) April 2009 180 / 323

Convex constraints and interior-point methods Barriers and interior points

How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

original objective function

Philippe Toint (Namur) April 2009 181 / 323

Convex constraints and interior-point methods Barriers and interior points

How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

original objective function + barrier (µ = 50)

Philippe Toint (Namur) April 2009 181 / 323

Convex constraints and interior-point methods Barriers and interior points

How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

original objective function + barrier (µ = 25)

Philippe Toint (Namur) April 2009 181 / 323

Convex constraints and interior-point methods Barriers and interior points

How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

original objective function + barrier (µ = 10)

Philippe Toint (Namur) April 2009 181 / 323

Convex constraints and interior-point methods Barriers and interior points

How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

original objective function + barrier (µ = 5)

Philippe Toint (Namur) April 2009 181 / 323

Convex constraints and interior-point methods Barriers and interior points

How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

original objective function + barrier (µ = 2)

Philippe Toint (Namur) April 2009 181 / 323

Convex constraints and interior-point methods Barriers and interior points

Other barriers: reciprocals

bR(α)(x , µ) = µ

n∑
i=1

1

α[x]αi

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(µ = 2, log + R(1
2), R(1) and R(2))

Philippe Toint (Namur) April 2009 182 / 323

Convex constraints and interior-point methods Barriers and interior points

The barrier function

φ(x , µ) = f (x) + b(x , µ)
def
= f (x)− µ〈e, log(x)〉

Assume:

b(x , µ) is defined for all x ∈ ri{C} and all µ > 0, and is
C 2(ri{C}) w.r.t. x .

∀µ > 0, ε > 0 ∃κbbh(ε, µ) ≥ 1 such that

‖∇xxb(x , µ)‖ ≤ κbbh(ε, µ)

∀x ∈ C such that dist(x , ∂C) ≥ ε
limp→∞ b(yp, µ) = +∞ ∀µ > 0 and ∀{yp}∞p=0 such that

yp ∈ ri{C} and lim
p→∞

dist(yp, ∂C) = 0.

Philippe Toint (Namur) April 2009 183 / 323

Convex constraints and interior-point methods Barriers and interior points

An elementary barrier algorithm

Algorithm 4.1: A simple barrier algorithm

Step 0: Initialization. Given: x0 ∈ ri{C}, µ0 > 0. Set k = 0.

Step 1: Inner minimization. (Approximately) solve the problem

min
x
φ(x , µk)

by applying an unconstrained (inner) algorithm, starting from
a suitable starting point xk,0 ∈ ri{C}.
Let xk+1 be the corresponding (approximate) solution.

Step 2: Update the barrier parameter. Choose µk+1 > 0 such that

lim
k→∞

µk = 0.

Increment k by one and return to Step 1.

Philippe Toint (Namur) April 2009 184 / 323

Convex constraints and interior-point methods Barriers and interior points

A first inner primal algorithm

Algorithm 4.2: Inner primal 1

Step 0: Initialization. Given: xk,0∈ ri{C}, ∆k,0, η1, η2, γ1, γ2, ςk ∈ (0, 1).
Compute φ(x0, µk), set j = 0.

Step 1: Model definition. Define mk,j of φ(xk,j + s, µk) in Bk,j of the form

mk,j(xk,j + s) = mf
k,j(xk,j + s)+mb

k,j(xk,j + s),

Step 2: Step calculation. Compute sk,j that sufficiently reduces mk,j and
such that xk,j + sk,j ∈ Bk,j .

Step 3: Acceptance of the trial point. If xk,j + sk,j 6∈ C or if dist(xk,j + sk,j , ∂C) <
ςkdist(xk,j , ∂C), set ρk,j = −∞, xk,j+1 = xk,j and go to Step 4.
Otherwise compute φ(xk,j + sk,j , µk) and

ρk,j =
φ(xk,j , µk)− φ(xk,j + sk,j , µk)

mk,j(xk,j)−mk,j(xk,j + sk,j)
.

Then if ρk,j ≥ η1, define xk,j+1 = xk,j + sk,j ; otherwise define xk,j+1 = xk,j .

Step 4: Trust-region radius update. Set

∆k,j+1 ∈
8<:

[∆k,j ,∞) if ρk,j ≥ η2,
[γ2∆k,j ,∆k,j] if ρk,j ∈ [η1, η2),
[γ1∆k,j , γ2∆k,j] if ρk,j < η1.

Increment j by one and go to Step 1.
Philippe Toint (Namur) April 2009 185 / 323

Convex constraints and interior-point methods Barriers and interior points

Models and assumptions

Use separate models for f and b!

mk,j(xk,j + s) = mf
k,j(xk,j + s) + mb

k,j(xk,j + s),

Assume:

∀k , ε > 0, ∃κbbmh(ε, µk) ≥ 1 ∀k, j ≥ 0,

‖∇xxm
b
k,j(x , µk)‖ ≤ κbbmh(ε, µk)

∀x ∈ Bk,j ∩ C such that dist(x , ∂C) ≥ ε.
∀k , j ≥ 0 ∀x ∈ Bk,j ∩ ri{C},

‖∇xxm
f
k,j(x)‖ ≤ κumh

Philippe Toint (Namur) April 2009 186 / 323

Convex constraints and interior-point methods Barriers and interior points

(Inner) convergence properties

There exists κmdb(k) ∈ (0, 1) such that

dist(xk,j , ∂C) ≥ κmdb(k)

for all j . Moreover, for all j and all x such that ‖x − xk,j‖ ≤
(1− ςk)dist(xj , ∂C), we have that

‖∇xxb(x , µ)‖ ≤ κbbh(ςk κmdb(k), µk)

and
‖∇xxm

b
k,j(xk,j , µ)‖ ≤ κbbmh(ςk κmdb(k), µk)

If ∆k,j ≤ (1− ςk)κmdb(k), then

|φ(xk,j + sk,j , µk)−mk,j(xk,j + sk,j)| ≤ κubh(k)∆2
k,j

. . . and all the nice convergence properties follow!

Philippe Toint (Namur) April 2009 187 / 323

Convex constraints and interior-point methods Barriers and interior points

Constrained Cauchy and eigen-points (1)

Idea: restrict the step, not the trust region!

xk,j ∆k,j

xk,j + sk,j
ri{C}

ςkdist(xk,j , ∂C)

@
@
@@R

But . . . what of sufficient decrease ???

Philippe Toint (Namur) April 2009 188 / 323

Convex constraints and interior-point methods Barriers and interior points

Constrained Cauchy and eigen-points (2)

Redefine the Cauchy arc:

xCC
k,j(t)

def
= {x | x = xk,j − tgk,j , t ≥ 0, t‖gk,j‖ ≤ (1− ςk)dk,j and x ∈ Bk},

mk,j(xk,j)−mk,j(x
CC
k,j) ≥ 1

2
‖gk,j‖min

[
‖gk,j‖
βk,j

,∆k,j , (1− ςk)dk,j

]

. . . etc, etc, etc . . .

Philippe Toint (Namur) April 2009 189 / 323

Convex constraints and interior-point methods Barriers and interior points

A second inner primal algorithm

Algorithm 4.3: Inner primal 2

Step 0: Initialization. Given: xk,0 ∈ ri{C}, ∆k,0, η1, η2, γ1, γ2, ςk ∈ (0, 1).
Compute φ(xk,0, µk), set j = 0.

Step 1: Model definition. Define mk,j(xk,j + s) = mf
k,j(xk,j + s) + mb

k,j(xk,j + s)

Step 2: Step calculation. Define dk,j = dist(xk,j , ∂C). Compute sk,j such that

xk,j + sk,j ∈ Bk,j ∩ C and dist(xk,j + sk,j , ∂C) ≥ ςkdk,j

and such that it sufficiently reduces mk,j

Step 3: Acceptance of the trial point. Compute φ(xk,j + sk,j , µk) and

ρk,j =
φ(xk,j , µk)− φ(xk,j + sk,j , µk)

mk,j(xk,j)−mk,j(xk,j + sk,j)
.

Then if ρk,j ≥ η1, define xk,j+1 = xk,j + sk,j ; otherwise define xk,j+1 = xk,j .

Step 4: Trust-region radius update. Set

∆k,j+1 ∈
8<:

[∆k,j ,∞) if ρk,j ≥ η2,
[γ2∆k,j ,∆k,j] if ρk,j ∈ [η1, η2),
[γ1∆k,j , γ2∆k,j] if ρk,j < η1.

Increment j by one and go to Step 1.

Philippe Toint (Namur) April 2009 190 / 323

Convex constraints and interior-point methods Barriers and interior points

The log barrier and its derivatives

Return to:
min
x≥0

f (x)

The log barrier
b(x , µ) = −µ〈e, log(x)〉

giving
φlog(x , µ) = f (x)− µ〈e, log(x)〉

Using the notation X = diag(x1, . . . , xn), we obtain that

∇xb(x , µ) = −µX−1e and ∇xxb(x , µ) = µX−2e

Philippe Toint (Namur) April 2009 191 / 323

Convex constraints and interior-point methods Barriers and interior points

The primal log-barrier algorithm

Algorithm 4.4: Primal log-barrier algorithm

Step 0: Initialization. Given: x0 > 0, µ0 > 0, and the forcing functions εD(µ) and
εE(µ). Set k = 0.

Step 1: Inner minimization. Choose a value ςk ∈ (0, 1). Approximately minimize
the log-barrier function φlog(x , µk) = f (x)− µk〈e, log(x)〉 starting
from xk and using an inner algorithm in which

mb
k,j(xk,j + s) = µk

“
−〈e, log(xk,j)〉 − 〈X−1

k,j e, s〉+ 1
2
〈s,X−2

k,j s〉
”

Stop this algorithm as soon as an iterate xk,j = xk+1 is found for which

‖∇x f (xk+1)− µkX
−1
k+1e‖ ≤ εD(µk),

λmin[∇xx f (xk+1) + µkX
−2
k+1] ≥ −εE(µk)

and xk+1 > 0.

Step 2: Update the barrier parameter. Choose µk+1 > 0 such that
limk→∞ µk = 0. Increment k by one and return to Step 1.

Philippe Toint (Namur) April 2009 192 / 323

Convex constraints and interior-point methods Barriers and interior points

Convergence of the primal log-barrier algorithm (1)

OK for first order! . . . but existence of limit points not guaranteed
Define

A subsequence {xkj
} is consistently active w.r.t. the bounds if,

for each i = 1, . . . , n, either

lim
j→∞

[xkj
]i = 0 or lim inf

j→∞
[xkj

]i > 0.

(Each bound constraint is asymptotically active or inactive for the
complete subsequence.)

A{xkj
} def

= {i ∈ {1, . . . , n} | lim
j→∞

[xkj
]i = 0}.

Note: finite number of such subsequences ⇒ a partition of {xk}

Philippe Toint (Namur) April 2009 193 / 323

Convex constraints and interior-point methods Barriers and interior points

Convergence of the primal log-barrier algorithm (2)

Finally,

Under appropriate assumptions,

lim inf
k→∞

[∇x f (xk)]i ≥ 0, (i = 1, . . . , n).

Furthermore, for every consistently active subsequence {xk`},

lim
`→∞

[∇x f (xk`)]i = 0, (i 6∈ A{xk`})

and
lim inf
`→∞

〈u, [∇xx f (xk`)]u〉 ≥ 0

for each u | [u]i = 0 whenever i ∈ A{xk`}.

Philippe Toint (Namur) April 2009 194 / 323

Convex constraints and interior-point methods Barriers and interior points

The primal-dual framework (1)

In practice, as xk ↘ 0, ∇xxmk,j(xk,j) + µkX−2
k,j causes slow progress.

Idea: replace this by

∇xxmk,j(xk,j) + X−1
k,j Zk,j

where Zk,j is a bounded positive diagonal.

Alternatively: KKT conditions for original problem:

∇xm(x)− z = 0, XZ = 0, x ≥ 0, z ≥ 0,

Perturb:

∇xm(x)− z = 0, XZ = µe x ≥ 0, z ≥ 0.

Philippe Toint (Namur) April 2009 195 / 323

Convex constraints and interior-point methods Barriers and interior points

The primal-dual framework (2)

Now write Newton’s method for the perturbed problem:

∇xxmk,j(xk,j)∆xk,j −∆zk,j = −gk,j + zk,j ,
Xk,j∆zk,j + Zk,j∆xk,j = µke − Xk,jZk,je,

xk,j + ∆xk,j ≥ 0, zk,j + ∆zk,j ≥ 0.

Substituting the 2nd equation into the 1st:[
∇xxmk,j(xk,j) + X−1

k,j Zk,j

]
∆xk,j = −

[
gk,j − µkX−1

k,j e
]

But
gk,j − µkX−1

k,j e = ∇xφ
log(x , µk)

Hence [
∇xxmk,j(xk,j) + X−1

k,j Zk,j

]
∆xk,j = −∇xφ

log(x , µk)

Philippe Toint (Namur) April 2009 196 / 323

Convex constraints and interior-point methods Barriers and interior points

The primal-dual inner algorithm (1)

Algorithm 4.5: Inner primal-dual algorithm

Step 0: Initialization. Given: xk,0 ∈ ri{C}, zk,0 > 0 , ∆k,0, η1, η2, γ1,γ2, ςk .
Compute f (xk,0), set j = 0.

Step 1: Model definition. In Bk,j , define

mk,j(xk,j + s) = mf
k,j(xk,j + s)− µk

h
〈e, log(xk,j)〉+ 〈X−1

k,j e, s〉
i
− 1

2
〈s,X−1

k,j Zk,js〉

Step 2: Step calculation. Define dk,j = dist(xk,j , ∂C). Compute a step sk,j such
that xk,j + sk,j ∈ Bk,j , dist(xk,j + sk,j , ∂C) ≥ ςkdk,j , and

mk,j (xk,j)−mk,j (xk,j +sk,j) ≥ κmax

(
‖gk,j‖min

"
‖gk,j‖
βk,j

,∆k,j , (1− ςk)dk,j

#
,−τk,j min

h
τ

2
k,j ,∆2

k,j , (1−ςk)2d2
k,j

i)

Step 3: Acceptance of the trial point. Compute φlog(xk,j + sk,j , µk) and

ρk,j =
φlog(xk,j , µk)− φlog(xk,j + sk,j , µk)

mk,j(xk,j)−mk,j(xk,j + sk,j)
.

If ρk,j ≥ η1, then xk,j+1 = xk,j + sk,j , else xk,j+1 = xk,j .

Philippe Toint (Namur) April 2009 197 / 323

Convex constraints and interior-point methods Barriers and interior points

The primal-dual inner algorithm (2)

Algorithm 4.6: Inner primal-dual algorithm (2)

Step 4: Trust-region radius update. Set

∆k,j+1 ∈
8<:

[∆k,j ,∞) if ρk,j ≥ η2,
[γ2∆k,j ,∆k,j] if ρk,j ∈ [η1, η2),
[γ1∆k,j , γ2∆k,j] if ρk,j < η1.

Step 5: Update the dual variables. Set zk,j+1 > 0. Increment j by one,go to
Step 1.

Philippe Toint (Namur) April 2009 198 / 323

Convex constraints and interior-point methods Barriers and interior points

The primal-dual outer algorithm

Algorithm 4.7: Outer primal-dual algorithm

Step 0: Initialization. Given: x0 > 0, z0 > 0, µ0 > 0 and the forcing functions
εD(µ), εE(µ), εC(µ). Set k = 0.

Step 1: Inner minimization. Choose ςk ∈ (0, 1). Approximately minimize φlog(x , µk)
from xk using the primal-dual inner algorithm. Stop as soon as an iterate
(xk,j , zk,j) = (xk+1, zk+1) is found for which

‖∇x f (xk+1)− zk+1‖ ≤ εD(µk),

‖Xk+1Zk+1 − µk I‖ ≤ εC(µk),

λmin[∇xx f (xk+1) + X−1
k+1Zk+1] ≥ −εE(µk)

and
xk+1 > 0 and zk+1 > 0.

Step 3: Update the barrier parameter. Choose µk+1 > 0 such that limk→∞ µk = 0.
Increment k by one and return to Step 1.

Note: choosing zk,j = −µkX−1
k,j e ⇒ primal algorithm!

Philippe Toint (Namur) April 2009 199 / 323

Convex constraints and interior-point methods Barriers and interior points

Updating the dual variables

How to compute zk,j+1 in practice? Newton equations give

zk,j+1 = µkX−1
k,j e − X−1

k,j Zk,jsk,j .

. . . but what about zk,j+1 ≥ 0?
Define

I=

[
κzul min

(
e, zk,j , µkX−1

k,j+1e
)
, κzuu max

(
e, zk,j , µ

−1
k e, µkX−1

k,j+1e
)]

and choose

zk,j+1 =

{
PI [zk,j+1] if xk,j+1 = xk,j + sk,j
zk,j if xk,j+1 = xk,j ,

Philippe Toint (Namur) April 2009 200 / 323

Convex constraints and interior-point methods Barriers and interior points

Properties of the dual variables

Then zk,j+1 > 0 and

[zk,j]i ≤ κuzi max

[
1

[xk,j]i
, 1

]
.

If, furthermore,

lim
j→∞
‖sk,j‖ = 0 when lim

j→∞
‖gk,j‖ = 0

then

lim
j→∞

∥∥∥zk,j − µkX−1
k,j e

∥∥∥ = 0 if lim
j→∞
‖gk,j‖ = 0.

⇒ asymptotically exact barrier Hessian for fixed µ

Philippe Toint (Namur) April 2009 201 / 323

Convex constraints and interior-point methods Barriers and interior points

Scaling of the inner iterations

In practice, scaling is crucial!
Ideally,

‖ · ‖k,j = ‖ · ‖∇xxmk,j (xk,j) =
√
〈·, [Hk,j + X−1

k,j Zk,j]·〉

Under the usual assumptions, ‖ · ‖k,j is uniformly equivalent to
the Euclidean norm for fixed k .

xk,j

xk,j + sk,j

ri{C}

⇒ all usual convergence properties for fixed k

Philippe Toint (Namur) April 2009 202 / 323

Convex constraints and interior-point methods Barriers and interior points

Scaling of the outer iterations (1)

Scaled tests:

‖∇x f (xk+1)− zk+1‖[k+1] ≤ εD(µk)

‖Xk+1Zk+1 − µk I‖2 ≤ εC(µk),

λmin

[
M
− 1

2
k+1(∇xx f (xk+1) + X−1

k+1Zk+1)M
− 1

2
k+1

]
≥ −εE(µk),

with
Mk+1

def
= Hk+1 + X−1

k+1Zk+1

But this matrix is unbounded when k ↗∞!

Philippe Toint (Namur) April 2009 203 / 323

Convex constraints and interior-point methods Barriers and interior points

Scaling of the outer iterations (2)

Fortunately,

Under the usual assumptions, the convergence properties are
preserved if

lim
k→∞

εD(µk)

µk
≤ κµ

and

lim
k→∞

εC(µk)
√
µk

mini [xk+1]i
= 0.

Moreover

If exact derivatives are used, the ε•(µk) can be chosen to ensure
componentwise near quadratic rate of convergence.

This is quite remarkable!

Philippe Toint (Namur) April 2009 204 / 323

Convex constraints and interior-point methods Barriers and interior points

Barriers for general convex constraints

Now,
φlog(x , µ) = f (x)− µ〈e, log(c(x))〉

The primal-dual model becomes

mk,j(xk,j + sk,j) = mf
k,j(xk,j + sk,j) + mb

k,j(xk,j + sk,j),

with

mb
k,j(xk,j + sk,j) = µk〈e, log(c(xk,j))〉 − µk〈C−1(xk,j)e,A(xk,j)sk,j〉

+ 1
2
〈A(xk,j)sk,j , [C

−1(xk,j)Yk,j]A(xk,j)sk,j〉

− 1
2

mX
i=1

[yk,j]i 〈sk,j ,∇xxci (xk,j)sk,j〉

Quite a mouthful. . . but otherwise everything is OK!

Philippe Toint (Namur) April 2009 205 / 323

Convex constraints and interior-point methods Barriers and interior points

The outer primal-dual algorithm for convex constraints

∇xx `(xk,j , yk,j) = ∇xx f (xk,j)−
mX

i=1

[yk,j]i∇xx ci (xk,j) Gk,j
def
= AT (xk,j)C−1(xk,j)Yk,jA(xk,j)

Algorithm 4.8: Primal-dual algorithm for convex constraints

Step 0: Initialization Given: x0 | c(x0) > 0, y0 > 0, µ0 > 0, εC(µ), εD(µ) and εE(µ).
Set k = 0.

Step 1: Inner minimization Choose ςk ∈ (0, 1). Approximately minimize

φlog(x , µk) = f (x)− µk〈e, log(c(x))〉
from xk . Stop as soon as (xk,j , yk,j) = (xk+1, yk+1) is found such that

‖∇x f (xk+1)− AT (xk+1)yk+1‖ ≤ εD(µk),

‖C(xk+1)Yk+1e − µk I‖ ≤ εC(µk),

λmin[∇xx`(xk+1, yk+1) + Gk+1] ≥ −εE(µk)

and
(c(xk+1), yk+1) ≥ 0.

Step 3: Update the barrier parameter. Choose µk+1 > 0 such that
limk→∞ µk = 0. Increment k by one and return to Step 1.

Philippe Toint (Namur) April 2009 206 / 323

Convex constraints and interior-point methods Bibliography

Bibliography for lesson 4 (1)

1 J. V. Burke,
On the identification of active constraints,
SIAM Journal on Numerical Analysis, 25(5):1197-1211, 1988.

2 J. V. Burke,
On the identification of active constraints II: the nonconvex case,
SIAM Journal on Numerical Analysis, 27(4):1081-1102, 1990.

3 J. V. Burke and J. J. Moré,
Exposing Constraints,
SIAM Journal on Optimization, 4(3):573-595, 1994.

4 J. V. Burke, J. J. Moré and G. Toraldo,
Convergence properties of trust region methods for linear and convex constraints,
Mathematical Programming A, 47(3):305-336, 1990.

5 A. R. Conn, N. I. M. Gould, D. Orban and Ph. L. Toint,
A primal-dual trust-region algorithm for minimizing a non-convex function subject to bound and linear equality
constraints,
Mathematical Programming, 87(2):215-249, 2000.

6 N. I. M. Gould, D. Orban, A. Sartenaer and Ph. L. Toint,
Superlinear Convergence of Primal-Dual Interior Point Algorithms for Nonlinear Programming,
SIAM Journal on Optimization, 11(4):974-1002, 2001.

7 A. R. Conn, N. I. M. Gould and Ph. L. Toint,
Global convergence of a class of trust region algorithms for optimization with simple bounds,
SIAM Journal on Numerical Analysis, 25(182):433-460, 1988.

8 A. R. Conn, N. I. M. Gould and Ph. L. Toint,
LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A),
Spinger Verlag, Heidelberg, 1992.

9 A. R. Conn, N. I. M. Gould, A. Sartenaer and Ph. L. Toint,
Global convergence of a class of trust region algorithms for optimization using inexact projections on convex
constraints,
SIAM Journal on Optimization, 3(1):164–221, 1993.

Philippe Toint (Namur) April 2009 207 / 323

Convex constraints and interior-point methods Bibliography

Bibliography for lesson 4 (2)

10 A. V. Fiacco and G. P. McCormick,
The Sequential Unconstrained Minimization Technique for Nonlinear Programming: a Primal-Dual Method,
Management Science, 0(2):360-366, 1964.

11 A. V. Fiacco and G. P. McCormick,
Nonlinear Programming: Sequential Unconstrained Minimization Techniques,
Wiley and Sons, Chichester (UK), 1968.

12 Ph. L. Toint,
Global convergence of a class of trust region methods for nonconvex minimization in Hilbert space,
IMA Journal of Numerical Analysis, 8(2):231-252, 1988.

Philippe Toint (Namur) April 2009 208 / 323

The use of problem structure for large-scale applications

Lesson 5:

Sparsity, partial separability
and multilevel methods:

exploiting problem structure

Philippe Toint (Namur) April 2009 209 / 323

The use of problem structure for large-scale applications

Outline

1 Sparsity and partial separability

2 Multilevel problems

3 Bibliography

Philippe Toint (Namur) April 2009 210 / 323

The use of problem structure for large-scale applications Sparsity

5.1: Sparsity and

partial separability

Philippe Toint (Namur) April 2009 211 / 323

The use of problem structure for large-scale applications Sparsity

Sparsity

A matrix is sparse when the proportion and/or distribution of
its zero entries allows its efficient numerical usage

An (oriented) graph is asociated with every sparse (non)-
symmetric matrix

Philippe Toint (Namur) April 2009 212 / 323

The use of problem structure for large-scale applications Sparsity

Main benefits of sparsity

Sparsity and optimization ⇒ Hessian (and) Jacobian matrices

very important time/space savings in solving Newton’s equations
(unconstrained or KKT)

1 factorizations (reduced fill-in)
2 iterative methods (fast matrix×vector products)

sometimes important in approximations schemes
1 derivative-free methods (makes the number of function evaluations ≈

linear in the number of variables)
2 finite-difference approximations
3 quasi Newton methods

a path for parallel computations

exploiting sparsity = an active algorithmic industry!

Philippe Toint (Namur) April 2009 213 / 323

The use of problem structure for large-scale applications Sparsity

The Curtis-Powell-Reid algorithm for estimating sparse
Jacobians

Finite differences for a Jacobian column:

Jei ≈
c(x + hei)− c(x)

h

Question: How many finite differences for estimating a 5× 5 Jacobian
with the structure: 0BBB@

• •
• •
• • •

• • •
• • •

1CCCA ?

Philippe Toint (Namur) April 2009 214 / 323

The use of problem structure for large-scale applications Sparsity

The Curtis-Powell-Reid algorithm for estimating sparse
Jacobians

Finite differences for a Jacobian column:

Jei ≈
c(x + hei)− c(x)

h

Question: How many finite differences for estimating a 5× 5 Jacobian
with the structure: 0BBB@

• •
• •
• • •

• • •
• • •

1CCCA

Philippe Toint (Namur) April 2009 214 / 323

The use of problem structure for large-scale applications Sparsity

The Curtis-Powell-Reid algorithm for estimating sparse
Jacobians

Finite differences for a Jacobian column:

Jei ≈
c(x + hei)− c(x)

h

Question: How many finite differences for estimating a 5× 5 Jacobian
with the structure: 0BBB@

• •
• •
• • •

• • •
• • •

1CCCA

Philippe Toint (Namur) April 2009 214 / 323

The use of problem structure for large-scale applications Sparsity

The Curtis-Powell-Reid algorithm for estimating sparse
Jacobians

Finite differences for a Jacobian column:

Jei ≈
c(x + hei)− c(x)

h

Question: How many finite differences for estimating a 5× 5 Jacobian
with the structure: 0BBB@

• •
• •
• • •

• • •
• • •

1CCCA

Philippe Toint (Namur) April 2009 214 / 323

The use of problem structure for large-scale applications Sparsity

The Curtis-Powell-Reid algorithm for estimating sparse
Jacobians

Finite differences for a Jacobian column:

Jei ≈
c(x + hei)− c(x)

h

Question: How many finite differences for estimating a 5× 5 Jacobian
with the structure: 0BBB@

• •
• •
• • •

• • •
• • •

1CCCA
Je• ≈

c(x + he1 + he4)− c(x)

h
Je• ≈

c(x + he2 + he3)− c(x)

h
Je• ≈

c(x + he5)− c(x)

h

Answer: 3 finite-differences! Curtis, Powell and Reid (1974), Steihaug et al.

Philippe Toint (Namur) April 2009 214 / 323

The use of problem structure for large-scale applications Sparsity

The CPR algorithm for estimating sparse Jacobians

Algorithm 5.1: CPR algorithm

Build the column groups.
Place the columns in as few groups as possible such that
two columns in the same group have their nonzero entries in
different rows

Estimate the finite differences.

1 Build a difference vector h =
∑

group hiei

2 Compute v = c(x + h)− c(x)

Reconstruct the Jacobian.

Jij ≈
v i

hi
for all j such that j ∈ group

Philippe Toint (Namur) April 2009 215 / 323

The use of problem structure for large-scale applications Sparsity

A graph colouring interpretation

Consider the intersection graph for the columns:

• •
• •
• • •

• • •
• • •

 1 5 4

2

3

Philippe Toint (Namur) April 2009 216 / 323

The use of problem structure for large-scale applications Sparsity

A graph colouring interpretation

Consider the intersection graph for the columns:

• •
• •
• • •

• • •
• • •

 1 5 4

2

3

Philippe Toint (Namur) April 2009 216 / 323

The use of problem structure for large-scale applications Sparsity

A graph colouring interpretation

Consider the intersection graph for the columns:

• •
• •
• • •

• • •
• • •

 1 5 4

2

3

Philippe Toint (Namur) April 2009 216 / 323

The use of problem structure for large-scale applications Sparsity

A graph colouring interpretation

Consider the intersection graph for the columns:

• •
• •
• • •

• • •
• • •

 1 5 4

2

3

minimize the number of colours,
such that adjacent nodes have different colours

can build column groups using heuristic algorithms for graph colouring
Coleman and Moré, (1983)

Philippe Toint (Namur) April 2009 216 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (1)

Question: How many finite differences for estimating a 8× 8 symmetric
Hessian with the structure:0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA
?

Philippe Toint (Namur) April 2009 217 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (1)

Question: How many finite differences for estimating a 8× 8 symmetric
Hessian with the structure:0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA

Philippe Toint (Namur) April 2009 217 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (1)

Question: How many finite differences for estimating a 8× 8 symmetric
Hessian with the structure:0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA

Philippe Toint (Namur) April 2009 217 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (1)

Question: How many finite differences for estimating a 8× 8 symmetric
Hessian with the structure:0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA

Philippe Toint (Namur) April 2009 217 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (1)

Question: How many finite differences for estimating a 8× 8 symmetric
Hessian with the structure:0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA

Philippe Toint (Namur) April 2009 217 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (1)

Question: How many finite differences for estimating a 8× 8 symmetric
Hessian with the structure:0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA

Philippe Toint (Namur) April 2009 217 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (1)

Question: How many finite differences for estimating a 8× 8 symmetric
Hessian with the structure:0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA

Philippe Toint (Namur) April 2009 217 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (1)

Question: How many finite differences for estimating a 8× 8 symmetric
Hessian with the structure:0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA

Exploiting symmetry in CPR (a direct method)

Powell and T (1979), Coleman and Moré (1984)

Philippe Toint (Namur) April 2009 217 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA

Philippe Toint (Namur) April 2009 218 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

•
•

• •
• •
• •

• • •
• • •
• • •

1CCCCCCCCCA

Philippe Toint (Namur) April 2009 218 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

•
•

• •
• •
• •

• • •
• • •
• • •

1CCCCCCCCCA
Apply CPR on the lower triangular part of the Hessian

Philippe Toint (Namur) April 2009 218 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA
But what about the conflicts with the upper triangular part?

Philippe Toint (Namur) April 2009 218 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •

? ? ?

1CCCCCCCCCA
A more efficient substitution method. . .

Powell and T (1979), Coleman and Moré (1984) for a graph interpretation

Philippe Toint (Namur) April 2009 218 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
? ? ?
• • •

1CCCCCCCCCA
A more efficient substitution method. . .

Powell and T (1979), Coleman and Moré (1984) for a graph interpretation

Philippe Toint (Namur) April 2009 218 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

? ? ? •
• • •
• • •

1CCCCCCCCCA
A more efficient substitution method. . .

Powell and T (1979), Coleman and Moré (1984) for a graph interpretation

Philippe Toint (Namur) April 2009 218 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

• • •
• •

• • • •
• • •

? ? • •
• • • •

• • •
• • •

1CCCCCCCCCA
A more efficient substitution method. . .

Powell and T (1979), Coleman and Moré (1984) for a graph interpretation

Philippe Toint (Namur) April 2009 218 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

• • •
• •

• • • •
? ? •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA
A more efficient substitution method. . .

Powell and T (1979), Coleman and Moré (1984) for a graph interpretation

Philippe Toint (Namur) April 2009 218 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

• • •
• •

? ? • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA
A more efficient substitution method. . .

Powell and T (1979), Coleman and Moré (1984) for a graph interpretation

Philippe Toint (Namur) April 2009 218 / 323

The use of problem structure for large-scale applications Sparsity

Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

? • •
? •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA
A more efficient substitution method. . .

Powell and T (1979), Coleman and Moré (1984) for a graph interpretation

Philippe Toint (Namur) April 2009 218 / 323

The use of problem structure for large-scale applications Sparsity

Optimized version for PDE stencils

Example: the 5-points Laplacian operator in 2D

(non-symmetric and symmetric)

Philippe Toint (Namur) April 2009 219 / 323

The use of problem structure for large-scale applications Sparsity

Optimized version for PDE stencils

Example: the 5-points Laplacian operator in 2D

(non-symmetric and symmetric)

Philippe Toint (Namur) April 2009 219 / 323

The use of problem structure for large-scale applications Sparsity

Partial separability

A more geometric concept: Griewank and T. (1982)

f (x) is partially separable iff

f (x) =

p∑
i=1

fi (Uix) where the matrices Ui are of low rank

if Ui = disjoint columns of the identity matrix ⇒ (totally) separable

common case: Ui = overlapping columns of the identity matrix

f (x) =

p∑
i=1

fi (xSi
)

Vocabulary:
element functions, element variables, internal variables ui = Uix

Philippe Toint (Namur) April 2009 220 / 323

The use of problem structure for large-scale applications Sparsity

Sources and examples of partially separable functions

Example 1:

f (x1, x2, x3, x4) = f1(x1, x2) + f2(x2, x3, x4) + f3(x4, x5)

Example 2:

f (x1, x2, x3, x4) = f1(3x1 + x2︸ ︷︷ ︸) + f2(−2x2 + x3 − 2x4︸ ︷︷ ︸, x4 + 3x5︸ ︷︷ ︸)
u1 u2 u3

Sources:

(nearly) all discretized problems

most problems in econometric modelling,

. . . and a lot more because. . .

Philippe Toint (Namur) April 2009 221 / 323

The use of problem structure for large-scale applications Sparsity

Properties of partially separable functions

If f (x) has a sparse Hessian matrix and is sufficiently smooth,
then it is partially separable

(but not conversely: ex : f (x1, . . . , xn) =
∑n

i=1 fi (xi) + fn+1(x1 + · · ·+ xn)

If f (x) =
∑p

i=1 fi (Uix) =
∑p

i=1 fi (ui), then

∇x f (x) =

p∑
i=1

UT
i ∇x fi (ui)

∇xx f (x) =

p∑
i=1

UT
i ∇xx fi (ui)Ui

(easy to compute, sparsity determined by Ui)

Philippe Toint (Namur) April 2009 222 / 323

The use of problem structure for large-scale applications Sparsity

The three points Laplacian operator

On a regular geometric grid

0BBBBB@
2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2

1CCCCCA =

0BBBBB@
2 −1
−1 1

1CCCCCA +

0BBBBB@
1 −1
−1 1

1CCCCCA

+

0BBBBB@
1 −1
−1 1

1CCCCCA +

0BBBBB@ 1 −1
−1 1

1CCCCCA +

0BBBBB@ 1 −1
−1 2

1CCCCCA

Note: Sum of rank one submatrices (ui = xi+1 − xi)!

Philippe Toint (Namur) April 2009 223 / 323

The use of problem structure for large-scale applications Sparsity

Using the partially separable structure

Very useful for:

quasi-Newton Hessian matrix = sum of elementwise quasi-Newton
low rank submatrices (partitioned updating),

elementwise models in DFO (number of functions evaluations only
dependent of the maximum number of internal variables!),

optimally efficient finite-difference approximations,

(structured trust-regions),

expressing large-scale models.

LANCELOT based on an extension of this concept

Philippe Toint (Namur) April 2009 224 / 323

The use of problem structure for large-scale applications Sparsity

Exploitation of the computational tree

Idea: use computational tree for f (x) for solving Newton’s equations

use chain-rule at the top of the computational tree

multiplicative decompositions (and partially separable)

often available from the problem modelling itself

Substantial computational gains

unpublished (?) by T. Coleman (2008)

Philippe Toint (Namur) April 2009 225 / 323

The use of problem structure for large-scale applications Multilevel problems

5.3: Multilevel problems

Philippe Toint (Namur) April 2009 226 / 323

The use of problem structure for large-scale applications Multilevel problems

Multilevel Optimization: The Problem

min
x∈IRn

f (x)

f : IRn → IR nonlinear, ∈ C2 and bounded below

No convexity assumption

Results from the discretization of some infinite-dimensional problem
on a relatively fine grid for instance (n large)

−→ Iterative search of a first-order critical point x∗ (s.t. ∇f (x∗) = 0)

Philippe Toint (Namur) April 2009 227 / 323

The use of problem structure for large-scale applications Multilevel problems

Hierarchy of problem descriptions

Assume now that a hierarchy of problem descriptions is available, linked by
known operators

Finest problem description

Restriction ↓ R P ↑ Prolongation

Fine problem description

Restriction ↓ R P ↑ Prolongation

. . .

Restriction ↓ R P ↑ Prolongation

Coarse problem description

Restriction ↓ R P ↑ Prolongation

Coarsest problem description

Philippe Toint (Namur) April 2009 228 / 323

The use of problem structure for large-scale applications Multilevel problems

Grid transfer operators

Restriction Prolongation

Ri : IRni → IRni−1 Pi : IRni−1 → IRni

Ri = σPT
i

Philippe Toint (Namur) April 2009 229 / 323

The use of problem structure for large-scale applications Multilevel problems

Sources for such problems

Parameter estimation in

discretized ODEs

discretized PDEs

Optimal control problems

Optimal surface design (shape optimization)

Data assimilation in weather forecast (different levels of physics in the
models)

Philippe Toint (Namur) April 2009 230 / 323

The use of problem structure for large-scale applications Multilevel problems

The minimum surface problem

min
v

∫ 1

0

∫ 1

0

(
1 + (∂xv)2 + (∂yv)2

) 1
2 dx dy

with the boundary conditions:
f (x), y = 0, 0 ≤ x ≤ 1
0, x = 0, 0 ≤ y ≤ 1
f (x), y = 1, 0 ≤ x ≤ 1
0, x = 1, 0 ≤ y ≤ 1

where

f (x) = x ∗ (1− x)

→ Discretization using a finite
element basis

Philippe Toint (Namur) April 2009 231 / 323

The use of problem structure for large-scale applications Multilevel problems

The solution at different levels

1
2

3
4

5

1

2

3

4

5
0

0.5

1

1.5

2

2.5

solution at level 1 (converged)

0
2

4
6

8
10

0
2

4
6

8
10

0

0.5

1

1.5

solution at level 2 (converged)

0
5

10
15

20

0

5

10

15

20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

solution at level 3 (converged)

n = 32 = 9 n = 72 = 49 n = 152 = 225

0
5

10
15

20
25

30
35

0

10

20

30

40
0

0.1

0.2

0.3

0.4

0.5

solution at level 4 (converged)

0
10

20
30

40
50

60
70

0

20

40

60

80
0

0.05

0.1

0.15

0.2

0.25

solution at level 5 (converged)

0
20

40
60

80
100

120
140

0

50

100

150
0

0.05

0.1

0.15

0.2

0.25

solution at level 6

n = 312 = 961 n = 632 = 3969 n = 1272 = 16129

Philippe Toint (Namur) April 2009 232 / 323

The use of problem structure for large-scale applications Multilevel problems

The main issue

Hierarchy of problem descriptions globalization technique

↘ ↙
Efficiency – Robustness

⇓
Illustration within a trust-region framework

(Unconstrained case)

Philippe Toint (Namur) April 2009 233 / 323

The use of problem structure for large-scale applications Multilevel problems

Past and recent developments

Line-search

Fisher (1998), Frese-Bouman-Sauer (1999), Nash (2000)

Lewis-Nash (2000, 2002)

Oh-Milstein-Bouman-Webb (2003)

Wen-Goldfarb (2007, 2008)

Gratton-T (2007)

Trust-region

Gratton-Sartenaer-T (2006, 2008)

Gratton-Mouffe-T-Weber Mendonça (2009)

Gratton-Mouffe-Sartenaer-T-Tomanos (2009)

T-Tomanos-Weber Mendonça (2009)

Gross-Krause (2008)

Philippe Toint (Namur) April 2009 234 / 323

The use of problem structure for large-scale applications Multilevel problems

On the side of multigrid methods

Consider the linear system (discrete Poisson equation, for instance):

Ax = b Ae = r (residual equation)

where

e = x∗ − x̃ (error)

r = b − Ax̃ (residual)

x∗ (exact solution)

x̃ (approximation)

Expansion of e in Fourier modes shows high (oscillatory) and low (smooth)
frequency components:

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fourier modes

k = 3

k = 24

k = 3 and k = 24

Philippe Toint (Namur) April 2009 235 / 323

The use of problem structure for large-scale applications Multilevel problems

Relaxation methods

Basic iterative methods:

correct the i th component of xk in the order 1, 2, . . . , n

to annihilate the i th component of rk

Jacobi

[xk+1]i =
1

aii

− n∑
j=1, j 6=i

aij [xk]i + [b]i

Gauss-Seidel

[xk+1]i =
1

aii

− i−1∑
j=1

aij [xk+1]i −
n∑

j=i+1

aij [xk]i + [b]i

−→ Solve the equations of the linear system one by one

Philippe Toint (Namur) April 2009 236 / 323

The use of problem structure for large-scale applications Multilevel problems

Smoothing effect

Very effective methods at “smoothing”, i.e., eliminating the
high-frequency (oscillatory) components of the error:

0

10

20

30

0

10

20

30

0

0.5

1

1.5

2

0
10

20
30

40

0

10

20

30

40
0

0.05

0.1

0.15

0.2

0
10

20
30

40

0

10

20

30

40
0

0.005

0.01

0.015

0.02

error of error after 10 error after 100
initial guess GS iterations GS iterations

But they leave the low-frequency (smooth) components relatively
unchanged

Philippe Toint (Namur) April 2009 237 / 323

The use of problem structure for large-scale applications Multilevel problems

Multigrid in linear algebar

Assume now (two levels):

A fine grid (f) description Ae = r → Af ef = r f

A coarse grid (c) description Acec = r c

Linked by transfer operators Ac = RAf P, ec = Ref , r c = Rr f

Philippe Toint (Namur) April 2009 238 / 323

The use of problem structure for large-scale applications Multilevel problems

Coarse grid principle

Smooth error modes on a fine grid
“look less smooth” on a coarse grid

−→ When relaxation begins to stall at the finer level:

Move to the coarser grid where the smooth error modes appear more
oscillatory

Apply a relaxation at the coarser level:

more efficient

substantially less expensive

Philippe Toint (Namur) April 2009 239 / 323

The use of problem structure for large-scale applications Multilevel problems

Two-grid correction scheme

Annihilate oscillatory error level by level:

Fine ε
smooth→ Smooth fine ε Smaller fine ε

↓ R P ↑
Oscil. coarse ε

smooth→ (recur)
smooth→ Smooth coarse ε

Note: P and R are not othogonal projectors!

A very efficient method for some linear systems
(when A(smooth modes) ∈ smooth modes)

Philippe Toint (Namur) April 2009 240 / 323

The use of problem structure for large-scale applications Multilevel problems

Does it work?

Smoothing on fine grid only:

0

10

20

30

0

10

20

30

0

0.5

1

1.5

2

0
10

20
30

40

0

10

20

30

40
0

0.05

0.1

0.15

0.2

0
10

20
30

40

0

10

20

30

40
0

0.005

0.01

0.015

0.02

Two-grid correction scheme:

0

10

20

30

0

10

20

30

0

0.5

1

1.5

2

0

10

20

30

0

10

20

30

0

0.05

0.1

0.15

0.2

0

10

20

30

0

10

20

30

0

0.005

0.01

0.015

0.02

k = 0 k = 10 k = 100
Philippe Toint (Namur) April 2009 241 / 323

The use of problem structure for large-scale applications Multilevel problems

V-cycle

k k + 1

0 1 2 ∗

0 1 2 ∗

0 1 2 ∗

0 ∗

Smoothing

1

Philippe Toint (Namur) April 2009 242 / 323

The use of problem structure for large-scale applications Multilevel problems

W-cycle

k k + 1

0 1 2 3 4 ∗

0 1 2 3 4 ∗ 0 1 2 3 4 ∗

0 1 2 3 4 ∗ 0 1 2 3 4 ∗ 0 1 2 3 4 ∗ 0 1 2 3 4 ∗

0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗

Smoothing

1

Philippe Toint (Namur) April 2009 243 / 323

The use of problem structure for large-scale applications Multilevel problems

Mesh Refinement

Solve the problem on the coarsest level

⇒ Good starting point for the next fine level

Do the same on each level

⇒ Good starting point for the finest level

Finally solve the problem on the finest level

0

0

0

0

1

1

1

*

*

*

*

k

Philippe Toint (Namur) April 2009 244 / 323

The use of problem structure for large-scale applications Multilevel problems

Full Multigrid Scheme

Combination of Mesh Refinement and V-cycles

0

0

0

0 * * * * *

*

*

*

*

*

**

*

*0

0

0

0

Philippe Toint (Namur) April 2009 245 / 323

The use of problem structure for large-scale applications Multilevel problems

Return to optimization

Hierarchy of problem descriptions Trust-region technique

↘ ↙
Efficiency – Robustness

⇓
Multilevel optimization method

Note: Multilevel Moré-Sorensen algorithm: (Hk + λI) s = −gk

T-Tomanos-Weber Mendonça, 2009

Philippe Toint (Namur) April 2009 246 / 323

The use of problem structure for large-scale applications Multilevel problems

The framework

Assume that we have:

A hierarchy of problem descriptions of f :

{fi}ri=0 with fr (x) = f (x)

Transfer operators, for i = 1, . . . , r :

Ri : IRni → IRni−1 (the restriction)

Pi : IRni−1 → IRni (the prolongation)

Terminology: a particular i is referred to as a level

Philippe Toint (Namur) April 2009 247 / 323

The use of problem structure for large-scale applications Multilevel problems

The idea

min
x∈IRn

fr (x) = f (x) → at xk :
minimize Taylor’s model of fr around xk

in the trust region of radius ∆k

↓ or (whenever suitable and desirable)

at xk : compute ∇fr (xk) (possibly Hk) trial step sk

Restriction ↓ R P ↑ Prolongation

use fr−1 to construct a coarse local model of fr
and minimize it within the trust region of radius ∆k

→ If more than two levels are available (r > 1), do this recursively

Philippe Toint (Namur) April 2009 248 / 323

The use of problem structure for large-scale applications Multilevel problems

Example of recursion with 5 levels (r = 4)

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

1

Notation:

i : level index (0 ≤ i ≤ r)

k: index of the current iteration within level i

Philippe Toint (Namur) April 2009 249 / 323

The use of problem structure for large-scale applications Multilevel problems

Construction of the coarse local models

If fi 6= 0 for i = 0, . . . , r − 1

Impose first-order coherence via a correction term:

glow = Rgup

Impose second-order coherence(∗) via two correction terms:

glow = Rgup and Hlow = RHupP

(∗) Not needed to derive first-order global convergence

If fi = 0 for i = 0, . . . , r − 1

Galerkin model: Restricted version of the quadratic model at the
upper level

Philippe Toint (Namur) April 2009 250 / 323

The use of problem structure for large-scale applications Multilevel problems

Preserving the trust-region constraint (1)

∆up xlow,0•
•

∆+
low

xlow,k

∆up − ‖xlow,k − xlow,0‖

1

→ min
[
∆+

low , ∆up − ‖xlow ,k − xlow ,0‖
]

Note: Motivation to switch to ∞-norm

Gratton, Sartenear, T (2008)

Philippe Toint (Namur) April 2009 251 / 323

The use of problem structure for large-scale applications Multilevel problems

Preserving the trust-region constraint (2)

In infinity norm:

min
[
∆+

low , ∆up − ‖xlow ,k − xlow ,0‖
]

Gratton, Mouffe, T, Weber Mendonça (2008)

Philippe Toint (Namur) April 2009 252 / 323

The use of problem structure for large-scale applications Multilevel problems

Use the coarse model whenever suitable

When ‖glow‖
def
= ‖Rgup‖ ≥ κ ‖gup‖ (“Coarsening condition”)

and

When ‖glow‖
def
= ‖Rgup‖ > εlow

and

When i > 0

Philippe Toint (Namur) April 2009 253 / 323

The use of problem structure for large-scale applications Multilevel problems

Use the coarse model whenever desirable

Taylor model (Taylor step) Coarse model (recursive step)

↓ ↓
smoothing coarsening

↘ ↙
Alternate for efficiency (multigrid)

↓
Be as flexible as possible

⇓
Leave the choice even when the coarse model is suitable

Philippe Toint (Namur) April 2009 254 / 323

The use of problem structure for large-scale applications Multilevel problems

Recursive multilevel trust-region algorithm (RMTR)

At iteration k (until convergence):

Choose either a Taylor or (if suitable) a coarse local model
(first-order coherent):

Taylor model: compute a Taylor step

Coarse local model: apply the algorithm recursively

Evaluate the change in the objective function

If achieved decrease ≈ predicted decrease, then

accept the trial point
possibly enlarge the trust region

else

keep the current point
shrink the trust region

Impose current trust region ⊆ upper level trust region

Philippe Toint (Namur) April 2009 255 / 323

The use of problem structure for large-scale applications Multilevel problems

Global convergence

Based on the trust-region technology

Uses the sufficient decrease argument (imposed in Taylor’s iterations)

Plus the coarsening condition (‖Rgup‖ ≥ κ ‖gup‖)

Main result

lim
k→∞

‖gr ,k‖ = 0

Gratton, Sartenaer, (2008)

Philippe Toint (Namur) April 2009 256 / 323

The use of problem structure for large-scale applications In more details

Intermediate results

At iteration (i , k) we associate the set:

R(i , k)
def
= {(j , `) | iteration (j , `) occurs within iteration (i , k)}

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

1

Philippe Toint (Namur) April 2009 257 / 323

The use of problem structure for large-scale applications In more details

Let

V(i , k)
def
= { (j , `) ∈ R(i , k) | ∆mj ,` ≥ κ‖gi ,k‖∆j ,`︸ ︷︷ ︸

“sufficient decrease”

}

Then, at a non critical point and if the trust region is small enough:

V(i , k) = R(i , k)

−→ Back to “classical” trust-region arguments

Philippe Toint (Namur) April 2009 258 / 323

The use of problem structure for large-scale applications In more details

Premature termination

For a recursive iteration (i , k):

A minimization sequence at level i − 1 initiated at iteration (i , k)
denotes all successive iterations at level i − 1

until a return is made to level i

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

1

Philippe Toint (Namur) April 2009 259 / 323

The use of problem structure for large-scale applications In more details

Properties of RMTR

Each minimization sequence contains at least one successful iteration

Premature termination in that case does not affect the convergence
results at the upper level

Which allows

Stop a minimization sequence after a preset number of successful
iterations

Use fixed lower-iterations patterns like the V or W cycles in multigrid
methods

Philippe Toint (Namur) April 2009 260 / 323

The use of problem structure for large-scale applications In more details

A practical RMTR algorithm: Taylor iterations

At the coarsest level

Solve using the exact Moré-Sorensen method

(small dimension)

At finer levels

Smooth using a smoothing technique from multigrid

(to reduce the high frequency residual/gradient components)

Philippe Toint (Namur) April 2009 261 / 323

The use of problem structure for large-scale applications In more details

SCM Smoothing

Adaptation of the Gauss-Seidel smoothing technique to optimization:

Sequential Coordinate Minimization (SCM smoothing)

Successive one-dimensional minimizations of the model
along the coordinate axes when positive curvature

Cost: 1 SCM smoothing cycle ≈ 1 matrix-vector product

Philippe Toint (Namur) April 2009 262 / 323

The use of problem structure for large-scale applications In more details

Three issues

How to impose sufficient decrease in the model ?

How to impose the trust-region constraint ?

What to do if a negative curvature is encountered ?

Philippe Toint (Namur) April 2009 263 / 323

The use of problem structure for large-scale applications In more details

Start the first SCM smoothing cycle

by minimizing along the largest gradient component
(enough to ensure sufficient decrease)

Perform (at most) p SCM smoothing cycles

while inside the trust region (reasonable cost)

Terminate

when an approximate minimizer is found (Stop)

when the trust-region boundary is passed (Stop at the boundary)

when a direction of negative curvature is encountered
(move to the boundary and Stop)

Philippe Toint (Namur) April 2009 264 / 323

The use of problem structure for large-scale applications In more details

Convergence to weak minimizers

SCM smoothing limits its exploration of the model’s curvature to the
coordinate axes → only guarantees asymptotic positive curvature:

along the coordinate axes at the finest level (i = r)

along the the prolongation of the coordinate axes at levels
i = 1, . . . , r − 1

along the prolongation of the coarsest subspace (i = 0)

“Weak” minimizers

Gratton, Sartenaer, T (2006)

Philippe Toint (Namur) April 2009 265 / 323

The use of problem structure for large-scale applications Numerical results

Some numerical flavor

Gratton, Mouffe, Sartenaer, T, Tomanos (2009)

All on Finest (AF)

Standard Newton trust-region algorithm (TCG)
Applied at the finest level

Multilevel on Finest (MF)

Algorithm RMTR
Applied at the finest level

Mesh Refinement (MR)

Standard Newton trust-region algorithm (TCG)
Applied successively from coarsest to finest level(∗)

Full Multilevel (FM)

Algorithm RMTR
Applied successively from coarsest to finest level(∗)

(∗) Starting point at level i + 1 obtained by prolongating the solution at level i

Philippe Toint (Namur) April 2009 266 / 323

The use of problem structure for large-scale applications Numerical results

Test problem characteristics

Problem name nr r Type Description

DNT 511 8 1-D, quadratic Dirichlet-to-Neumann transfer problem

P2D 1.046.529 9 2-D, quadratic Poisson model problem

P3D 250.047 5 3-D, quadratic Poisson model problem

DEPT 1.046.529 9 2-D, quadratic Elastic-plastic torsion problem

DPJB? 1.046.529 9 2-D, quadratic Journal bearing problem
DODC 65.025 7 2-D, convex Optimal design problem
MINS-SB 1.046.529 9 2-D, convex Minimium surface problem
MINS-OB 65.025 7 2-D, convex Minimium surface problem
MINS-DMSA 65.025 7 2-D, convex Minimium surface problem
IGNISC 65.025 7 2-D, convex Combustion problem
DSSC 1.046.529 9 2-D, convex Combustion problem
BRATU 1.046.529 9 2-D, convex Combustion problem
MINS-BC? 65.025 7 2-D, convex Minimium surface problem
MEMBR? 393.984 9 2-D, convex Membrane problem
NCCS 103.050 7 2-D, nonconvex Optimal control problem
NCCO 103.050 7 2-D, nonconvex Optimal control problem
MOREBV 1.046.529 9 2-D, nonconvex Boundary value problem

?: with bound constraints

Philippe Toint (Namur) April 2009 267 / 323

The use of problem structure for large-scale applications Numerical results

Performance profiles (CPU time)

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

FM
MR
MF
AF

Philippe Toint (Namur) April 2009 268 / 323

The use of problem structure for large-scale applications Numerical results

Zoom on on efficiency (CPU time)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

FM
MR
MF
AF

Philippe Toint (Namur) April 2009 269 / 323

The use of problem structure for large-scale applications Numerical results

CPU times
Problem name AF MF MR FM
DNT 5.2 24.4 4.6 6.7
P2D 1122.8 72.8 569.7 26.0
P3D 626.1 47.5 18.3 28.8
DEPT 1364.4 69.5 95.4 8.6
DPJB 3600.0 1390.0 247.7 83.6
DODC 894.8 58.6 184.2 36
MINS-SB 3600.0 3600.0 3600.0 153.9
MINS-OB 1445.6 70.4 116.7 27.5
MINS-DMSA 1196.8 73.4 289.6 18.2
IGNISC 2330.4 398.3 488.2 398.2
DSSC 3183.8 1051.6 122.3 12.1
BRATU 2314.1 236.8 91.7 10.1
MINS-BC 2706.4 161.8 524.6 140.0
MEMBR 1082.0 335.2 292.4 154.0
NCCS 3600.0 3600.0 279.5 331.9
NCCO 3600.0 3600.0 3589.6 224.2
MOREBV 3600.0 704.9 3600.0 41.7

Best Second best
Philippe Toint (Namur) April 2009 270 / 323

The use of problem structure for large-scale applications Numerical results

A glimpse at the solution process

Philippe Toint (Namur) April 2009 271 / 323

The use of problem structure for large-scale applications Bibliography

Bibliography for lesson 5 (1)

1 T. F. Coleman and J. J. Moré,
Estimation of sparse Jacobian matrices and graph coloring problems,
SIAM Journal on Numerical Analysis, 20:187-209, 1983.

2 T. F. Coleman and J. J. Moré,
Estimation of sparse Hessian matrices and graph coloring problems,
Mathematical Programming, 28:243-270, 1984.

3 A. R. Conn, N. I. M. Gould and Ph. L. Toint,
LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A),
Springer Verlag, Springer Series in Computational Mathematics 17, Heidelberg, 1992.

4 A. Curtis, M. J. D. Powell and J. Reid,
On The Estimation of Sparse Jacobian Matrices,
IMA Journal, 13:117-119, 1974.

5 M. Fisher,
Minimization Algorithms for Variational Data Assimilation,
in “Recent Developments in Numerical Methods for Atmospheric Modelling”, European Center for Medium-Range
Weather Forecasts, Reading, UK, pp. 364-385, 1998.

6 T. Frese, Ch. Bouman and K. Sauer,
Multiscale Bayesian Methods for Discrete Tomography,
in “Discrete Tomography: Foundations, Algorithms and Applications” (G. Herman and A. Kuba, eds.), Birkhauser,
Boston, pp. 237-261, 1999.

7 D. Goldfarb and Ph. L. Toint,
Optimal Estimation of Jacobian and Hessian Matrices That Arise in Finite Difference Calculations,
Mathematics of Computation, 43(167):69-88, 1984.

8 S. Gratton, M. Mouffe, Ph. L. Toint and M. Weber-Mendonça,
A recursive trust-region method in infinity norm for bound-constrained nonlinear optimization,
IMA Journal of Numerical Analysis, 28(4):827-861, 2008.

9 S. Gratton, M. Mouffe, A. Sartenaer, Ph. L. Toint and D. Tomanos,
Numerical Experience with a Recursive Trust-Region Method for Multilevel Nonlinear Optimization,
Optimization Methods and Software, to appear, 2009.

Philippe Toint (Namur) April 2009 272 / 323

The use of problem structure for large-scale applications Bibliography

Bibliography for lesson 5 (2)

10 S. Gratton, A. Sartenaer and Ph. L. Toint,
Recursive Trust-Region Methods for Multiscale Nonlinear Optimization, SIAM Journal on Optimization,
19(1):414-444, 2008.

11 S. Gratton, A. Sartenaer and Ph. L. Toint,
Second-order convergence properties of trust-region methods using incomplete curvature information, with an
application to multigrid optimization,
Journal of Computational and Applied Mathematics, 24(6):676-692, 2006.

12 S. Gratton and Ph. L. Toint,
Multi-Secant Equations, Approximate Invariant Subspaces and Multigrid Optimization,
FUNDP, Namur, Report 07/11, 2007.

13 A. Griewank and Ph. L. Toint,
On the unconstrained optimization of partially separable functions,
in “Ninlinear Optimization 1981”, (M. J. D. Powell, ed.), Academic Press, pp. 302-312, 1982.

14 S. G. Nash,
A Multigrid Approach to Discretized Optimization Problems,
Optimization Methods and Software, 14:99-116, 2000.

15 M. Lewis and S. G. Nash,
Model problems for the multigrid optimization of systems governed by differential equations,
SIAM Journal on Scientific Computing, 26(6):1811-1837, 2005.

16 S. Oh, A. Milstein, Ch. Bouman and K. Webb,
Multigrid algorithms for optimization and inverse problems,
in “Computational Imaging”(Ch. Bouman and R. Stevenson, eds.), DDM, Proceedings of the SPIE, 5016:59-70, 2003.

17 M. J. D. Powell and Ph. L. Toint,
On The Estimation of Sparse Hessian Matrices,
SIAM Journal on Numerical Analysis, 16(6):1060-1074, 1979.

18 Ph. L. Toint, D. Tomanos and M. Weber-Mendonça,
A multilevel algorithm for solving the trust-region subproblem,
Optimization Methods and Software, 24(2):299-311, 2009.

19 Ch. Gross and R. Krause,
On The Convergence of Recursive Trust-Region Methods for Multiscale Nonlinear Optimization and Applications to
Nonlinear Mechanics,
University of Bonn, Germany, 2008.

Philippe Toint (Namur) April 2009 273 / 323

The use of problem structure for large-scale applications Bibliography

Bibliography for lesson 5 (3)

20 Z. Wen and D. Goldfarb,
A Linesearch Multigrid Methods for Large-Scale Convex Optimization,
Department of Industrial Engineering and Operations Research, Columbia University, New York, July 2007.

Philippe Toint (Namur) April 2009 274 / 323

Regularization methods and nonlinear step control

Lesson 6:

Cubic and quadratic
regularization methods:

a path towards
nonlinear step control

Philippe Toint (Namur) April 2009 275 / 323

Regularization methods and nonlinear step control

Outline

1 Regularization for unconstrained problems
1 cubic
2 quadratic

2 Nonlinear step control

3 Cubic regularization for constrained problems

4 Conclusions

5 Bibliography

Philippe Toint (Namur) April 2009 276 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Regularization techniques
for unconstrained Problems

Philippe Toint (Namur) April 2009 277 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

The problem

We return to the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

Important special case: the nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.

Philippe Toint (Namur) April 2009 278 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Unconstrained optimization — a “mature” area?

minimize
x∈IRn

f (x) where f ∈ C 1 (maybe C 2)

Currently two main competing (but similar) methodologies

Linesearch methods

compute a descent direction sk from xk

set xk+1 = xk + αksk to improve f

Trust-region methods

compute a step sk from xk to improve a model mk of f
within the trust-region ‖sk‖ ≤ ∆
set xk+1 = xk + sk if mk and f “agree” at xk + sk
otherwise set xk+1 = xk and reduce the radius ∆

Philippe Toint (Namur) April 2009 279 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

A useful theoretical observation

Consider trust-region method where

model = true objective function

Then

model and objective always agree

trust-region radius goes to infinity

⇒ a linesearch method
Nice consequence:

A unique convergence theory!

(Shultz/Schnabel/Byrd, 1985, T., 1988

Philippe Toint (Namur) April 2009 280 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

The keys to convergence theory for trust regions

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κTR‖gk‖min

[
‖gk‖

1 + ‖Hk‖
,∆k

]

The bound on the stepsize:

‖s‖ ≤ ∆

And we derive:

Global convergence to first/second-order critical points

Is there anything more to say?

Philippe Toint (Namur) April 2009 281 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Is there anything more to say?

Observe the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉

+
∫ 1

0 (1− α)〈s, [H(x + αs)− H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
L‖s‖3

2︸ ︷︷ ︸
m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).

Philippe Toint (Namur) April 2009 282 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

The cubic regularization

Change from

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉 s.t. ‖s‖ ≤ ∆

to

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
σ‖s‖3

σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)

Philippe Toint (Namur) April 2009 283 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Cubic regularization highlights

f (x + s) ≤ m(s) ≡ f (x) + sT g(x) + 1
2
sT H(x)s + 1

3
L‖s‖3

2

Nesterov and Polyak minimize m globally

N.B. m may be non-convex!
efficient scheme to do so if H has sparse factors

global (ultimately rapid) convergence to a 2nd-order critical point of f

better worst-case function-evaluation complexity than previously
known

Obvious questions:

can we avoid the global Lipschitz requirement?

can we approximately minimize m and retain good worst-case
function-evaluation complexity?

does this work well in practice?

Philippe Toint (Namur) April 2009 284 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Cubic overestimation

Assume

f ∈ C 2

f , g and H at xk are fk , gk and Hk

symmetric approximation Bk to Hk

Bk and Hk bounded at points of interest

Use

cubic overestimating model at xk

mk(s) ≡ fk + sTgk + 1
2
sTBks + 1

3
σk‖s‖3

2

σk is the iteration-dependent regularisation weight
easily generalized for regularisation in Mk -norm ‖s‖Mk

=
√

sTMks
where Mk is uniformly positive definite

Philippe Toint (Namur) April 2009 285 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Adaptive Regularization with Cubic (ARC)

Algorithm 6.1: The ARC Algorithm

Step 0: Initialization: x0 and σ0 > 0 given. Set k = 0

Step 1: Step computation: Compute sk for which mk(sk) ≤ mk(sC
k)

Cauchy point: sC
k = −αC

kgk & αC
k = arg min

α∈IR+

mk(−αgk)

Step 2: Step acceptance: Compute ρk =
f (xk)− f (xk + sk)

f (xk)−mk(sk)

and set xk+1 =

{
xk + sk if ρk > 0.1

xk otherwise

Step 3: Update the regularization parameter:
σk+1 ∈

(0, σk] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk] = σk if 0.1 ≤ ρk ≤ 0.9 successful
[γ1σk , γ2σk] = 2σk otherwise unsuccessful

Philippe Toint (Namur) April 2009 286 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Local convergence theory for cubic regularization (1)

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κCR‖gk‖min

 ‖gk‖
1 + ‖Hk‖

,

√
‖gk‖
σk

The bound on the stepsize:

‖sk‖ ≤ 3 max

‖Hk‖
σk

,

√
‖gk‖
σk

(Cartis/Gould/T)

Philippe Toint (Namur) April 2009 287 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Local convergence theory for cubic regularization (2)

And therefore. . .

lim
k→∞

‖gk‖ = 0

first-order global convergence

Under stronger assumptions can show that

If sk minimizes mk over subspace with orthogonal basis Qk ,

lim
k→∞

QT
k HkQk � 0

second-order global convergence

Philippe Toint (Namur) April 2009 288 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Fast convergence

For fast asymptotic convergence =⇒ need to improve on Cauchy point:
minimize over Krylov subspaces

g stopping-rule: ‖∇smk(sk)‖ ≤ min(1, ‖gk‖
1
2)‖gk‖

s stopping-rule: ‖∇smk(sk)‖ ≤ min(1, ‖sk‖)‖gk‖

If Bk satisfies the Dennis-Moré condition

‖(Bk − Hk)sk‖/‖sk‖ → 0 whenever ‖gk‖ → 0

and xk → x∗ with positive definite H(x∗)

=⇒ Q-superlinear convergence of xk under the g- and s-rules

If additionally H(x) is locally Lipschitz around x∗ and

‖(Bk − Hk)sk‖ = O(‖sk‖2)

=⇒ Q-quadratic convergence of xk under the s-rule

Philippe Toint (Namur) April 2009 289 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Function-evaluation complexity

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ε?

so long as for very successful iterations σk+1 ≤ γ3σk for γ3 < 1
=⇒ basic ARC algorithm requires at most⌈

κC

ε2

⌉
function evaluations

for some κC independent of ε c.f. steepest descent

if H is globally Lipschitz, the s-rule is applied and additionally sk is
the global (line) minimizer of mk(αsk) as a function of α
=⇒ ARC algorithm requires at most⌈

κS

ε3/2

⌉
function evaluations

for some κS independent of ε c.f. Nesterov & Polyak

Philippe Toint (Namur) April 2009 290 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Minimizing the model

m(s) ≡ f + sT g + 1
2
sT Bs + 1

3
σ‖s‖3

2

Derivatives:

λ = σ‖s‖2

∇sm(s) = g + Bs + λs

∇ssm(s) = B + λI + λ

(
s
‖s‖

)(
s
‖s‖

)T

Optimality: any global minimizer s∗ of m satisfies

(B + λ∗I)s∗ = −g

λ∗ = σ‖s∗‖2

B + λ∗I is positive semi-definite

Philippe Toint (Namur) April 2009 291 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

The (adapted) secular equation

Require

(B + λI)s = −g and λ = σ‖s‖2

Define s(λ):
(B + λI)s(λ) = −g

and find scalar λ as the root of secular equations

‖s(λ)‖2 − λ
σ = 0 or 1

‖s(λ)‖2
− σ
λ

= 0 or λ
‖s(λ)‖2

− σ = 0

values and derivatives of s(λ) satisfy linear systems with symmetric
positive definite B + λI

need to be able to factorize B + λI

Philippe Toint (Namur) April 2009 292 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Plots of secular functions against λ

Example: g = (0.25 1)T , H = diag(−1 1) and σ = 2

‖s(λ)‖2 −
λ

σ
= 0

1

‖s(λ)‖2
− σ

λ
= 0

λ

‖s(λ)‖2
− σ = 0

Philippe Toint (Namur) April 2009 293 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Large problems — approximate solutions

Seek instead global minimizer of m(s) in a j-dimensional (j � n) subspace
S ⊆ IRn

g ∈ S =⇒ ARC algorithm globally convergent

Q orthogonal basis for S =⇒ s = Qu where

u = arg min
u∈IRj

f + uT (QTg) + 1
2
uT (QTBQ)u + 1

3
‖u‖3

2

=⇒ use secular equation to find u

if S is the Krylov space generated by {B ig}j−1
i=0

=⇒ QTBQ = T , tridiagonal
=⇒ can factor T + λI to solve secular equation even if j is large

using g- or s-stopping rule =⇒ fast asymptotic convergence for ARC

using s-stopping rule =⇒ good function-evaluation complexity for
ARC

Philippe Toint (Namur) April 2009 294 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

The main features of adaptive cubic regularization

And the result is. . .

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best function-evaluation complexity for nonconvex problems

excellent performance and reliability

Philippe Toint (Namur) April 2009 295 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Numerical experience — small problems using Matlab

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 m

et
ho

d
w

ith
in

 α
 o

f b
es

t

Performance Profile: iteration count − 131 CUTEr problems

ACO − g stopping rule (3 failures)
ACO − s stopping rule (3 failures)
trust−region (8 failures)

Philippe Toint (Namur) April 2009 296 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

The quadratic regularization for NLS (ARQ)

Consider the Gauss-Newton method for nonlinear least-squares problems.
Change from

min
s

1
2
‖c(x)‖2 + 〈s, J(x)T c(x)〉+ 1

2
〈s, J(x)T J(x)s〉 s.t. ‖s‖ ≤ ∆

to

min
s

‖c(x) + J(x)s‖+ 1
2
σ‖s‖2

σ is the (adaptive) regularization parameter

(idea by Nesterov)

Philippe Toint (Namur) April 2009 297 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Quadratic regularization: reformulation

Note that

min
s

‖c(x) + J(x)s‖+ 1
2
σ‖s‖2

⇔

min
ν,s

ν + 1
2
σ‖s‖2 such that ‖c(x) + J(x)s‖2 = ν2

exact penalty function for the problem of minimizing ‖s‖ subject to
c(x) + J(x)s = 0.
Iterative techniques. . . as for the cubic case (Cartis, Gould,T.):

solve the problem in nested Krylov subspaces

Lanczos → factorization of tridiagonal matrices

different scalar secular equation (solution by Newton’s method)

Philippe Toint (Namur) April 2009 298 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

The keys to convergence theory for quadratic regularization

The Cauchy condition:

m(xk)−m(xk + sk) ≥ κQR

‖JT
k ck‖
‖ck‖

min

[
‖JT

k ck‖
1 + ‖JT

k Jk‖
,
‖JT

k ck‖
σk‖ck‖

]

The bound on the stepsize:

‖sk‖ ≤
1

2

‖JT
k ck‖

σk‖ck‖

Philippe Toint (Namur) April 2009 299 / 323

Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Convergence theory for the quadratic regularization

Convergence results:

Global convergence to first-order critical points

Quadratic convergence to roots

Valid for

general values of m and n,

exact/approximate subproblem solution

(Bellavia/Cartis/Gould/Morini/T.)

Philippe Toint (Namur) April 2009 300 / 323

Regularization methods and nonlinear step control Nonlinear stepsize control

6.2: A unifying concept:
nonlinear stepsize control

Philippe Toint (Namur) April 2009 301 / 323

Regularization methods and nonlinear step control Nonlinear stepsize control

Towards a unified global convergence theory

Objectives:

recover a unified global convergence theory

possibly open the door for new algorithms

Idea:

cast all three methods into a generalized TR framework

allow this TR to be updated nonlinearly

Philippe Toint (Namur) April 2009 302 / 323

Regularization methods and nonlinear step control Nonlinear stepsize control

Towards a unified global convergence theory (2)

Given

3 continuous first-order criticality measures ψ(x), φ(x), χ(x)

an adaptive stepsize parameter δ

define a generalized radius ∆(δ, χ(x)) such that

∆(·, χ) is C 1, strictly increasing and concave,

∆(0, χ) = 0 for all χ,

∆(δ, ·) is non-increasing

δ ∂∆
∂δ

(δ, χ) ≤ κ∆∆(δ, χ)

. . .

Philippe Toint (Namur) April 2009 303 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

6.3: Cubic regularization
for constrained problems

Philippe Toint (Namur) April 2009 304 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

The constrained case

Can we apply regularization to the constrained case?

Consider the constrained nonlinear programming problem:

minimize f (x)
x ∈ F

for x ∈ IRn and f : IRn → IR smooth, and where

F is convex.

Main ideas:

exploit (cheap) projections on convex sets

define using the generalized Cauchy point idea

prove global convergence + function-evaluation complexity

Philippe Toint (Namur) April 2009 305 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

Constrained step computation (1)

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
σ‖s‖3

subject to
x + s ∈ F

σ is the (adaptive) regularization parameter

Criticality measure: (as before)

χ(x)
def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇x f (x), d〉
∣∣∣∣ ,

Philippe Toint (Namur) April 2009 306 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

The generalized Cauchy point for ARC

Cauchy step: Goldstein-like piecewise linear seach on mk along the
gradient path projected onto F

Find
xGC
k = PF [xk − tGC

k gk]
def
= xk + sGC

k (tGC
k > 0)

such that

mk(xGC
k) ≤ f (xk) + κubs〈gk , s

GC
k 〉 (below linear approximation)

and either

mk(xGC
k) ≥ f (xk) + κlbs〈gk , s

GC
k 〉 (above linear approximation)

or
‖PT (xGC

k)[−gk]‖ ≤ κepp|〈gk , s
GC
k 〉| (close to path’s end)

no trust-region condition!

Philippe Toint (Namur) April 2009 307 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

Searching for the ARC-GCP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−5

−4

−3

−2

−1

0

1

2

3

4

5

mk (0 + s) = −3.57s1 − 1.5s2 − s3 + s1s2 + 3s2
2 + s2s3 − 2s2

3 + 1
3
‖s‖3 such that s ≤ 1.5

Philippe Toint (Namur) April 2009 308 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

Remember the same for a quadratic model?

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

mk (0 + s) = −3.57s1 − 1.5s2 − s3 + s1s2 + 3s2
2 + s2s3 − 2s2

3 such that s ≤ 1.5 and ∆ ≤ 2.8

Philippe Toint (Namur) April 2009 309 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

A constrained regularized algorithm

Algorithm 6.2: ARC for Convex Constraints (COCARC)

Step 0: Initialization. x0 ∈ F , σ0 given. Compute f (x0), set k = 0.

Step 1: Generalized Cauchy point. If xk not critical, find the
generalized Cauchy point xGC

k by piecewise linear search on the
regularized cubic model.

Step 2: Step calculation. Compute sk and x+
k

def
= xk + sk∈ F such

that mk(x+
k) ≤ mk(xGC

k).

Step 3: Acceptance of the trial point. Compute f (x+
k) and ρk .

If ρk ≥ η1, then xk+1 = xk + sk ; otherwise xk+1 = xk .

Step 4: Regularisation parameter update. Set

σk+1 ∈

(0, σk] if ρk ≥ η2,
[σk , γ1σk] if ρk ∈ [η1, η2),
[γ1σk , γ2σk] if ρk < η1.

Philippe Toint (Namur) April 2009 310 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

Local convergence theory for COCARC

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κCRχk min

[
χk

1 + ‖Hk‖
,

√
χk

σk
, 1

]

The bound on the stepsize:

‖sk‖ ≤ 3 max

[
‖Hk‖
σk

,

(
χk

σk

) 1
2

,

(
χk

σk

) 1
3

]

And therefore. . .

lim
k→∞

χk = 0

(Cartis/Gould/T)

Philippe Toint (Namur) April 2009 311 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

Function-Evaluation Complexity for COCARC (1)

But

What about function-evaluation complexity?

If, for very successful iterations, σk+1 ≤ γ3σk for γ3 < 1,
the COCARC algorithm requires at most⌈

κC

ε2

⌉
function evaluations

(for some κC independent of ε) to achieve χk ≤ ε

c.f. steepest descent

Do the nicer bounds for unconstrained optimization extend to the
constrained case?

Philippe Toint (Namur) April 2009 312 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

Function-evaluation complexity for COCARC (2)

As for unconstrained, impose a termination rule on the subproblem
solution:

Do not terminate solving minxk+s∈F mk(xk + s) before

χm
k (x+

k) ≤ min(κstop, ‖sk‖)χk

where

χm
k (x)

def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇xmk(x), d〉
∣∣∣∣

c.f. the “s-rule” for unconstrained

Note: OK at local constrained model minimizers

Philippe Toint (Namur) April 2009 313 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

Walking through the pass...

x
k

feasible

x
k
−α g

k

x
min
+

−7 −6 −5 −4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

A “beyond the pass” constrained problem with

m(x , y) = −x − 42
100

y − 3
10

x2 − 1
10

y3 + 1
3
[x2 + y2]

3
2

Philippe Toint (Namur) April 2009 314 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

Walking through the pass...with a sherpa

x
k

feasible

x
k
−α g

k

x
k
+

x
k,c

x
k,a

−7 −6 −5 −4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

A piecewise descent path from xk to x+
k on

m(x , y) = −x − 42
100

y − 3
10

x2 − 1
10

y3 + 1
3
[x2 + y2]

3
2

Philippe Toint (Namur) April 2009 315 / 323

Regularization methods and nonlinear step control Regularization techniques for constrained problems

Function-Evaluation Complexity for COCARC (2)

Assume also

xk ← x+
k in a bounded number of feasible descent substeps

‖Hk −∇xx f (xk)‖ ≤ κ‖sk‖2

∇xx f (·) is globally Lipschitz continuous

{xk} bounded

The COCARC algorithm requires at most⌈
κC

ε3/2

⌉
function evaluations

(for some κC independent of ε) to achieve χk ≤ ε

Caveat: cost of solving the subproblem c.f. unconstrained case!!!

Philippe Toint (Namur) April 2009 316 / 323

Regularization methods and nonlinear step control Conclusions

Conclusions for lesson 6

Much left to do. . . but very interesting

Unconstrained nonliear stepsize control could lead to very untypical
methods. Example:

ψk = φk = χk = ‖gk‖, ∆(δ, χ) =
√
δχ

Meaningful numerical evaluation still needed for many of these
algorithms

Many issues regarding regularizations still unresolved

Philippe Toint (Namur) April 2009 317 / 323

Regularization methods and nonlinear step control Bibliography

Bibliography for lesson 6

R. H. Byrd, R. B. Schnabel and G. A. Shultz,
A trust region algorithm for nonlinearly constrained optimization,
SIAM Journal on Numerical Analysis, 24: 1152–1170, 1987.
Ph. L. Toint,
Global convergence of a class of trust region methods for nonconvex minimization in Hilbert space,
IMA Journal of Numerical Analysis, 8(2): 231–252, 1988.
A. Griewank,
The modification of Newton’s method for unconstrained optimization by bounding cubic terms,
Department of Applied Mathematics and Theoretical Physics, University of Cambridge (UK), Report NA/12, 1981.
M. Weiser, P. Deuflhard and B. Erdmann,
Affine conjugate adaptive Newton methods for nonlinear elastomechanics,
Optimization Methods and Software, 22(3): 413–431, 2007.
Yu. Nesterov and B. T. Polyak,
Cubic regularization of Newton method and its global performance,
Mathematical Programming, 108(1): 177-205, 2006.
C. Cartis and N. I. M. Gould and Ph. L. Toint,
Adaptive cubic overestimation methods for unconstrained optimization,
FUNDP, Namur, Report 07/05, 2007.
C. Cartis, N. I. M. Gould and Ph. L. Toint,
Trust-region and other regularisation of linear least-squares problems,
BIT, to appear, 2009.
Yu. Nesterov,
Modified Gauss-Newton scheme with worst-case guarantees for global performance,
Optimization Methods and Software, 22(3): 469–483, 2007.
S. Bellavia, C. Cartis, N. I. M. Gould, B. Morini and Ph. L. Toint,
Convergence of a Regularized Euclidean Residual Algorithm for Nonlinear Least-Squares,
FUNDP, Namur, Report 08/11, 2008.
C. Cartis, N. I. M. Gould and Ph. L. Toint,
An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its
function-evaluation complexity,
FUNDP, Namur, Report 08/05R, 2009.

Philippe Toint (Namur) April 2009 318 / 323

Conclusions

Not covered in the course

non-smooth techniques

specifically convex problems

penalty functions

augmented Lagrangians

affine scaling methods

general sequential quadratic programming (SQP)

systems of nonlinear equations

. . .

Many thanks to you all for your patience!

Philippe Toint (Namur) April 2009 319 / 323

	Nonlinear optimization: motivation, past and perspectives
	Trust region methods for unconstrained problems
	Derivative free optimization, filters and other topics
	Convex constraints and interior-point methods
	The use of problem structure for large-scale applications
	Regularization methods and nonlinear step control
	Conclusions

