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Nonlinear optimization: motivation, past and perspectives Definition and examples

What is optimization?

The best choice subject to constraints

best ⇒ criterion, objective function
choice ⇒ variables whose value may be chosen
constraints ⇒ restrictions on allowed values of the variables
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Nonlinear optimization: motivation, past and perspectives Definition and examples

More formally

variables ⇒ x = (x1, x2, . . . , xn)
objective function ⇒ minimize/maximize f (x)
constraints ⇒ c(x) ≥ 0

Note: maximize f (x) equivalent to minimize −f (x).

min
x

f (x)

such that
c(x) ≥ 0

(the general nonlinear optimization problem)
(+ conditions on x , f and c)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Nature optimizes
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Nonlinear optimization: motivation, past and perspectives Definition and examples

People optimize (daily)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: PAL design (1)

Design of modern Progressive Adaptive Lenses:

vary optical power of lenses while minimizing astigmatism
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: PAL design (2)

Achievements: Loos, Greiner, Seidel (1997)
                                                                                                                                                                                                                                                                                                                                                                                                                

                                                                                                                                                                                                                                                                                                                                                                                                                

�

uncorrected short distance
long distance PAL
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: PAL design (3)

Is this nonlinear (≈ difficult)?

Assume the lens surface is z = z(x , y). The optical power is

p(x , y) =
N3

2

[(
1 +

[
∂z

∂x

]2
)
∂2z

∂y2
+

(
1 +

[
∂z

∂y

]2
)
∂2z

∂x2
− 2

∂z

∂x

∂z

∂y

∂2z

∂x∂y

]
where

N = N(x , y) =
1√

1 +
[
∂z
∂x

]2
+
[
∂z
∂y

]2
.

The surface astigmatism is then

a(x , y) = −2

√√√√p(x , y)− N4

(
∂z

∂x

∂z

∂y
−
[
∂2z

∂x∂y

]2
)

Philippe Toint (Namur) April 2009 10 / 323



Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Food sterilization (1)

A common problem in the food processing industry:

keep a max of vitamins while killing a prescribed fraction of the bacteria

heating in steam/hot water autoclaves

Sachs (2003)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Food sterilization (2)

Model: coupled PDEs
Concentration of micro-organisms and other nutrients:

∂C

∂t
(x , t) = −K [θ(x , t)]C (x , t),

where θ(x , t) is the temperature, and where

K [θ] = K1e
−K2

“
1
θ
− 1
θr

”
(Arrhenius equation)

Evolution of temperature:

ρc(θ)
∂θ

∂t
= ∇ · [k(θ)∇θ],

(with suitable boundary conditions: coolant, initial temperature,. . . )
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: biological parameter estimation (1)

K-channel in a the model of a neuron membrane:

Sansom (2001)

Doyle et al. (1998)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: biological parameter estimation (2)

Where are these neurons?

in a Pacific spiny lobster!

Simmers, Meyrand and Moulin (1995)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: biological parameter estimation (3)

After gathering experimental data (applying a current to the cell):

estimate the biological model parameters that best fit experiments

Model:

Activation: p independent gates

Deactivation: nh gates with different dynamics

nh + 2 coupled ODEs for the voltage, the activation level, the partial
inactivations levels

5-points BDF for ≈ 50000 time steps

⇒ very nonlinear!
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (1)

(Attempt to) predict. . .

tomorrow’s weather

the ocean’s average temperature
next month

future gravity field

future currents in the ionosphere

. . .
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (2)

Data: temperature, wind, pressure, . . . everywhere and at all times!

May involve up to 250000000 variables!
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)

The principle:
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations

−2.5 −2 −1.5 −1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

temp. vs. days

• Known situation 2.5 days ago
and background prediction
• Record temperature for the past 2.5 days
• Run the model to minimize difference

I between model and observations

min
x0

1

2
‖x0 − xb‖2

B−1 +
1

2

N∑
i=0

‖HM(ti , x0)− bi‖2
R−1

i
.
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations
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0

0.2
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1

temp. vs. days

• Known situation 2.5 days ago
and background prediction
• Record temperature for the past 2.5 days
• Run the model to minimize difference

I between model and observations
• Predict temperature for the next day
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: data assimilation for weather forecasting (4)

Analysis of the ocean’s heat content: CERFACS (2009)

Much better fit!
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: aeronautical structure design

minimize weight while maintaining structural integrity

mass reduction during optimization

SAMTECH (2009)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: asteroid trajectory matching

find today’s asteroid whose orbital parameters
match best one observed 50 years ago

Milani, Sansaturio et al. (2005)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: discrete choice modelling (1)

Context: simulation of individual choices in Transportation (or other)
(mode, route, time of departure,. . . )

Random utility theory

An individual i assigns to alternative j the “utility”

Uij = [ parameters × explaining factors ] + [ random error ]

Illustration :

Ubus = distance− 1.2× price of ticket− 2.1× delay wrt to car travel + ε
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: discrete choice modelling (2)

Probability that individual i chooses alternative j rather than
alternative k given by

prob (Uij ≥ Uik for all k)

Data: mobility surveys (MOBEL)

find the parameters in the utility function to
maximize likelihood of observed behaviours
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: discrete choice modelling (3)
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← Using advanced optimization
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Estimation of the value of time lost in congested trafic
(with and without advanced optimization)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Poisson image denoising (1)

Consider a two dimensional image with noise proportional to signal

zij = uij + nf (uij)

where n is a random Gaussian noise. How to recover the original uij?

use the pixel values as much as possible
while minimizing sharp transitions (gradients)

This leads to the optimization problem

min
u

∑
ij∈Ω

(uij − zij log(uij)) + α

∫
Ω
‖∇u‖

Philippe Toint (Namur) April 2009 25 / 323



Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Poisson image denoising (2)

Some spectacular results: a 512 × 512 picture with 95% noise

Chan and Chen (2007)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: Poisson image denoising (2)

Some spectacular results: a 512 × 512 picture with 95% noise

Chan and Chen (2007)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: shock simulation in video games

Optimize the realism of the motion of multiple rigid bodies in space

⇒ “complementarity problem”

∇qΦ[q(t)]v(t) ≥ 0

Φ(q(t)) ≥ 0

(q(t) = positions, v(t) = dq
dt (t) = velocities)

⇒ system of inequalities and equalities

used in realtime for video animation

Anitescu and Potra (1996)
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Nonlinear optimization: motivation, past and perspectives Definition and examples

Applications: finance

1 risk management

2 portofolio analysis

3 FX markets
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Everybody loves
an optimizer!
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Nonlinear optimization: motivation, past and perspectives History

Where does optimization come from?

“Nous sommes comme des nains juchés sur des épaules de géants, de telle
sorte que nous puissions voir plus de choses et de plus éloignées que n’en
voyaient ces derniers. Et cela, non point parce que notre vue serait
puissante ou notre taille avantageuse, mais parce que nous sommes portés
et exhaussés par la haute stature des géants.”

“We are like dwarfs standing on the shoulders of giants, such that we can
see more things and further away than they could. And this, not because
our sight would be more powerful or our height more advantageous, but
because we are carried and heigthened by the high stature of the giants.”

Bernard de Chartres (1130-1160)
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Nonlinear optimization: motivation, past and perspectives History

Euclid (300 BC) Al-Khwarizmi (783-850)
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Nonlinear optimization: motivation, past and perspectives History

Isaac Newton (1642-1727) Leonhardt Euler (1707-1783)
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Nonlinear optimization: motivation, past and perspectives History

J. de Lagrange (1735-1813) Friedrich Gauss (1777-1855)
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Nonlinear optimization: motivation, past and perspectives History

Augustin Cauchy (1789-1857) George Dantzig (1914-2005)
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Nonlinear optimization: motivation, past and perspectives History

Michael Powell Roger Fletcher
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Nonlinear optimization: motivation, past and perspectives Basic concepts

Return to the mathematical problem

min
x

f (x)

such that
c(x) ≥ 0

Difficulties:

the objective function f (x) is typically complicated (nonlinear)

it is also often costly to compute

there may be many variables

the constraints c(x) may defined a complicated geometry
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Nonlinear optimization: motivation, past and perspectives Basic concepts

An example unconstrained problem

minimize : f (α, β) = −10α2 + 10β2 + 4 sin(αβ)− 2α + α4

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Two local minima: (−2.20, 0.32) and (2.30,−0.34)

How to find them?
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Nonlinear optimization: motivation, past and perspectives Basic concepts

Trust-region methods

iterative algorithms

find local solutions only

Algorithm 1.1: The trust-region framework

Until an (approximate) solution is found:

Step 1: use a model of the nonlinear function(s)

within region where it can be trusted

Step 2: notion of sufficient decrease

Step 3: measure achieved and predicted reductions

Step 4: decrease the region radius if unsuccessful
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Nonlinear optimization: motivation, past and perspectives Illustration

minimize : f (α, β) = −10α2 + 10β2 + 4 sin(αβ)− 2α + α4
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Nonlinear optimization: motivation, past and perspectives Illustration

x0 = (0.71,−3.27) and f (x0) = 97.630

Contours of f Contours of m0 around x0

(quadratic model)
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Nonlinear optimization: motivation, past and perspectives Illustration

k ∆k sk f (xk + sk) ∆f /∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0
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k ∆k sk f (xk + sk) ∆f /∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2

3 2 (1.90, 0.08) −29.392 0.649 x2 + s2

4 2 (0.32, 0.15) −31.131 0.857 x3 + s3

5 4 (−0.03,−0.02) −31.176 1.009 x4 + s4
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Nonlinear optimization: motivation, past and perspectives Illustration

k ∆k sk f (xk + sk) ∆f /∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2

3 2 (1.90, 0.08) −29.392 0.649 x2 + s2

4 2 (0.32, 0.15) −31.131 0.857 x3 + s3

5 4 (−0.03,−0.02) −31.176 1.009 x4 + s4

6 8 (−0.02, 0.00) −31.179 1.013 x5 + s5

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Philippe Toint (Namur) April 2009 40 / 323



Nonlinear optimization: motivation, past and perspectives Illustration

Path of iterates: From another x0:
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Nonlinear optimization: motivation, past and perspectives Illustration

And then. . .

Does it (always) work?

The answer tomorrow!
(and subsequent days for a (biased) survey of new optimization methods)

Thank you to you for your attention
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Lesson 2:

Trust-region methods
for unconstrained problems
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Trust region methods for unconstrained problems

The basic text for this course

A. R. Conn, N. I. M. Gould and Ph. L. Toint,
Trust-Region Methods,

Nr 01 in the MPS-SIAM Series on Optimization,
SIAM, Philadelphia, USA, 2000.
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Trust region methods for unconstrained problems Background material

2.1: Background material
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Trust region methods for unconstrained problems Background material

Scalar mean-value theorems

Let S be an open subset of IRn, and suppose f : S → IR is
continuously differentiable throughout S. Then, if the segment
x + θs ∈ S for all θ ∈ [0, 1],

f (x + s) = f (x) + 〈∇x f (x + αs), s〉

for some α ∈ [0, 1].

Let S be an open subset of IRn, and suppose f : S → IR is twice
continuously differentiable throughout S. Then, if the segment
x + θs ∈ S for all θ ∈ [0, 1],

f (x + s) = f (x) + 〈∇x f (x), s〉+ 1
2
〈s,∇xx f (x + αs)s〉

for some α ∈ [0, 1].
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Vector mean-value theorem

Let S be an open subset of IRn, and suppose F : S → IRm is
continuously differentiable throughout S. Then, if the segment
x + θs ∈ S for all θ ∈ [0, 1],

F (x + s) = F (x) +

∫ 1

0
∇xF (x + αs)s dα.
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Taylor’s scalar approximation theorems (1)

Let S be an open subset of IRn, and suppose f : S → IR is
continuously differentiable throughout S. Suppose further that
∇x f (x) is Lipschitz continuous at x , with Lipschitz constant
γ(x) in some appropriate vector norm. Then, if the segment
x + θs ∈ S for all θ ∈ [0, 1],

|f (x + s)−m(x + s)| ≤ 1
2
γ(x)‖s‖2,

where
m(x + s) = f (x) + 〈∇x f (x), s〉.

Philippe Toint (Namur) April 2009 48 / 323



Trust region methods for unconstrained problems Background material

Taylor’s scalar approximation theorems (2)

Let S be an open subset of IRn, and suppose f : S → IR is twice
continuously differentiable throughout S. Suppose further that
∇xx f (x) is Lipschitz continuous at x , with Lipschitz constant
γ(x) in some appropriate vector norm and its induced matrix
norm. Then, if the segment x + θs ∈ S for all θ ∈ [0, 1],

|f (x + s)−m(x + s)| ≤ 1
6
γ(x)‖s‖3,

where
m(x + s) =

f (x) + 〈∇x f (x), s〉+ 1
2
〈s,∇xx f (x)s〉.

Philippe Toint (Namur) April 2009 49 / 323
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Taylor’s vector approximation theorem

Let S be an open subset of IRn, and suppose F : S → IRm is
continuously differentiable throughout S. Suppose further that
∇xF (x) is Lipschitz continuous at x , with Lipschitz constant
γ(x) in some appropriate vector norm and its induced matrix
norm. Then, if the segment x + θs ∈ S for all θ ∈ [0, 1],

‖F (x + s)−M(x + s)‖ ≤ 1
2
γ(x)‖s‖2,

where
M(x + s) = F (x) +∇xF (x)s.
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Newton’s method

Solve
F (x) = 0

Idea: solve linear approximation

F (x) + J(x)s = 0

quadratic local convergence

. . . but not globally convergent

Yet the basis of everything that follows
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Unconstrained optimality conditions

Suppose that f ∈ C 1, and that x∗ is a local minimizer of f (x).
Then

∇x f (x∗) = 0.

Suppose that f ∈ C 2, and that x∗ is a local minimizer of f (x).
Then the above holds and the objective function’s Hessian at
x∗ is positive semi-definite, that is

〈s,∇xx f (x∗)s〉 ≥ 0 for all s ∈ IRn.

〈s,∇xx f (x∗)s〉 > 0 for all s 6= 0 ∈ IRn

⇒ strict local solution
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Trust region methods for unconstrained problems Background material

Constrained optimality conditions (1)

minimize f (x)
subject to ci (x) = 0, for i ∈ E,
and ci (x) ≥ 0, for i ∈ I,

Active set:

r r

r

x1

rx2

rx3

C

F∅

F{3}�

F{1,3}HHY

F{2,3}
���

F{2}j

F{1}6
F{1,2}*

c1(x) = 0

c2(x) = 0

c3(x) = 0

A(x1) = {1, 2}
A(x2) = ∅
A(x3) = {3}
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Constrained optimality conditions (2): first order

Ignore constraint qualification!

Suppose that f , c ∈ C 1, and that x∗ is a local solution. Then
there exist a vector of Lagrange multipliers y∗ such that

∇x f (x∗) =
∑

i∈E∪I
[y∗]i∇xci (x∗)

ci (x∗) = 0 for all i ∈ E
ci (x∗) ≥ 0 and [y∗]i ≥ 0 for all i ∈ I

and ci (x∗)[y∗]i = 0 for all i ∈ I.

Lagrangian: `(x , y) = f (x)−
∑

i∈E∪I
yici (x)
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Constrained optimality conditions (3): second order

Suppose that f , c ∈ C 2, and that x∗ is a local minimizer of f (x).
Then there exist a vector of Lagrange multipliers y∗ such that first-
order conditions hold and

〈s,∇xx`(x∗, y∗)s〉 ≥ 0 for all s ∈ N+

where N+ is the set of vectors s such that

〈s,∇xci (x∗)〉 = 0 for all i ∈ E
⋃
{j ∈ A(x∗)

⋂
I | [y∗]j > 0}

and

〈s,∇xci (x∗)〉 ≥ 0 for all i ∈ {j ∈ A(x∗)
⋂
I | [y∗]j = 0}

strict complementarity: 〈s,∇xx`(x∗, y∗)s〉 > 0 for all s ∈ N+ (s 6= 0)
⇒ strict local solution
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Trust region methods for unconstrained problems Background material

Optimatity conditions (convex 1)

Assume now that C is convex

normal cone of C at x ∈ C,

N (x)
def
= {y ∈ IRn | 〈y , u − x〉 ≤ 0, ∀u ∈ C}

tangent cone of C at x ∈ C

T (x)
def
= N (x)0 = cl{θ(u − x) | θ ≥ 0 and u ∈ C}
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Optimality conditions (convex 2)
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The Moreau decomposition
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Trust region methods for unconstrained problems Background material

Optimatity conditions (convex 2)

Suppose that C 6= ∅ is convex, closed, that f is continuously
differentiable in C, and that x∗ is a first-order critical point for
the minimization of f over C. Then, provided that constraint
qualification holds,

−∇x f (x∗) ∈ N (x∗).
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Trust region methods for unconstrained problems Background material

Conjugate gradients

Idea: minimize a convex quadratic on successive nested Krylov subspaces

Algorithm 2.1: Conjugate-gradients (CG)

Given x0, set g0 = Hx0 + c and let p0 = −g0.
For k = 0, 1, . . . , until convergence, perform the iteration

αk = ‖gk‖2
2/〈pk ,Hpk〉

xk+1 = xk + αkpk

gk+1 = gk + αkHpk

βk = ‖gk+1‖2
2/‖gk‖2

2

pk+1 = −gk+1 + βkpk
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Trust region methods for unconstrained problems Background material

Preconditioning

Idea: change the variables x = Rx and define M = RTR.

Algorithm 2.2: Preconditioned CG

Given x0, set g0 = Hx0 + c , and let v0 = M−1g0 and p0 = −v0.
For k = 0, 1, . . . , until convergence, perform the iteration

αk = 〈gk , vk〉/〈pk ,Hpk〉
xk+1 = xk + αkpk

gk+1 = gk + αkHpk

vk+1 = M−1gk+1

βk = 〈gk+1, vk+1〉/〈gk , vk〉
pk+1 = −vk+1 + βkpk
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Trust region methods for unconstrained problems Background material

Lanczos method

Idea: compute an orthonormal basis of the successive nested Krylov
subspaces

⇒ makes QT
k HQk tridiagonal

Algorithm 2.3: Lanczos

Given r0, set y0 = r0, q−1 = 0.
For k = 0, 1, . . ., perform the iteration,

γk = ‖yk‖2

qk = yk/γk

δk = 〈qk ,Hqk〉
yk+1 = Hqk − δkqk − γkqk−1
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Trust region methods for unconstrained problems Background material

Another view on the Conjugate-Gradients method

Conjugate Gradients = Lanczos + LDLT (Cholesky)

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Lanczos
→

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

Cholesky
→

∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

×

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗| {z }

Conjugate gradients in one of the Krylov subspaces
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2.2: The trust-region algorithm
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Trust region methods for unconstrained problems The Trust-region algorithm

The trust-region idea

use a model of the objective function

define a trust-region where it is thought adequate

Bk = {x ∈ IRn | ‖x − xk‖k ≤ ∆k}

find a trial point by sufficiently decreasing the model in Bk

compute the objective function at the trial point

compare achived vs. predicted reductions

reduce ∆k if unsatisfactory
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Trust region methods for unconstrained problems The Trust-region algorithm

The basic trust-region algorithm

Algorithm 2.4: Basic trust-region algorithm (BTR)

Step 0: Initialization. x0 and ∆0 given, compute f (x0) and set k = 0.
Step 1: Model definition. Choose ‖ · ‖k and define a model mk in Bk .
Step 2: Step calculation. Compute sk that sufficiently reduces the

model mk with xk + sk ∈ Bk .
Step 3: Acceptance of the trial point. Compute f (xk + sk) and define

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1, then define xk+1 = xk + sk ; otherwise define xk+1 = xk .
Step 4: Trust-region radius update.

∆k+1 ∈

 [∆k ,∞) if ρk ≥ η2,
[γ2∆k ,∆k ] if ρk ∈ [η1, η2),
[γ1∆k , γ2∆k ] if ρk < η1.

Increment k by one and go to Step 1.

Philippe Toint (Namur) April 2009 65 / 323



Trust region methods for unconstrained problems Basic convergence theory

2.3: Basic convergence theory
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Assumptions

f ∈ C 2

f (x) ≥ κlbf

‖∇xx f (x)‖ ≤ κufh

mk ∈ C 2(Bk)

mk(xk) = f (xk)

gk
def
= ∇xmk(xk) = ∇x f (xk)

‖∇xxmk(x)‖ ≤ κumh − 1 for all x ∈ Bk

1
κune
‖x‖k ≤ ‖x‖ ≤ κune‖x‖k

. . . but use ‖ · ‖k = ‖ · ‖2 in what follows!
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Trust region methods for unconstrained problems Basic convergence theory

The Cauchy step

Idea: minimize mk on the Cauchy arc

xC
k (t)

def
= {x | x = xk − tgk , t ≥ 0 and x ∈ Bk}.
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⇒ the Cauchy point
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The Cauchy point for quadratic models

Three cases when minimizing the quadratic mk along the Cauchy arc:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−7

−6

−5
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−1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−15

−10

−5
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−7
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−3
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−1

0

1

mk(xk)−mk(xC
k ) ≥ 1

2
‖gk‖min

[
‖gk‖
βk

,∆k

]
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The Cauchy point for general models

Three cases when minimizing the general mk along the Cauchy arc:
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mk(xk)−mk(xAC
k ) ≥ κdcp‖gk‖min

[
‖gk‖
βk

,∆k

]
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The meaning of sufficient decrease

In both cases, we get:

Sufficient decrease condition:

mk(xk)−mk(xk + sk) ≥ κmdc‖gk‖min

[
‖gk‖
βk

,∆k

]
,

Immediate consequence:

Suppose that ∇x f (xk) 6= 0. Then mk(xk + sk) < mk(xk) and
sk 6= 0.

⇒ ρk is well defined!
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The exact minimizer is OK

Suppose that, for all k, sk ensures that

mk(xk)−mk(xk + sk)κamm[mk(xk)−mk(xM
k )],

Then sufficient decrease is obtained.
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Taylor and minimum radius

For all k , |f (xk + sk)−mk(xk + sk)| ≤ κubh∆2
k ,

Suppose that gk 6= 0 and that

∆k ≤
κmdc‖gk‖(1− η2)

κubh

.

Then iteration k is very successful and

∆k+1 ≥ ∆k .

Suppose that ‖gk‖ ≥ κlbg > 0 for all k . Then is a constant
κlbd > 0 such that, for all k

∆k ≥ κlbd.
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First-order convergence (1)

Suppose that there are only finitely many successful iterations.
Then xk = x∗ for all sufficiently large k and x∗ is first-order
critical.

Suppose that there are infinitely many successful iterations.
Then

lim inf
k→∞

‖∇x f (xk)‖ = 0.

idea: infinite descent if not critical
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First-order convergence (2)

Suppose that there are infinitely many successful iterations.

Then lim
k→∞

‖∇x f (xk)‖ = 0.

For η1>06‖gk‖

2ε
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Convex models (1)

Suppose that λmin[∇xxmk(x)] ≥ ε for all x ∈ [xk , xk + sk ] and
for some ε > 0. Then

‖sk‖ ≤
2

ε
‖gk‖.

idea: mk curves upwards!

Suppose that {xki
} → x∗ and x∗ is first-order critical, and that

there is a constant κsmh > 0 such that

min
x∈Bk

λmin[∇xxmk(x)] ≥ κsmh

whenever xk is sufficiently close to x∗ Suppose finally that
∇xx f (x∗) is nonsingular. Then the complete sequence of it-
erates {xk} converges to x∗.

idea: steps too short to escape local basin
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Convex models (2)

But. . .
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Asymptotically exact Hessians

Assume also that

lim
k→∞

‖∇xx f (xk)−∇xxmk(xk)‖ = 0 whenever lim
k→∞

‖gk‖ = 0

Suppose that {xki
} → x∗ and x∗ is first-order critical, that

sk 6= 0 for all k sufficiently large, and that ∇xx f (x∗) is positive
definite. Then the complete sequence of iterates {xk} con-
verges to x∗, all iterations are eventually very successful and
the trust-region radius ∆k is bounded away from zero.

idea: sufficient decrease implies that

mk(xk)−mk(xk + sk) ≥ κmqd‖sk‖2 > 0.

Then ρk → 1.
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Second order: the eigen point

Assume 0 > τk ∈ σ(Hk).

Then fine the eigen direction uk such that

〈uk , gk〉 ≤ 0, ‖uk‖k = ∆k 〈uk ,Hkuk〉 ≤ κsncτk∆2
k ,

Minimize the model along uk to compute the eigen point:
mk(xE

k) = mk(xk + tE
kuk) = min

t∈(0,1]
mk(xk + tuk)
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Model decrease at the eigen point

Suppose: 0 > τk ∈ σ(Hk), uk is an eigen direction and

‖∇xxmk(x)−∇xxmk(y)‖ ≤ κlch‖x − y‖
for all x , y ∈ Bk . Then

mk(xk)−mk(xE
k) ≥ −κsodτk min[τ2

k ,∆
2
k ].

(quadratic or general model)
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Second order: convergence theorems

lim sup
k→∞

λmin[∇xx f (xk)] ≥ 0.

Suppose that x∗ is an isolated limit point of the sequence of
iterates {xk}. Then x∗ is a second-order critical point.

Assume also that, for γ3>1,

ρk ≥ η2 and ∆k ≤ ∆max → ∆k+1 ∈ [γ3∆k , γ4∆k ]

Let x∗ be any limit point of the sequence of iterates. Then x∗
is a second-order critical point.
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Different trust-region norms
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Using norms for scaling

Idea: change the variables
Skw = s

Then
mS

k(xk + w) ≈ f (xk + Skw)
def
= f S(w),

BS
k = {xk + w | ‖w‖ ≤ ∆k}.

mS
k(xk) = f (xk), g S

k = ∇w f S(0) = ST
k ∇x f (xk)

HS
k ≈ ∇ww f S(0) = ST

k ∇xx f (xk)Sk .

Thus

mS
k(xk + w) = f (xk) + 〈g S

k ,w〉+ 1
2
〈w ,HS

kw〉
= f (xk) + 〈ST

k ∇x f (xk),w〉+ 1
2
〈w ,ST

k HkSkw〉
= f (xk) + 〈∇x f (xk), Skw〉+ 1

2
〈Skw ,HkSkw〉

= f (xk) + 〈∇x f (xk), s〉+ 1
2
〈s,Hks〉

= mk(xk + s)
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Scaling: the geometry
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2.4: Solving the subproblem
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The subproblem

Assume

Euclidean norm

quadratic model (possibly non-convex)

(drop the index k)

min
s∈IRn

q(s) ≡ 〈g , s〉+ 1
2
〈s,Hs〉

subject to ‖s‖2 ≤ ∆
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Possible approaches

exact minimization

truncated conjugate-gradients

CG + Lanczos (GLTR)

doglegs

eigenvalue based methods

(projection methods)
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The exact minimizer

Any global minimizer of q(s) subject to ‖s‖2 = ∆ satisfies the
equation

H(λM)sM = −g ,

where

H(λM)
def
= H + λMI is positive semi-definite,

λM ≥ 0 and

λM(‖sM‖2 −∆) = 0.

If H(λM) is positive definite, sM is unique.

Note: λM is the Lagrange multiplier
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The exact minimizer: a geometrical view
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Finding the exact minimizer

Eigenvalue decomposition of H:

H = UT ΛU

where λ1 ≤ λ2 ≤ · · · ≤ λn. Characterization implies that

λM ≥ −λ1

Suppose that λ > −λ1 and define

s(λ) = −H(λ)−1g = −UT (Λ + λI )−1Ug

New formulation (one dimensional):

‖s(λ)‖2 ≤ ∆

‖s(λ)‖2
2 = ‖UT (Λ + λI )−1Ug‖2

2 = ‖(Λ + λI )−1Ug‖2
2 =

n∑
i=1

γ2
i

(λi + λ)2

where γi = [Ug ]i .
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The convex case
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A nonconvex case
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The hard case: γ1 = 0
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Near the hard case: γ1 ≈ 0
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The secular equation

Idea: consider the secular equation

φ(λ)
def
=

1

‖s(λ)‖2
− 1

∆
= 0

Then

0.5

1

1.5

2

2.5

2 3 4

γ = 1
γ = 0.1

γ = 0.01
 γ = 0.00001

61/‖s(λ)‖2

-
λ

⇒ apply Newton’s method to φ(λ) = 0 : λ+ = λ− φ(λ)/φ′(λ)
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The derivatives of φ(λ)

Suppose g 6= 0. Then

φ(λ) is strictly increasing (λ > −λ1), and concave.

φ′(λ) = −〈s(λ),∇λs(λ)〉
‖s(λ)‖3

2

where
∇λs(λ) = −H(λ)−1s(λ).

Note: if H(λ) = LLT and Lw = s(λ), then

〈s(λ),∇λs(λ)〉 = 〈s(λ), L−TL−1s(λ)〉 = ‖w‖2
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Newton’s method on the secular equation

Algorithm 2.5: Exact trust-region solver

Let λ > −λ1 and ∆ > 0 be given.

1 Factorize H(λ) = LLT .

2 Solve LLT s = −g .

3 Solve Lw = s.

4 Replace λ by λ+

(
‖s‖2 −∆

∆

)(
‖s‖2

2

‖w‖2
2

)
.

But . . . more complications due to

bracketing the root (initial + update)

termination rule

may be preconditioned

Moré (1978), Moré-Sorensen (1983), Dollar-Gould-Robinson (2009)
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Approximate solution by truncated CG

Fact: CG never reenters the `2 trust-region
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May be preconditioned
Steihaug (1983), T. (1981)
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Approximate solution by the GLTR

ST might hit the boundary for steepest descent step ⇒ sometimes slow

Idea: solve the subproblem on the nested Krylov subspaces

Algorithm 2.6: Two-phase GLTR algorithm

as long as interior: conjugate-gradients

on the boundary: Lanczos method + subproblem solution in
Krylov space

(smooth transition)
Gould-Lucidi-Roma-T. (1999)
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Doglegs

Idea: use steepest descent and the full Newton’step (requires convexity?)

r
0

sDD

sD

sC

sN

� trust-region boundary

@
@
@I

double-dogleg curve

@@R

dogleg curve

Powell (1970), Dennis-Mei (1979)
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An eigenvalue approach

Rewrite
(H + λM)s = −g

as

(H g)

(
s
1

)
= −λMs

or (introducing the parameter θ)(
H g
gT θ

)(
s
1

)
= (−λ)

(
M 0
0 1

)(
s
1

)

⇒ choose θ such that

λ ≥ 0,

H + λM positive semi-definite

λ(‖s‖M −∆) = 0 Rendl-Wolkowicz (1997), Rojas-Santos-Sorensen (1999)
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Lesson 3:

Derivative-free optimization,
infinite dimensions and filters
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3.1: Derivative-free optimization
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An application of trust-regions: unconstrained DFO

Consider the unconstrained problem

min
x

f (x)

Gradient (and Hessian) of f (x) unavailable

physical measurement

object code

typically small-scale (but not always. . . )

⇒ “Derivative free optimization” (DFO)
f (x) typically very costly

Exploit each evaluation of f (x) to the utmost possible

considerable interest of practitioners
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Interpolation methods for DFO

Idea: Winfield (1973), Powell (1994)

Until “convergence”:

Use the available function values to build a polynomial
interpolation model mk :

mk(yi ) = f (yi ) yi ∈ Y ;

Minimize the model in a “trust region”, yielding a new
potentially good point;

Compute a new function value.

Y = interpolation set ⊆ { points yi at which f (yi ) is known }
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A naive trust-region method for DFO: illustration
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A naive trust-region method for DFO: illustration
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A naive trust-region method for DFO: illustration
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Derivative free optimization, filters and other topics Derivative free optimization

A naive trust-region method for DFO: illustration
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Derivative free optimization, filters and other topics Derivative free optimization

Interpolation methods for DFO (2)

To be considered:

poisedness of the interpolation set Y

choice of models (linear, quadratic, in between, beyond)

convergence theory

numerical performance
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Poisedness

Assume a quadratic model

mk(xk + s) = fk + 〈gk , s〉+ 1
2
〈s,Hks〉

Thus
p = 1 + n + 1

2
n(n + 1) = 1

2
(n + 1)(n + 2)

parameters to determine ⇒ need p function values (|Y | = p)

Not sufficient!

⇒ need geometric conditions for the points in Y . . .
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Poisedness: geometry with n = 2, p = 6
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Poisedness: geometry with n = 2, p = 6

. . . is this the correct interpolation?
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Poisedness: geometry with n = 2, p = 6

. . . or this?
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Poisedness: geometry with n = 2, p = 6

. . . or this?
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Poisedness: geometry with n = 2, p = 6

The difference ... is zero on a quadratic curve containing Y !
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Poisedness: geometry (2)

If {φi (·)}pi=1 = basis for quadratic polynomials

p∑
i=1

αiφi (yj) = f (yj) j = 1, . . . , p

Possible poisedness measure:

δ(Y ) = det

 φ1(y1) · · · φp(y1)
...

...
φ1(yp) · · · φp(yp)


Y (well) poised ⇔ |δ(Y )| ≥ ε

scale for the spread of the yi ’s

notion of geometry improvement
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Lagrange polynomials

Remarkable: replace y− by y+ in Y :

δ(Y+)

δ(Y )
= L(y+, y−) is independent of the basis {φi (·)}pi=1

where

∀y ∈ Y L(y , y−) =

{
1 if y = y−
0 if y 6= y−

is the Lagrange fundamental polynomial

Note: for quadratic interpolation, L(·, y) is a quadratic polynomial!
Powell (1994)
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Interpolation using Lagrange polynomials

Idea: use the Lagrange polynomials to define the (quadratic) interpolant
by

mk(xk + s) =
∑
y∈Yk

f (y)Lk(xk + s, y)

And then. . .

‖f (xk + s)−mk(xk + s)‖ ≤ κ
∑
y∈Yk

‖xk + s− y‖2|Lk(xk + s, y)|
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Interpolation using Lagrange polynomials: construction

The original function. . .
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Interpolation using Lagrange polynomials: construction

. . . and the interpolation set
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Interpolation using Lagrange polynomials: construction

The first Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The second Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The third Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The fourth Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The fifth Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The sixth Lagrange polynomial
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Interpolation using Lagrange polynomials: construction

The final interpolating quadratic
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Other algorithmic ingredients

include a new point in the interpolation set

need to drop an existing interpolation point?
select which one to drop: make Y “as poised as possible”

Note: model/function minimizer may produce bad geometry!!
⇒ geometry improvement procedure . . .

trust-region radius management

trust region = Bk = {xk + s | ‖s‖ ≤ ∆k}

standard: reduce ∆k when “no progress”
DFO: more complicated! (Could reduce ∆ to fast and prevent
convergence. . . )

⇒ verify that Y is poised before reducing ∆k
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Improving the geometry in a ball

∆
k

attempt to reuse past points that are close to xk

attempt to replace a distant point of Y

attempt to replace a close point of Y

good geometry for the current ∆k ⇔ improvement impossible
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Self-correction at unsuccessful iterations (1)

At iteration k , define the set of exchangeable far points:

Fk = {y ∈ Yk | ‖y − xk‖ > ∆k and Lk(xk + sk , y) 6= 0}

and the set of exchangeable close points (for some π > 1):

Ck = {y ∈ Yk\{xk} | ‖y−xk‖ ≤ ∆k and |Lk(xk+sk , y)| ≥ π}
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Self-correction at unsuccessful iterations (2)

Remarkably,

Whenever

iteration k is unsuccessful,

Fk = ∅
∆k is small w.r.t. ‖gk‖,

then Ck 6= ∅.

(an improvement of the geometry by a factor π is always possible at
unsuccessful iterations when ∆k is small and all exchangeable far points
have been considered)

⇒ no need to reduce ∆k forever!
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Trust-region algorithm for DFO (1)

Algorithm 3.1: TR for DFO

Step 0: Initialization. Given: x0, ∆0, Y0 (→ L0(·, y)). Set k = 0.

Step 1: Criticality test [complicated and not discussed here]

Step 2: Solve the subproblem. Compute sk that sufficiently reduces mk(xk + s)
within the trust region,

Step 3: Evaluation. Compute f (xk + sk) and

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
.

Step 4: Define the next iterate and interpolation set.

the big question

Step 5: Update the Lagrange polynomials.
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Trust-region algorithm for DFO (2)

Algorithm 3.2: Step 4: Define xk+1 and Yk+1

Step 4a: Successful iteration. If ρk ≥ η1, accept
xk + sk , increase ∆k and exchange xk + sk with

y = arg max
y∈Yk

‖y − (xk + sk)‖2|Lk(xk + sk , y)|

Step 4b: Replace far point. If ρk < η1 (+ other technical condition) and Fk 6= ∅, reject
xk + sk , keep ∆k and exchange xk + sk with

y = arg max
y∈Fk

‖y − (xk + sk)‖2|Lk(xk + sk , y)|

Step 4c: Replace close point. If ρk < η1 (+ other technical condition) and Ck 6= ∅, reject
xk + sk , keep ∆k and exchange xk + sk with

y = arg max
y∈Ck

‖y − (xk + sk)‖2|Lk(xk + sk , y)|

Step 4d: Decrease the radius. Otherwise, reject xk + sk , keep Yk , and reduce ∆k .
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Global convergence results

If the model is at least fully linear, then

lim inf
k→∞

‖∇x f (xk)‖ = lim inf
k→∞

‖gk‖ = 0

Scheinberg and T. (2009)

With more costly algorithm:

If the model is at least fully linear, then

lim
k→∞

‖∇x f (xk)‖ = lim
k→∞

‖gk‖ = 0

If the model at least fully quadratic, then iterates converge to
2nd-order critical points
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For an efficient numerical method. . .

Many more issues:

which Hessian approximation?
(full/vs diagonal or structured)

details of criticality tests difficult

details for numerically handling interpolation polynomials
(Lagrange, Newton),

reference shifts,

. . .

good codes around: NEWUOA, DFO ⇒ efficient solvers

Powell (2008 and previously), Conn, Scheinberg and T. (1998)

Conn, Scheinberg and Vicente (2008)
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3.2: Infinite dimensional problems
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Why consider infinite dimensions?

Main motivation:

large-scale finite dimensional problems often result from discretized
continuous ones (surfaces, time-trajectories, optimal control, . . . )

behaviour on these problems dominated by infinite dimensional
properties

Need to investigate infinite dimensions to ensure consistency!

Two main cases: Hilbert and Banach spaces.
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Convergence in Hilbert spaces

The trust-region algorithm is well-defined and globally
convergent in Hilbert spaces.

Riescz representation theorem ⇒ V ′ ≈ V
Cauchy point results from one dimensional minimization
(but xM

k may not exist!)

βk
def
= 1 + sup

x∈Bk

‖∇xxmk(x)‖V,V ′ ,

λmin[H]
def
= inf

d∈V,d 6=0

〈d ,Hd〉
〈d , d〉

Philippe Toint (Namur) April 2009 127 / 323



Derivative free optimization, filters and other topics Infinite dimensional problems

Wht happens in Banach spaces ?

Problem: dual space different from the primal!

Need further assumptions:

∇x f (x) ∈ V for all x ∈ V.

∇x f is uniformly continuous from V to V.

For every x ∈ {x ∈ V | f (x) ≤ f (x0)},

〈∇x f (x),∇x f (x)〉 ≥ φ(‖∇x f (x)‖V ′)‖∇x f (x)‖V ,

for some continuous monotonically increasing real φ from
[0,∞] to itself, independent of x and such that φ(0) = 0
and φ(t) > 0 for t > 0.
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Convergence in Banach spaces, nevertheless

The last assumption implies

〈−gk , gk〉 ≤ −φ(‖gk‖V ′)‖gk‖V

. . . and sufficient decrease follows!
Is this realistic?

The additional assumptions always hold for V = Lp(Ω) and
2 ≤ p <∞, when ‖g‖Lp(Ω) ≤ κubg.

Under these additional assumptions, the trust-region algorithm
is well-defined and globally convergent in Banach spaces.

Philippe Toint (Namur) April 2009 129 / 323



Derivative free optimization, filters and other topics Filter algorithms

3.3: Filter algorithms
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Monotonicity (1)

Global convergence theoretically ensured by

some global measure. . .

unconstrained : f (xk)
(constrained : some merit function at xk)

. . . with strong monotonic behaviour (Lyapunov function)

Also practically enforced by

algorithmic safeguards around Newton method
(linesearches, trust regions)
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Monotonicity (2)

But, unfortunately,

classical safeguards limit efficiency!

Of interest: design less obstructive safeguards while

ensuring better numerical performance
(the Newton Liberation Front!)

continuing to guarantee global convergence properties

Is this possible?

Typically:

abandon strict monotonicity of usual measures

but insist on average behaviour instead
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Non-monotone trust-regions

Idea: f (xk+1) < f (xk) replaced by f (xk+1) < fr(k)

with

fr(k) < fr(k−1)

Further issues:

suitably define the “reference iteration” r(k)

adapt the trust-region algorithm: also compare achieved and
predicted reductions since reference iteration

T. (1997)
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Non-monotone TR algorithm

Algorithm 3.3: Non monotone TR algorithm (NMTR)

Step 0: Initialization. Given: x0, ∆0, η1, η2, γ1, γ2. Compute f (x0), set k = 0.

Step 1: Model definition. Choose ‖ · ‖k and define mk in Bk .

Step 2: Step calculation. Compute sk that sufficiently reduces mk and xk + sk ∈ Bk .

Step 3: Acceptance of the trial point. Define the reference iteration r(k) ≤ k and
compute f (xk + sk),

σh
k =

k−1X
i=r(k)
i∈S

[mi (xi )−mi (xi + si )],

Define

ρk = max

»
f (xr(k))− f (xk + sk)

σh
k + mk(xk)−mk(xk + sk)

,
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
.

–
.

If ρk ≥ η1, then define xk+1 = xk + sk ; otherwise define xk+1 = xk .

Step 4: Trust-region radius update. Set

∆k+1 ∈
8<:

[∆k ,∞) if ρk ≥ η2,
[γ2∆k ,∆k) if ρk ∈ [η1, η2),
[γ1∆k , γ2∆k ] if ρk < η1.

Increment k by one and go to Step 1.
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Derivative free optimization, filters and other topics Filter algorithms

Sufficient decrease for NMTR

f (xp(k))− f (xk+1) ≥ η1κmdc

kX
j=p(k),j∈S

‖gj‖min

»‖gj‖
βj

,∆j

–
with p(k) = r(k) when ρh

k ≥ ρc
k , or p(k) = k otherwise

6
f (xk)

- kS

r
r r

r
r

r r
r

r r r r r
r r

r r
r r r

r
r r r r

r r
r r r

�

6

6

6

6

�

��

�

f (x0)− f (xk+1) ≥ η1κmdc

k∑
t=0,t∈S

‖gt‖min

[
‖gt‖
βt

,∆t

]
.
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Derivative free optimization, filters and other topics Filter algorithms

Choosing the reference iteration (1)

Algorithm 3.4: Choosing r(k)

Step 3: Acceptance of the trial point.
Step 3a: update the iterate. Compute f (xk + sk) and set

ρk = max

»
fr − f (xk + sk)

σr + mk(xk)−mk(xk + sk)
,

f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

–
.

If ρk < η1, then xk+1 = xk and go to Step 4; otherwise xk+1 = xk + sk and

σc = σc + mk(xk)−mk(xk+1) and σr = σr + mk(xk)−mk(xk+1)

Step 3b: update the best value. If f (xk+1) < fmin then set fc = fmin = f (xk+1),
σc = 0 and ` = 0 and go to Step 4; otherwise, `← `+ 1.

Step 3c: update the reference candidate. If f (xk+1) > fc , set fc = f (xk+1) and
σc = 0.

Step 3d: possibly reset the reference value. If ` = m, set fr = fc and σr = σc .
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Choosing the reference iteration (2): example with m = 2

6

f (xk)

- kS

d
d d d d d d

r
r r

r
r

r
r

r
r r

r r r
r r

r
r

r r r
r

r r r r
r r

r r r

�

�

�
�

�

�

` 0 0 0 0 1 2
?

0 1 0 1 1 1 2
?

1 2
?

0 1 1 1 1 2
?

0 1 1 2
?

0 0 1 2
?

0

• : reference iteration • : new best value
? : reference iteration redefined (l = m)
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An unconstrained example

0 10 20 30 40 50 60 70
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0
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Monotone and non-monotone TR (using LANCELOT B) on EXTROSNB
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Introducing the filter

A fruitful alternative: filter methods

Constrained optimization :

using the SQP step, at the same time:

reduce the objective function f (x)

reduce constraint violation θ(x)

⇒ CONFLICT
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The filter point of view

Fletcher and Leyffer replace question:

What is a better point?

by:

What is a worse point?

Of course, y is worse than x when

f (x) ≤ f (y) and θ(x) ≤ θ(y)

(y is dominated by x)

When is xk + sk acceptable?

Fletcher and Leyffer (2002), Fletcher, Gould, Leyffer, T. and Wächter (2002)
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The standard filter
Idea: accept non-dominated points

no monotonicity of merit function implied

6

0

f (x)

-
θ(x)

r
r

r r
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Filling up the standard filter

Note: filter area is bounded in the (f , θ) space!

6

0

f (x)

-
θ(x)

r

θk(1− γ)θk

f (xk )

f (xk )− γθk

⇒ filter area (non)-monotonically decreasing
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The (unconstrained) feasibility problem

Feasibility

Find x such that
c(x) ≥ 0

e(x) = 0

for general smooth c and e.

Least-squares

Find x such that
min

∑
θ2
i
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A multidimensional filter (1)

(Simple) idea: more dimensions in filter space

6

0

θ1(x)

-
θ2(x)

q
q

q q
(full dimension vs. grouping)
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A multidimensional filter (2)

Additionally

possibly consider unsigned filter entries

use a trust-region algorithm when

trial point unacceptable
convergence to non-zero solution

(⇒ “internal” restoration)

Sound convergence theory

Gould, Leyffer and T. (2005)
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Numerical experience: FILTRANE

Fortran 95 package

large scale problems (CUTEr interface)

includes several variants of the method

signed/unsigned filters
Gauss-Newton, Newton or adaptive models
pure trust-region option
uses preconditioned conjugate-gradients
+ Lanczos for subproblem solution

part of the GALAHAD library
Gould, Orban and T. (2003), Gould and T. (2007)
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Numerical experience (1)
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Numerical experience (2)
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Numerical experience (3)
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Filter for unconstrained optimization

Again simple idea: use gi instead of θi

6

0

g1(x)

-
g2(x)

q
q

q q
(full dimension vs. grouping)
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A few complications. . .

But . . .

g(x) = 0 not sufficient for nonconvex problems!

When negative curvature found:

reset filter

set upper bound on acceptable f (x)

(or. . . add a dimension for f in the filter)

reasonable convergence theory
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Numerical experience (1)
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Numerical experience: HEART6
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Numerical experience: EXTROSNB
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Numerical experience: LOBSTERZ
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Conclusions

derivative-free optimization possible and efficient

non-monotonicity definitely helpful

filter methods very efficient

Newton’s behaviour unexplained

. . . more research needed?
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Convex constraints and interior-point methods

Lesson 4:

Optimization with
convex constraints
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Convex constraints and interior-point methods Projections and the projected gradient path

4.1: Projection algorithms
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Convex constraints and interior-point methods Projections and the projected gradient path

Projections on simple convex domains (1)

r
y

rPC(y)

r
y

rPC(y)

ry = PC(y)

r
y

r PC(y)

r
y

r
r

r
ry

r
y

[PC(y)]i
def
=


[x`]i if [y ]i ≤ [x`]i ,
[y ]i if [x`]i < [y ]i < [xu]i ,
[xu]i if [xu]i ≤ [y ]i
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Projections on simple convex domains (2)

r
y

r PC(y)

ry = PC(y)

r
y r

ry r
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Convex constraints and interior-point methods Projections and the projected gradient path

Projections on simple convex domains (2)

. . . but also the ordered simplex . . .
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Idea: use those simple projections!
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Convex constraints and interior-point methods Projections and the projected gradient path

The projected gradient path

Define the projected gradient path = the Cauchy arc

p(t, x) = PC[x − t∇x f (x)]

x − tm∇x f (x)r
p(t, x) = p(tm, x)r

C
x

∇x f (x)
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Convex constraints and interior-point methods Projections and the projected gradient path

Two projections

PT (x)[−∇x f (x)]6∈C 0 PC[x −∇x f (x)]− x∈C 0
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Convex constraints and interior-point methods Projections and the projected gradient path

Measuring criticality

Measure the gain in linearized objective function per step of length θ:

χ(x , θ)
def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤θ

〈∇x f (x), d〉
∣∣∣∣

θ(t) = ‖PF (x − tg(x))− x‖ π(x , θ) =
χ(x)

θ
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Convex constraints and interior-point methods Projections and the projected gradient path

The χ criticality measure

χ(x)
def
= χ(x , 1) =

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇x f (x), d〉
∣∣∣∣

the feasible reduction in the linearized objective for unit steps

reduces to ‖∇x f (x)‖2 in the unconstrained case
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Convex constraints and interior-point methods Projections and the projected gradient path

The projected gradient path and χ

xk
r

xk + dk
r

χk

↙projected path
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Convex constraints and interior-point methods Projections and the projected gradient path

The generalized Cauchy point

Approximately minimize mk(·) on the PG path

Find
xGC
k = PF [xk − tGC

k gk ]
def
= xk + sGC

k (tGC
k > 0)

such that

mk(xGC
k ) ≤ f (xk) + κubs〈gk , s

GC
k 〉 (below linear approximation)

and either

mk(xGC
k ) ≥ f (xk) + κlbs〈gk , s

GC
k 〉 (above linear approximation)

or
‖PT (xGC

k )[−gk ]‖ ≤ κepp|〈gk , s
GC
k 〉| (close to path’s end)

or
‖sGC

k ‖ ≥ κfrd∆k (close to TR boundary)

Philippe Toint (Namur) April 2009 169 / 323



Convex constraints and interior-point methods Projections and the projected gradient path

Searching for the GCP (1)
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mk (0 + s) = −3.57s1 − 1.5s2 − s3 + s1s2 + 3s2
2 + s2s3 − 2s2

3 such that s ≤ 1.5 and ∆ ≤ 2.8
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Searching for the GCP (2)
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mk (0 + s) = −3.57s1 − 1.5s2 − s3 + s1s2 + 3s2
2 + s2s3 − 2s2

3 such that s ≤ 1.5 and ∆ ≤ 1.8
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Convex constraints and interior-point methods Projections and the projected gradient path

Useful properties

Piecewise search for xGC
k well-defined and finite

1 θ(·, ·), χ(·, ·) and π(·, ·) are continuous

2 θ(x , ·) is non-decreasing

3 χ(x , ·) is non-decreasing

4 π(x , ·) is non-increasing

5 χ(xk) ≤ χ(xk , ‖sGC
k ‖) + 2‖PT (xGC

k )[−gk ]‖
6 −〈gk , s

GC
k 〉 = χ(xk , ‖sGC

k ‖) ≥ 0

7 θ(xk , t) ≥ t ‖PT (x(t))[−∇x f (xk)]‖
8 |χ(x)− χ(y)| ≤ L‖x − y‖

if ∇x f (x) is continuous on a bounded level set
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Convex constraints and interior-point methods Trust-region method for convex constraints

Cauchy decrease along the projected gradient path

The Cauchy condition: minimize mk long the projected gradient path

mk(xk)−mk(xk + sk) ≥ κCRχk min

[
χk

1 + ‖Hk‖
,∆k , 1

]

Idea: Linesearch conditions imply

mk(xk)−mk(xGC
k ) ≥ κubs|〈gk , s

GC
k 〉| = κubsχ(xk , ‖sGC

k ‖)
but need

‖PT (P[xk−tjgk ])[−gk ]‖ ≤ κepp

|〈gk , sk(tj)〉|
∆k

Now define πk
def
= min[1, χk ] ≤ χk . Then

mk(xk)−mk(xGC
k ) ≥ κdcpπk min

[
πk

βk
,∆k

]
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Convex constraints and interior-point methods Trust-region method for convex constraints

How far can we turn the handle?

As above. . .

All limit points are first-order critical, i.e.

lim
k→∞

πk = 0

But . . .

does the active set settle ?

(needed for 2nd-order convergence or rate)
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Convex constraints and interior-point methods Trust-region method for convex constraints

Active constraints identification (1)

Require further assumptions: let L∗ = { limit points of {xk} }

∀x∗ ∈ L∗, {∇xci (x∗)}i∈A(x∗) are linearly independent

∀x∗ ∈ L∗, −∇x f (x∗) ∈ ri{N (x∗)}
∀k , A(xGC

k ) ⊆ A(xk + sk)

For each connected component of limit points L(x∗) ⊆ L∗,
there exists a set A∗ ⊆ {1, . . . ,m} for which

A(x∗) = A∗ for all x∗ ∈ L(x∗).

Idea: connectivity + uniqueness of Lagrange multipliers
⇒ each L(x∗) belongs to a single facet of C
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Convex constraints and interior-point methods Trust-region method for convex constraints

Active constraints identification (2)

There exists a ψ ∈ (0, 1) such that

dist(x∗,L′) ≥ ψ
for every x∗ ∈ L∗ and each compact connected component of
limit points L′ such that A(L′) 6= A(x∗).

Idea: continuity + compactness ⇒ well separated

There exist δ ∈ (0, 1
4
ψ), ψ ∈ (0, 1), and k1 ≥ 0 such that, for

k ≥ k1, there is a L∗k such that

xk ∈ V(L∗k , δ) = {x ∈ IRn | dist(x ,L∗k) ≤ δ}
and

A(x) ⊆ A(L∗k) for all x ∈ V(L∗k , δ).

Idea: partition the complete sequence into convergent subsequences
⇒ each xk near a unique L∗k

Philippe Toint (Namur) April 2009 176 / 323



Convex constraints and interior-point methods Trust-region method for convex constraints

Active constraints identification (3)

There exists k2 ≥ k1 such that, if for some k ≥ k2,

j ∈ A(L∗k) and j 6∈ A(xGC
k ),

then, for some ε∗ ∈ (0, 1) independent of k and j ,

πk ≥ ε∗.

Idea: complicated (uses criticality measures for incomplete constraint sets)
⇒ incomplete local A(xk) implies not critical

(more technical arguments here)

There exists an active set A∗, such that

∀x∗ ∈ L∗ A(x∗) = A∗
and, for all k sufficiently large,

A(xk) = A(xGC
k ) = A∗
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Convex constraints and interior-point methods Trust-region method for convex constraints

Further convergence results

. . . and now it works in T (xk) ( now continuous for large k ) with

∇xxmk remplaced by ∇xxm
`
k ≈ ∇xx`(xk , yk)

convergence to isolated critical points

(generalized) eigen-points for the Lagrangian
(needs consistent multiplier estimates!)

convergence to second-order points

fast asymptotic rate of convergence
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Convex constraints and interior-point methods Barriers and interior points

4.2: Barrier methods
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Convex constraints and interior-point methods Barriers and interior points

A simple case

Consider C = {x ∈ IRn | x ≥ 0} and build

φlog(x , µ)
def
= f (x)− µ〈e, log(x)〉 = f (x)− µ

n∑
i=1

log(xi )

Under acceptable assumptions,

x∗(µ) = arg min
x
φlog(x , µ)

converge to the solution of the problem

min
x∈C

f (x)

when µ↘ 0.
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Convex constraints and interior-point methods Barriers and interior points

How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150
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Philippe Toint (Namur) April 2009 181 / 323



Convex constraints and interior-point methods Barriers and interior points

How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150
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original objective function + barrier (µ = 50)
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Convex constraints and interior-point methods Barriers and interior points

How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150
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Convex constraints and interior-point methods Barriers and interior points

How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150
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original objective function + barrier (µ = 10)
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How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150
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original objective function + barrier (µ = 5)
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How it works. . .

Example: minx1,x2≥0 120
[
x2

1 (x1 − 1)− x2 + 1
]2

+ 10(4 + x1)2 − 150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

original objective function + barrier (µ = 2)
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Other barriers: reciprocals

bR(α)(x , µ) = µ

n∑
i=1

1

α[x ]αi

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(µ = 2, log + R( 1
2 ), R(1) and R(2))
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The barrier function

φ(x , µ) = f (x) + b(x , µ)
def
= f (x)− µ〈e, log(x)〉

Assume:

b(x , µ) is defined for all x ∈ ri{C} and all µ > 0, and is
C 2(ri{C}) w.r.t. x .

∀µ > 0, ε > 0 ∃κbbh(ε, µ) ≥ 1 such that

‖∇xxb(x , µ)‖ ≤ κbbh(ε, µ)

∀x ∈ C such that dist(x , ∂C) ≥ ε
limp→∞ b(yp, µ) = +∞ ∀µ > 0 and ∀{yp}∞p=0 such that

yp ∈ ri{C} and lim
p→∞

dist(yp, ∂C) = 0.
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An elementary barrier algorithm

Algorithm 4.1: A simple barrier algorithm

Step 0: Initialization. Given: x0 ∈ ri{C}, µ0 > 0. Set k = 0.

Step 1: Inner minimization. (Approximately) solve the problem

min
x
φ(x , µk)

by applying an unconstrained (inner) algorithm, starting from
a suitable starting point xk,0 ∈ ri{C}.
Let xk+1 be the corresponding (approximate) solution.

Step 2: Update the barrier parameter. Choose µk+1 > 0 such that

lim
k→∞

µk = 0.

Increment k by one and return to Step 1.
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A first inner primal algorithm

Algorithm 4.2: Inner primal 1

Step 0: Initialization. Given: xk,0∈ ri{C}, ∆k,0, η1, η2, γ1, γ2, ςk ∈ (0, 1).
Compute φ(x0, µk), set j = 0.

Step 1: Model definition. Define mk,j of φ(xk,j + s, µk) in Bk,j of the form

mk,j(xk,j + s) = mf
k,j(xk,j + s)+mb

k,j(xk,j + s),

Step 2: Step calculation. Compute sk,j that sufficiently reduces mk,j and
such that xk,j + sk,j ∈ Bk,j .

Step 3: Acceptance of the trial point. If xk,j + sk,j 6∈ C or if dist(xk,j + sk,j , ∂C) <
ςkdist(xk,j , ∂C), set ρk,j = −∞, xk,j+1 = xk,j and go to Step 4.
Otherwise compute φ(xk,j + sk,j , µk) and

ρk,j =
φ(xk,j , µk)− φ(xk,j + sk,j , µk)

mk,j(xk,j)−mk,j(xk,j + sk,j)
.

Then if ρk,j ≥ η1, define xk,j+1 = xk,j + sk,j ; otherwise define xk,j+1 = xk,j .

Step 4: Trust-region radius update. Set

∆k,j+1 ∈
8<:

[∆k,j ,∞) if ρk,j ≥ η2,
[γ2∆k,j ,∆k,j ] if ρk,j ∈ [η1, η2),
[γ1∆k,j , γ2∆k,j ] if ρk,j < η1.

Increment j by one and go to Step 1.
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Models and assumptions

Use separate models for f and b!

mk,j(xk,j + s) = mf
k,j(xk,j + s) + mb

k,j(xk,j + s),

Assume:

∀k , ε > 0, ∃κbbmh(ε, µk) ≥ 1 ∀k, j ≥ 0,

‖∇xxm
b
k,j(x , µk)‖ ≤ κbbmh(ε, µk)

∀x ∈ Bk,j ∩ C such that dist(x , ∂C) ≥ ε.
∀k , j ≥ 0 ∀x ∈ Bk,j ∩ ri{C},

‖∇xxm
f
k,j(x)‖ ≤ κumh
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(Inner) convergence properties

There exists κmdb(k) ∈ (0, 1) such that

dist(xk,j , ∂C) ≥ κmdb(k)

for all j . Moreover, for all j and all x such that ‖x − xk,j‖ ≤
(1− ςk)dist(xj , ∂C), we have that

‖∇xxb(x , µ)‖ ≤ κbbh(ςk κmdb(k), µk)

and
‖∇xxm

b
k,j(xk,j , µ)‖ ≤ κbbmh(ςk κmdb(k), µk)

If ∆k,j ≤ (1− ςk)κmdb(k), then

|φ(xk,j + sk,j , µk)−mk,j(xk,j + sk,j)| ≤ κubh(k)∆2
k,j

. . . and all the nice convergence properties follow!
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Constrained Cauchy and eigen-points (1)

Idea: restrict the step, not the trust region!

xk,j ∆k,j

xk,j + sk,j
ri{C}

ςkdist(xk,j , ∂C)

@
@
@@R

But . . . what of sufficient decrease ???

Philippe Toint (Namur) April 2009 188 / 323



Convex constraints and interior-point methods Barriers and interior points

Constrained Cauchy and eigen-points (2)

Redefine the Cauchy arc:

xCC
k,j(t)

def
= {x | x = xk,j − tgk,j , t ≥ 0, t‖gk,j‖ ≤ (1− ςk)dk,j and x ∈ Bk},

mk,j(xk,j)−mk,j(x
CC
k,j) ≥ 1

2
‖gk,j‖min

[
‖gk,j‖
βk,j

,∆k,j , (1− ςk)dk,j

]

. . . etc, etc, etc . . .
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A second inner primal algorithm

Algorithm 4.3: Inner primal 2

Step 0: Initialization. Given: xk,0 ∈ ri{C}, ∆k,0, η1, η2, γ1, γ2, ςk ∈ (0, 1).
Compute φ(xk,0, µk), set j = 0.

Step 1: Model definition. Define mk,j(xk,j + s) = mf
k,j(xk,j + s) + mb

k,j(xk,j + s)

Step 2: Step calculation. Define dk,j = dist(xk,j , ∂C). Compute sk,j such that

xk,j + sk,j ∈ Bk,j ∩ C and dist(xk,j + sk,j , ∂C) ≥ ςkdk,j

and such that it sufficiently reduces mk,j

Step 3: Acceptance of the trial point. Compute φ(xk,j + sk,j , µk) and

ρk,j =
φ(xk,j , µk)− φ(xk,j + sk,j , µk)

mk,j(xk,j)−mk,j(xk,j + sk,j)
.

Then if ρk,j ≥ η1, define xk,j+1 = xk,j + sk,j ; otherwise define xk,j+1 = xk,j .

Step 4: Trust-region radius update. Set

∆k,j+1 ∈
8<:

[∆k,j ,∞) if ρk,j ≥ η2,
[γ2∆k,j ,∆k,j ] if ρk,j ∈ [η1, η2),
[γ1∆k,j , γ2∆k,j ] if ρk,j < η1.

Increment j by one and go to Step 1.
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The log barrier and its derivatives

Return to:
min
x≥0

f (x)

The log barrier
b(x , µ) = −µ〈e, log(x)〉

giving
φlog(x , µ) = f (x)− µ〈e, log(x)〉

Using the notation X = diag(x1, . . . , xn), we obtain that

∇xb(x , µ) = −µX−1e and ∇xxb(x , µ) = µX−2e
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The primal log-barrier algorithm

Algorithm 4.4: Primal log-barrier algorithm

Step 0: Initialization. Given: x0 > 0, µ0 > 0, and the forcing functions εD(µ) and
εE(µ). Set k = 0.

Step 1: Inner minimization. Choose a value ςk ∈ (0, 1). Approximately minimize
the log-barrier function φlog(x , µk) = f (x)− µk〈e, log(x)〉 starting
from xk and using an inner algorithm in which

mb
k,j(xk,j + s) = µk

“
−〈e, log(xk,j)〉 − 〈X−1

k,j e, s〉+ 1
2
〈s,X−2

k,j s〉
”

Stop this algorithm as soon as an iterate xk,j = xk+1 is found for which

‖∇x f (xk+1)− µkX
−1
k+1e‖ ≤ εD(µk),

λmin[∇xx f (xk+1) + µkX
−2
k+1] ≥ −εE(µk)

and xk+1 > 0.

Step 2: Update the barrier parameter. Choose µk+1 > 0 such that
limk→∞ µk = 0. Increment k by one and return to Step 1.
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Convergence of the primal log-barrier algorithm (1)

OK for first order! . . . but existence of limit points not guaranteed
Define

A subsequence {xkj
} is consistently active w.r.t. the bounds if,

for each i = 1, . . . , n, either

lim
j→∞

[xkj
]i = 0 or lim inf

j→∞
[xkj

]i > 0.

(Each bound constraint is asymptotically active or inactive for the
complete subsequence.)

A{xkj
} def

= {i ∈ {1, . . . , n} | lim
j→∞

[xkj
]i = 0}.

Note: finite number of such subsequences ⇒ a partition of {xk}
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Convergence of the primal log-barrier algorithm (2)

Finally,

Under appropriate assumptions,

lim inf
k→∞

[∇x f (xk)]i ≥ 0, (i = 1, . . . , n).

Furthermore, for every consistently active subsequence {xk`},

lim
`→∞

[∇x f (xk`)]i = 0, (i 6∈ A{xk`})

and
lim inf
`→∞

〈u, [∇xx f (xk`)]u〉 ≥ 0

for each u | [u]i = 0 whenever i ∈ A{xk`}.
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The primal-dual framework (1)

In practice, as xk ↘ 0, ∇xxmk,j(xk,j) + µkX−2
k,j causes slow progress.

Idea: replace this by

∇xxmk,j(xk,j) + X−1
k,j Zk,j

where Zk,j is a bounded positive diagonal.

Alternatively: KKT conditions for original problem:

∇xm(x)− z = 0, XZ = 0, x ≥ 0, z ≥ 0,

Perturb:

∇xm(x)− z = 0, XZ = µe x ≥ 0, z ≥ 0.
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The primal-dual framework (2)

Now write Newton’s method for the perturbed problem:

∇xxmk,j(xk,j)∆xk,j −∆zk,j = −gk,j + zk,j ,
Xk,j∆zk,j + Zk,j∆xk,j = µke − Xk,jZk,je,

xk,j + ∆xk,j ≥ 0, zk,j + ∆zk,j ≥ 0.

Substituting the 2nd equation into the 1st:[
∇xxmk,j(xk,j) + X−1

k,j Zk,j

]
∆xk,j = −

[
gk,j − µkX−1

k,j e
]

But
gk,j − µkX−1

k,j e = ∇xφ
log(x , µk)

Hence [
∇xxmk,j(xk,j) + X−1

k,j Zk,j

]
∆xk,j = −∇xφ

log(x , µk)
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The primal-dual inner algorithm (1)

Algorithm 4.5: Inner primal-dual algorithm

Step 0: Initialization. Given: xk,0 ∈ ri{C}, zk,0 > 0 , ∆k,0, η1, η2, γ1,γ2, ςk .
Compute f (xk,0), set j = 0.

Step 1: Model definition. In Bk,j , define

mk,j(xk,j + s) = mf
k,j(xk,j + s)− µk

h
〈e, log(xk,j)〉+ 〈X−1

k,j e, s〉
i
− 1

2
〈s,X−1

k,j Zk,js〉

Step 2: Step calculation. Define dk,j = dist(xk,j , ∂C). Compute a step sk,j such
that xk,j + sk,j ∈ Bk,j , dist(xk,j + sk,j , ∂C) ≥ ςkdk,j , and

mk,j (xk,j )−mk,j (xk,j +sk,j ) ≥ κmax

(
‖gk,j‖min

"
‖gk,j‖
βk,j

,∆k,j , (1− ςk )dk,j

#
,−τk,j min

h
τ

2
k,j ,∆2

k,j , (1−ςk )2d2
k,j

i)

Step 3: Acceptance of the trial point. Compute φlog(xk,j + sk,j , µk) and

ρk,j =
φlog(xk,j , µk)− φlog(xk,j + sk,j , µk)

mk,j(xk,j)−mk,j(xk,j + sk,j)
.

If ρk,j ≥ η1, then xk,j+1 = xk,j + sk,j , else xk,j+1 = xk,j .
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The primal-dual inner algorithm (2)

Algorithm 4.6: Inner primal-dual algorithm (2)

Step 4: Trust-region radius update. Set

∆k,j+1 ∈
8<:

[∆k,j ,∞) if ρk,j ≥ η2,
[γ2∆k,j ,∆k,j ] if ρk,j ∈ [η1, η2),
[γ1∆k,j , γ2∆k,j ] if ρk,j < η1.

Step 5: Update the dual variables. Set zk,j+1 > 0. Increment j by one,go to
Step 1.
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The primal-dual outer algorithm

Algorithm 4.7: Outer primal-dual algorithm

Step 0: Initialization. Given: x0 > 0, z0 > 0, µ0 > 0 and the forcing functions
εD(µ), εE(µ), εC(µ). Set k = 0.

Step 1: Inner minimization. Choose ςk ∈ (0, 1). Approximately minimize φlog(x , µk)
from xk using the primal-dual inner algorithm. Stop as soon as an iterate
(xk,j , zk,j) = (xk+1, zk+1) is found for which

‖∇x f (xk+1)− zk+1‖ ≤ εD(µk),

‖Xk+1Zk+1 − µk I‖ ≤ εC(µk),

λmin[∇xx f (xk+1) + X−1
k+1Zk+1] ≥ −εE(µk)

and
xk+1 > 0 and zk+1 > 0.

Step 3: Update the barrier parameter. Choose µk+1 > 0 such that limk→∞ µk = 0.
Increment k by one and return to Step 1.

Note: choosing zk,j = −µkX−1
k,j e ⇒ primal algorithm!
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Updating the dual variables

How to compute zk,j+1 in practice? Newton equations give

zk,j+1 = µkX−1
k,j e − X−1

k,j Zk,jsk,j .

. . . but what about zk,j+1 ≥ 0?
Define

I=

[
κzul min

(
e, zk,j , µkX−1

k,j+1e
)
, κzuu max

(
e, zk,j , µ

−1
k e, µkX−1

k,j+1e
)]

and choose

zk,j+1 =

{
PI [zk,j+1] if xk,j+1 = xk,j + sk,j
zk,j if xk,j+1 = xk,j ,
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Properties of the dual variables

Then zk,j+1 > 0 and

[zk,j ]i ≤ κuzi max

[
1

[xk,j ]i
, 1

]
.

If, furthermore,

lim
j→∞
‖sk,j‖ = 0 when lim

j→∞
‖gk,j‖ = 0

then

lim
j→∞

∥∥∥zk,j − µkX−1
k,j e

∥∥∥ = 0 if lim
j→∞
‖gk,j‖ = 0.

⇒ asymptotically exact barrier Hessian for fixed µ
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Scaling of the inner iterations

In practice, scaling is crucial!
Ideally,

‖ · ‖k,j = ‖ · ‖∇xxmk,j (xk,j ) =
√
〈·, [Hk,j + X−1

k,j Zk,j ]·〉

Under the usual assumptions, ‖ · ‖k,j is uniformly equivalent to
the Euclidean norm for fixed k .

xk,j

xk,j + sk,j

ri{C}

⇒ all usual convergence properties for fixed k
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Scaling of the outer iterations (1)

Scaled tests:

‖∇x f (xk+1)− zk+1‖[k+1] ≤ εD(µk)

‖Xk+1Zk+1 − µk I‖2 ≤ εC(µk),

λmin

[
M
− 1

2
k+1(∇xx f (xk+1) + X−1

k+1Zk+1)M
− 1

2
k+1

]
≥ −εE(µk),

with
Mk+1

def
= Hk+1 + X−1

k+1Zk+1

But this matrix is unbounded when k ↗∞!
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Scaling of the outer iterations (2)

Fortunately,

Under the usual assumptions, the convergence properties are
preserved if

lim
k→∞

εD(µk)

µk
≤ κµ

and

lim
k→∞

εC(µk)
√
µk

mini [xk+1]i
= 0.

Moreover

If exact derivatives are used, the ε•(µk) can be chosen to ensure
componentwise near quadratic rate of convergence.

This is quite remarkable!
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Barriers for general convex constraints

Now,
φlog(x , µ) = f (x)− µ〈e, log(c(x))〉

The primal-dual model becomes

mk,j(xk,j + sk,j) = mf
k,j(xk,j + sk,j) + mb

k,j(xk,j + sk,j),

with

mb
k,j(xk,j + sk,j) = µk〈e, log(c(xk,j))〉 − µk〈C−1(xk,j)e,A(xk,j)sk,j〉

+ 1
2
〈A(xk,j)sk,j , [C

−1(xk,j)Yk,j ]A(xk,j)sk,j〉

− 1
2

mX
i=1

[yk,j ]i 〈sk,j ,∇xxci (xk,j)sk,j〉

Quite a mouthful. . . but otherwise everything is OK!
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The outer primal-dual algorithm for convex constraints

∇xx `(xk,j , yk,j ) = ∇xx f (xk,j )−
mX

i=1

[yk,j ]i∇xx ci (xk,j ) Gk,j
def
= AT (xk,j )C−1(xk,j )Yk,jA(xk,j )

Algorithm 4.8: Primal-dual algorithm for convex constraints

Step 0: Initialization Given: x0 | c(x0) > 0, y0 > 0, µ0 > 0, εC(µ), εD(µ) and εE(µ).
Set k = 0.

Step 1: Inner minimization Choose ςk ∈ (0, 1). Approximately minimize

φlog(x , µk) = f (x)− µk〈e, log(c(x))〉
from xk . Stop as soon as (xk,j , yk,j) = (xk+1, yk+1) is found such that

‖∇x f (xk+1)− AT (xk+1)yk+1‖ ≤ εD(µk),

‖C(xk+1)Yk+1e − µk I‖ ≤ εC(µk),

λmin[∇xx`(xk+1, yk+1) + Gk+1] ≥ −εE(µk)

and
(c(xk+1), yk+1) ≥ 0.

Step 3: Update the barrier parameter. Choose µk+1 > 0 such that
limk→∞ µk = 0. Increment k by one and return to Step 1.
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Lesson 5:

Sparsity, partial separability
and multilevel methods:

exploiting problem structure
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5.1: Sparsity and

partial separability
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Sparsity

A matrix is sparse when the proportion and/or distribution of
its zero entries allows its efficient numerical usage

An (oriented) graph is asociated with every sparse (non)-
symmetric matrix
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Main benefits of sparsity

Sparsity and optimization ⇒ Hessian (and) Jacobian matrices

very important time/space savings in solving Newton’s equations
(unconstrained or KKT)

1 factorizations (reduced fill-in)
2 iterative methods (fast matrix×vector products)

sometimes important in approximations schemes
1 derivative-free methods (makes the number of function evaluations ≈

linear in the number of variables)
2 finite-difference approximations
3 quasi Newton methods

a path for parallel computations

exploiting sparsity = an active algorithmic industry!
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The Curtis-Powell-Reid algorithm for estimating sparse
Jacobians

Finite differences for a Jacobian column:

Jei ≈
c(x + hei )− c(x)

h

Question: How many finite differences for estimating a 5× 5 Jacobian
with the structure: 0BBB@

• •
• •
• • •

• • •
• • •

1CCCA ?
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The Curtis-Powell-Reid algorithm for estimating sparse
Jacobians

Finite differences for a Jacobian column:

Jei ≈
c(x + hei )− c(x)

h

Question: How many finite differences for estimating a 5× 5 Jacobian
with the structure: 0BBB@

• •
• •
• • •

• • •
• • •

1CCCA
Je• ≈

c(x + he1 + he4)− c(x)

h
Je• ≈

c(x + he2 + he3)− c(x)

h
Je• ≈

c(x + he5)− c(x)

h

Answer: 3 finite-differences! Curtis, Powell and Reid (1974), Steihaug et al.
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The CPR algorithm for estimating sparse Jacobians

Algorithm 5.1: CPR algorithm

Build the column groups.
Place the columns in as few groups as possible such that
two columns in the same group have their nonzero entries in
different rows

Estimate the finite differences.

1 Build a difference vector h =
∑

group hiei

2 Compute v = c(x + h)− c(x)

Reconstruct the Jacobian.

Jij ≈
v i

hi
for all j such that j ∈ group
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A graph colouring interpretation

Consider the intersection graph for the columns:


• •
• •
• • •

• • •
• • •

 1 5 4

2

3
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A graph colouring interpretation

Consider the intersection graph for the columns:


• •
• •
• • •

• • •
• • •

 1 5 4

2

3

minimize the number of colours,
such that adjacent nodes have different colours

can build column groups using heuristic algorithms for graph colouring
Coleman and Moré, (1983)
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Estimating sparse Hessians (1)

Question: How many finite differences for estimating a 8× 8 symmetric
Hessian with the structure:0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA
?
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Estimating sparse Hessians (1)

Question: How many finite differences for estimating a 8× 8 symmetric
Hessian with the structure:0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA

Exploiting symmetry in CPR ( a direct method)

Powell and T (1979), Coleman and Moré (1984)
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Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA
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Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

•
•

• •
• •
• •

• • •
• • •
• • •

1CCCCCCCCCA
Apply CPR on the lower triangular part of the Hessian
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Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •
• • •

1CCCCCCCCCA
But what about the conflicts with the upper triangular part?
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Estimating sparse Hessians (2)

Question: Can we do better?

0BBBBBBBBB@

• • •
• •

• • • •
• • •
• • • •

• • • •
• • •

? ? ?

1CCCCCCCCCA
A more efficient substitution method. . .

Powell and T (1979), Coleman and Moré (1984) for a graph interpretation
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Optimized version for PDE stencils

Example: the 5-points Laplacian operator in 2D

(non-symmetric and symmetric)
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Partial separability

A more geometric concept: Griewank and T. (1982)

f (x) is partially separable iff

f (x) =

p∑
i=1

fi (Uix) where the matrices Ui are of low rank

if Ui = disjoint columns of the identity matrix ⇒ (totally) separable

common case: Ui = overlapping columns of the identity matrix

f (x) =

p∑
i=1

fi (xSi
)

Vocabulary:
element functions, element variables, internal variables ui = Uix
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Sources and examples of partially separable functions

Example 1:

f (x1, x2, x3, x4) = f1(x1, x2) + f2(x2, x3, x4) + f3(x4, x5)

Example 2:

f (x1, x2, x3, x4) = f1(3x1 + x2︸ ︷︷ ︸) + f2(−2x2 + x3 − 2x4︸ ︷︷ ︸, x4 + 3x5︸ ︷︷ ︸)
u1 u2 u3

Sources:

(nearly) all discretized problems

most problems in econometric modelling,

. . . and a lot more because. . .
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Properties of partially separable functions

If f (x) has a sparse Hessian matrix and is sufficiently smooth,
then it is partially separable

(but not conversely: ex : f (x1, . . . , xn) =
∑n

i=1 fi (xi ) + fn+1(x1 + · · ·+ xn)

If f (x) =
∑p

i=1 fi (Uix) =
∑p

i=1 fi (ui ), then

∇x f (x) =

p∑
i=1

UT
i ∇x fi (ui )

∇xx f (x) =

p∑
i=1

UT
i ∇xx fi (ui )Ui

(easy to compute, sparsity determined by Ui )
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The three points Laplacian operator

On a regular geometric grid

0BBBBB@
2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2

1CCCCCA =

0BBBBB@
2 −1
−1 1

1CCCCCA +

0BBBBB@
1 −1
−1 1

1CCCCCA

+

0BBBBB@
1 −1
−1 1

1CCCCCA +

0BBBBB@ 1 −1
−1 1

1CCCCCA +

0BBBBB@ 1 −1
−1 2

1CCCCCA

Note: Sum of rank one submatrices (ui = xi+1 − xi )!

Philippe Toint (Namur) April 2009 223 / 323



The use of problem structure for large-scale applications Sparsity

Using the partially separable structure

Very useful for:

quasi-Newton Hessian matrix = sum of elementwise quasi-Newton
low rank submatrices (partitioned updating),

elementwise models in DFO (number of functions evaluations only
dependent of the maximum number of internal variables!),

optimally efficient finite-difference approximations,

(structured trust-regions),

expressing large-scale models.

LANCELOT based on an extension of this concept
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Exploitation of the computational tree

Idea: use computational tree for f (x) for solving Newton’s equations

use chain-rule at the top of the computational tree

multiplicative decompositions (and partially separable)

often available from the problem modelling itself

Substantial computational gains

unpublished (?) by T. Coleman (2008)
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5.3: Multilevel problems
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Multilevel Optimization: The Problem

min
x∈IRn

f (x)

f : IRn → IR nonlinear, ∈ C2 and bounded below

No convexity assumption

Results from the discretization of some infinite-dimensional problem
on a relatively fine grid for instance (n large)

−→ Iterative search of a first-order critical point x∗ (s.t. ∇f (x∗) = 0)
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Hierarchy of problem descriptions

Assume now that a hierarchy of problem descriptions is available, linked by
known operators

Finest problem description

Restriction ↓ R P ↑ Prolongation

Fine problem description

Restriction ↓ R P ↑ Prolongation

. . .

Restriction ↓ R P ↑ Prolongation

Coarse problem description

Restriction ↓ R P ↑ Prolongation

Coarsest problem description
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Grid transfer operators

Restriction Prolongation

Ri : IRni → IRni−1 Pi : IRni−1 → IRni

Ri = σPT
i
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Sources for such problems

Parameter estimation in

discretized ODEs

discretized PDEs

Optimal control problems

Optimal surface design (shape optimization)

Data assimilation in weather forecast (different levels of physics in the
models)
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The minimum surface problem

min
v

∫ 1

0

∫ 1

0

(
1 + (∂xv)2 + (∂yv)2

) 1
2 dx dy

with the boundary conditions:
f (x), y = 0, 0 ≤ x ≤ 1
0, x = 0, 0 ≤ y ≤ 1
f (x), y = 1, 0 ≤ x ≤ 1
0, x = 1, 0 ≤ y ≤ 1

where

f (x) = x ∗ (1− x)

→ Discretization using a finite
element basis
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The solution at different levels
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Philippe Toint (Namur) April 2009 232 / 323



The use of problem structure for large-scale applications Multilevel problems

The main issue

Hierarchy of problem descriptions globalization technique

↘ ↙
Efficiency – Robustness

⇓
Illustration within a trust-region framework

(Unconstrained case)

Philippe Toint (Namur) April 2009 233 / 323



The use of problem structure for large-scale applications Multilevel problems

Past and recent developments

Line-search

Fisher (1998), Frese-Bouman-Sauer (1999), Nash (2000)

Lewis-Nash (2000, 2002)

Oh-Milstein-Bouman-Webb (2003)

Wen-Goldfarb (2007, 2008)

Gratton-T (2007)

Trust-region

Gratton-Sartenaer-T (2006, 2008)

Gratton-Mouffe-T-Weber Mendonça (2009)

Gratton-Mouffe-Sartenaer-T-Tomanos (2009)

T-Tomanos-Weber Mendonça (2009)

Gross-Krause (2008)
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On the side of multigrid methods

Consider the linear system (discrete Poisson equation, for instance):

Ax = b  Ae = r (residual equation)

where

e = x∗ − x̃ (error)

r = b − Ax̃ (residual)

x∗ (exact solution)

x̃ (approximation)

Expansion of e in Fourier modes shows high (oscillatory) and low (smooth)
frequency components:

0 10 20 30 40 50 60
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k = 3 and k = 24
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Relaxation methods

Basic iterative methods:

correct the i th component of xk in the order 1, 2, . . . , n

to annihilate the i th component of rk

Jacobi

[xk+1]i =
1

aii

− n∑
j=1, j 6=i

aij [xk ]i + [b]i


Gauss-Seidel

[xk+1]i =
1

aii

− i−1∑
j=1

aij [xk+1]i −
n∑

j=i+1

aij [xk ]i + [b]i


−→ Solve the equations of the linear system one by one
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Smoothing effect

Very effective methods at “smoothing”, i.e., eliminating the
high-frequency (oscillatory) components of the error:
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But they leave the low-frequency (smooth) components relatively
unchanged
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Multigrid in linear algebar

Assume now (two levels):

A fine grid (f ) description Ae = r → Af ef = r f

A coarse grid (c) description Acec = r c

Linked by transfer operators Ac = RAf P, ec = Ref , r c = Rr f
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Coarse grid principle

Smooth error modes on a fine grid
“look less smooth” on a coarse grid

−→ When relaxation begins to stall at the finer level:

Move to the coarser grid where the smooth error modes appear more
oscillatory

Apply a relaxation at the coarser level:

more efficient

substantially less expensive
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Two-grid correction scheme

Annihilate oscillatory error level by level:

Fine ε
smooth→ Smooth fine ε Smaller fine ε

↓ R P ↑
Oscil. coarse ε

smooth→ (recur)
smooth→ Smooth coarse ε

Note: P and R are not othogonal projectors!

A very efficient method for some linear systems
(when A(smooth modes) ∈ smooth modes)
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Does it work?

Smoothing on fine grid only:
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V-cycle

k k + 1

0 1 2 ∗

0 1 2 ∗

0 1 2 ∗

0 ∗

Smoothing

1
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W-cycle

k k + 1

0 1 2 3 4 ∗

0 1 2 3 4 ∗ 0 1 2 3 4 ∗

0 1 2 3 4 ∗ 0 1 2 3 4 ∗ 0 1 2 3 4 ∗ 0 1 2 3 4 ∗

0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗

Smoothing

1
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Mesh Refinement

Solve the problem on the coarsest level

⇒ Good starting point for the next fine level

Do the same on each level

⇒ Good starting point for the finest level

Finally solve the problem on the finest level

0

0

0

0

1

1

1

*

*

*

*

k
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The use of problem structure for large-scale applications Multilevel problems

Full Multigrid Scheme

Combination of Mesh Refinement and V-cycles

0

0

0

0 * * * * *

*

*

*

*

*

**

*

*0

0

0

0
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The use of problem structure for large-scale applications Multilevel problems

Return to optimization

Hierarchy of problem descriptions Trust-region technique

↘ ↙
Efficiency – Robustness

⇓
Multilevel optimization method

Note: Multilevel Moré-Sorensen algorithm: (Hk + λI ) s = −gk

T-Tomanos-Weber Mendonça, 2009
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The framework

Assume that we have:

A hierarchy of problem descriptions of f :

{fi}ri=0 with fr (x) = f (x)

Transfer operators, for i = 1, . . . , r :

Ri : IRni → IRni−1 (the restriction)

Pi : IRni−1 → IRni (the prolongation)

Terminology: a particular i is referred to as a level
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The idea

min
x∈IRn

fr (x) = f (x) → at xk :
minimize Taylor’s model of fr around xk

in the trust region of radius ∆k

↓ or (whenever suitable and desirable)

at xk : compute ∇fr (xk) (possibly Hk) trial step sk

Restriction ↓ R P ↑ Prolongation

use fr−1 to construct a coarse local model of fr
and minimize it within the trust region of radius ∆k

→ If more than two levels are available (r > 1), do this recursively
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Example of recursion with 5 levels (r = 4)

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

1

Notation:


i : level index (0 ≤ i ≤ r)

k: index of the current iteration within level i
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Construction of the coarse local models

If fi 6= 0 for i = 0, . . . , r − 1

Impose first-order coherence via a correction term:

glow = Rgup

Impose second-order coherence(∗) via two correction terms:

glow = Rgup and Hlow = RHupP

(∗) Not needed to derive first-order global convergence

If fi = 0 for i = 0, . . . , r − 1

Galerkin model: Restricted version of the quadratic model at the
upper level
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Preserving the trust-region constraint (1)

∆up xlow,0•
•

∆+
low

xlow,k

∆up − ‖xlow,k − xlow,0‖

1

→ min
[
∆+

low , ∆up − ‖xlow ,k − xlow ,0‖
]

Note: Motivation to switch to ∞-norm

Gratton, Sartenear, T (2008)
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Preserving the trust-region constraint (2)

In infinity norm:

min
[
∆+

low , ∆up − ‖xlow ,k − xlow ,0‖
]

Gratton, Mouffe, T, Weber Mendonça (2008)
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Use the coarse model whenever suitable

When ‖glow‖
def
= ‖Rgup‖ ≥ κ ‖gup‖ (“Coarsening condition”)

and

When ‖glow‖
def
= ‖Rgup‖ > εlow

and

When i > 0
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The use of problem structure for large-scale applications Multilevel problems

Use the coarse model whenever desirable

Taylor model (Taylor step) Coarse model (recursive step)

↓ ↓
smoothing coarsening

↘ ↙
Alternate for efficiency (multigrid)

↓
Be as flexible as possible

⇓
Leave the choice even when the coarse model is suitable
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Recursive multilevel trust-region algorithm (RMTR)

At iteration k (until convergence):

Choose either a Taylor or (if suitable) a coarse local model
(first-order coherent):

Taylor model: compute a Taylor step

Coarse local model: apply the algorithm recursively

Evaluate the change in the objective function

If achieved decrease ≈ predicted decrease, then

accept the trial point
possibly enlarge the trust region

else

keep the current point
shrink the trust region

Impose current trust region ⊆ upper level trust region
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The use of problem structure for large-scale applications Multilevel problems

Global convergence

Based on the trust-region technology

Uses the sufficient decrease argument (imposed in Taylor’s iterations)

Plus the coarsening condition (‖Rgup‖ ≥ κ ‖gup‖)

Main result

lim
k→∞

‖gr ,k‖ = 0

Gratton, Sartenaer, (2008)
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The use of problem structure for large-scale applications In more details

Intermediate results

At iteration (i , k) we associate the set:

R(i , k)
def
= {(j , `) | iteration (j , `) occurs within iteration (i , k)}

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

1

Philippe Toint (Namur) April 2009 257 / 323



The use of problem structure for large-scale applications In more details

Let

V(i , k)
def
= { (j , `) ∈ R(i , k) | ∆mj ,` ≥ κ‖gi ,k‖∆j ,`︸ ︷︷ ︸

“sufficient decrease”

}

Then, at a non critical point and if the trust region is small enough:

V(i , k) = R(i , k)

−→ Back to “classical” trust-region arguments
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Premature termination

For a recursive iteration (i , k):

A minimization sequence at level i − 1 initiated at iteration (i , k)
denotes all successive iterations at level i − 1

until a return is made to level i

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

1
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Properties of RMTR

Each minimization sequence contains at least one successful iteration

Premature termination in that case does not affect the convergence
results at the upper level

Which allows

Stop a minimization sequence after a preset number of successful
iterations

Use fixed lower-iterations patterns like the V or W cycles in multigrid
methods
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The use of problem structure for large-scale applications In more details

A practical RMTR algorithm: Taylor iterations

At the coarsest level

Solve using the exact Moré-Sorensen method

(small dimension)

At finer levels

Smooth using a smoothing technique from multigrid

(to reduce the high frequency residual/gradient components)
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The use of problem structure for large-scale applications In more details

SCM Smoothing

Adaptation of the Gauss-Seidel smoothing technique to optimization:

Sequential Coordinate Minimization (SCM smoothing)

Successive one-dimensional minimizations of the model
along the coordinate axes when positive curvature

Cost: 1 SCM smoothing cycle ≈ 1 matrix-vector product
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Three issues

How to impose sufficient decrease in the model ?

How to impose the trust-region constraint ?

What to do if a negative curvature is encountered ?
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The use of problem structure for large-scale applications In more details

Start the first SCM smoothing cycle

by minimizing along the largest gradient component
(enough to ensure sufficient decrease)

Perform (at most) p SCM smoothing cycles

while inside the trust region (reasonable cost)

Terminate

when an approximate minimizer is found (Stop)

when the trust-region boundary is passed (Stop at the boundary)

when a direction of negative curvature is encountered
(move to the boundary and Stop)
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Convergence to weak minimizers

SCM smoothing limits its exploration of the model’s curvature to the
coordinate axes → only guarantees asymptotic positive curvature:

along the coordinate axes at the finest level (i = r)

along the the prolongation of the coordinate axes at levels
i = 1, . . . , r − 1

along the prolongation of the coarsest subspace (i = 0)

“Weak” minimizers

Gratton, Sartenaer, T (2006)

Philippe Toint (Namur) April 2009 265 / 323



The use of problem structure for large-scale applications Numerical results

Some numerical flavor

Gratton, Mouffe, Sartenaer, T, Tomanos (2009)

All on Finest (AF)

Standard Newton trust-region algorithm (TCG)
Applied at the finest level

Multilevel on Finest (MF)

Algorithm RMTR
Applied at the finest level

Mesh Refinement (MR)

Standard Newton trust-region algorithm (TCG)
Applied successively from coarsest to finest level(∗)

Full Multilevel (FM)

Algorithm RMTR
Applied successively from coarsest to finest level(∗)

(∗) Starting point at level i + 1 obtained by prolongating the solution at level i
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Test problem characteristics

Problem name nr r Type Description

DNT 511 8 1-D, quadratic Dirichlet-to-Neumann transfer problem

P2D 1.046.529 9 2-D, quadratic Poisson model problem

P3D 250.047 5 3-D, quadratic Poisson model problem

DEPT 1.046.529 9 2-D, quadratic Elastic-plastic torsion problem

DPJB? 1.046.529 9 2-D, quadratic Journal bearing problem
DODC 65.025 7 2-D, convex Optimal design problem
MINS-SB 1.046.529 9 2-D, convex Minimium surface problem
MINS-OB 65.025 7 2-D, convex Minimium surface problem
MINS-DMSA 65.025 7 2-D, convex Minimium surface problem
IGNISC 65.025 7 2-D, convex Combustion problem
DSSC 1.046.529 9 2-D, convex Combustion problem
BRATU 1.046.529 9 2-D, convex Combustion problem
MINS-BC? 65.025 7 2-D, convex Minimium surface problem
MEMBR? 393.984 9 2-D, convex Membrane problem
NCCS 103.050 7 2-D, nonconvex Optimal control problem
NCCO 103.050 7 2-D, nonconvex Optimal control problem
MOREBV 1.046.529 9 2-D, nonconvex Boundary value problem

?: with bound constraints
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Performance profiles (CPU time)
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Zoom on on efficiency (CPU time)
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CPU times
Problem name AF MF MR FM
DNT 5.2 24.4 4.6 6.7
P2D 1122.8 72.8 569.7 26.0
P3D 626.1 47.5 18.3 28.8
DEPT 1364.4 69.5 95.4 8.6
DPJB 3600.0 1390.0 247.7 83.6
DODC 894.8 58.6 184.2 36
MINS-SB 3600.0 3600.0 3600.0 153.9
MINS-OB 1445.6 70.4 116.7 27.5
MINS-DMSA 1196.8 73.4 289.6 18.2
IGNISC 2330.4 398.3 488.2 398.2
DSSC 3183.8 1051.6 122.3 12.1
BRATU 2314.1 236.8 91.7 10.1
MINS-BC 2706.4 161.8 524.6 140.0
MEMBR 1082.0 335.2 292.4 154.0
NCCS 3600.0 3600.0 279.5 331.9
NCCO 3600.0 3600.0 3589.6 224.2
MOREBV 3600.0 704.9 3600.0 41.7

Best Second best
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A glimpse at the solution process
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Lesson 6:

Cubic and quadratic
regularization methods:

a path towards
nonlinear step control
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Outline

1 Regularization for unconstrained problems
1 cubic
2 quadratic

2 Nonlinear step control

3 Cubic regularization for constrained problems

4 Conclusions

5 Bibliography
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Regularization techniques
for unconstrained Problems
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The problem

We return to the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

Important special case: the nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.
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Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Unconstrained optimization — a “mature” area?

minimize
x∈IRn

f (x) where f ∈ C 1 (maybe C 2 )

Currently two main competing (but similar) methodologies

Linesearch methods

compute a descent direction sk from xk

set xk+1 = xk + αksk to improve f

Trust-region methods

compute a step sk from xk to improve a model mk of f
within the trust-region ‖sk‖ ≤ ∆
set xk+1 = xk + sk if mk and f “agree” at xk + sk
otherwise set xk+1 = xk and reduce the radius ∆
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A useful theoretical observation

Consider trust-region method where

model = true objective function

Then

model and objective always agree

trust-region radius goes to infinity

⇒ a linesearch method
Nice consequence:

A unique convergence theory!

(Shultz/Schnabel/Byrd, 1985, T., 1988
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The keys to convergence theory for trust regions

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κTR‖gk‖min

[
‖gk‖

1 + ‖Hk‖
,∆k

]

The bound on the stepsize:

‖s‖ ≤ ∆

And we derive:

Global convergence to first/second-order critical points

Is there anything more to say?
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Is there anything more to say?

Observe the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉

+
∫ 1

0 (1− α)〈s, [H(x + αs)− H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
L‖s‖3

2︸ ︷︷ ︸
m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).
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The cubic regularization

Change from

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉 s.t. ‖s‖ ≤ ∆

to

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
σ‖s‖3

σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)
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Cubic regularization highlights

f (x + s) ≤ m(s) ≡ f (x) + sT g(x) + 1
2
sT H(x)s + 1

3
L‖s‖3

2

Nesterov and Polyak minimize m globally

N.B. m may be non-convex!
efficient scheme to do so if H has sparse factors

global (ultimately rapid) convergence to a 2nd-order critical point of f

better worst-case function-evaluation complexity than previously
known

Obvious questions:

can we avoid the global Lipschitz requirement?

can we approximately minimize m and retain good worst-case
function-evaluation complexity?

does this work well in practice?
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Cubic overestimation

Assume

f ∈ C 2

f , g and H at xk are fk , gk and Hk

symmetric approximation Bk to Hk

Bk and Hk bounded at points of interest

Use

cubic overestimating model at xk

mk(s) ≡ fk + sTgk + 1
2
sTBks + 1

3
σk‖s‖3

2

σk is the iteration-dependent regularisation weight
easily generalized for regularisation in Mk -norm ‖s‖Mk

=
√

sTMks
where Mk is uniformly positive definite

Philippe Toint (Namur) April 2009 285 / 323



Regularization methods and nonlinear step control Regularization methods for unconstrained problems

Adaptive Regularization with Cubic (ARC)

Algorithm 6.1: The ARC Algorithm

Step 0: Initialization: x0 and σ0 > 0 given. Set k = 0

Step 1: Step computation: Compute sk for which mk(sk) ≤ mk(sC
k)

Cauchy point: sC
k = −αC

kgk & αC
k = arg min

α∈IR+

mk(−αgk)

Step 2: Step acceptance: Compute ρk =
f (xk)− f (xk + sk)

f (xk)−mk(sk)

and set xk+1 =

{
xk + sk if ρk > 0.1

xk otherwise

Step 3: Update the regularization parameter:
σk+1 ∈

(0, σk ] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful
[γ1σk , γ2σk ] = 2σk otherwise unsuccessful
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Local convergence theory for cubic regularization (1)

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κCR‖gk‖min

 ‖gk‖
1 + ‖Hk‖

,

√
‖gk‖
σk



The bound on the stepsize:

‖sk‖ ≤ 3 max

‖Hk‖
σk

,

√
‖gk‖
σk


(Cartis/Gould/T)
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Local convergence theory for cubic regularization (2)

And therefore. . .

lim
k→∞

‖gk‖ = 0

first-order global convergence

Under stronger assumptions can show that

If sk minimizes mk over subspace with orthogonal basis Qk ,

lim
k→∞

QT
k HkQk � 0

second-order global convergence
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Fast convergence

For fast asymptotic convergence =⇒ need to improve on Cauchy point:
minimize over Krylov subspaces

g stopping-rule: ‖∇smk(sk)‖ ≤ min(1, ‖gk‖
1
2 )‖gk‖

s stopping-rule: ‖∇smk(sk)‖ ≤ min(1, ‖sk‖ )‖gk‖

If Bk satisfies the Dennis-Moré condition

‖(Bk − Hk)sk‖/‖sk‖ → 0 whenever ‖gk‖ → 0

and xk → x∗ with positive definite H(x∗)

=⇒ Q-superlinear convergence of xk under the g- and s-rules

If additionally H(x) is locally Lipschitz around x∗ and

‖(Bk − Hk)sk‖ = O(‖sk‖2)

=⇒ Q-quadratic convergence of xk under the s-rule
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Function-evaluation complexity

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ε?

so long as for very successful iterations σk+1 ≤ γ3σk for γ3 < 1
=⇒ basic ARC algorithm requires at most⌈

κC

ε2

⌉
function evaluations

for some κC independent of ε c.f. steepest descent

if H is globally Lipschitz, the s-rule is applied and additionally sk is
the global (line) minimizer of mk(αsk) as a function of α
=⇒ ARC algorithm requires at most⌈

κS

ε3/2

⌉
function evaluations

for some κS independent of ε c.f. Nesterov & Polyak
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Minimizing the model

m(s) ≡ f + sT g + 1
2
sT Bs + 1

3
σ‖s‖3

2

Derivatives:

λ = σ‖s‖2

∇sm(s) = g + Bs + λs

∇ssm(s) = B + λI + λ

(
s
‖s‖

)(
s
‖s‖

)T

Optimality: any global minimizer s∗ of m satisfies

(B + λ∗I )s∗ = −g

λ∗ = σ‖s∗‖2

B + λ∗I is positive semi-definite
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The (adapted) secular equation

Require

(B + λI )s = −g and λ = σ‖s‖2

Define s(λ):
(B + λI )s(λ) = −g

and find scalar λ as the root of secular equations

‖s(λ)‖2 − λ
σ = 0 or 1

‖s(λ)‖2
− σ
λ

= 0 or λ
‖s(λ)‖2

− σ = 0

values and derivatives of s(λ) satisfy linear systems with symmetric
positive definite B + λI

need to be able to factorize B + λI
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Plots of secular functions against λ

Example: g = (0.25 1)T , H = diag(−1 1) and σ = 2

‖s(λ)‖2 −
λ

σ
= 0

1

‖s(λ)‖2
− σ

λ
= 0

λ

‖s(λ)‖2
− σ = 0
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Large problems — approximate solutions

Seek instead global minimizer of m(s) in a j-dimensional (j � n) subspace
S ⊆ IRn

g ∈ S =⇒ ARC algorithm globally convergent

Q orthogonal basis for S =⇒ s = Qu where

u = arg min
u∈IRj

f + uT (QTg) + 1
2
uT (QTBQ)u + 1

3
‖u‖3

2

=⇒ use secular equation to find u

if S is the Krylov space generated by {B ig}j−1
i=0

=⇒ QTBQ = T , tridiagonal
=⇒ can factor T + λI to solve secular equation even if j is large

using g- or s-stopping rule =⇒ fast asymptotic convergence for ARC

using s-stopping rule =⇒ good function-evaluation complexity for
ARC
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The main features of adaptive cubic regularization

And the result is. . .

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best function-evaluation complexity for nonconvex problems

excellent performance and reliability
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Numerical experience — small problems using Matlab
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Performance Profile: iteration count − 131 CUTEr problems

 

 

ACO − g stopping rule (3 failures)
ACO − s stopping rule (3 failures)
trust−region (8 failures)

Philippe Toint (Namur) April 2009 296 / 323



Regularization methods and nonlinear step control Regularization methods for unconstrained problems

The quadratic regularization for NLS (ARQ)

Consider the Gauss-Newton method for nonlinear least-squares problems.
Change from

min
s

1
2
‖c(x)‖2 + 〈s, J(x)T c(x)〉+ 1

2
〈s, J(x)T J(x)s〉 s.t. ‖s‖ ≤ ∆

to

min
s

‖c(x) + J(x)s‖+ 1
2
σ‖s‖2

σ is the (adaptive) regularization parameter

(idea by Nesterov)
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Quadratic regularization: reformulation

Note that

min
s

‖c(x) + J(x)s‖+ 1
2
σ‖s‖2

⇔

min
ν,s

ν + 1
2
σ‖s‖2 such that ‖c(x) + J(x)s‖2 = ν2

exact penalty function for the problem of minimizing ‖s‖ subject to
c(x) + J(x)s = 0.
Iterative techniques. . . as for the cubic case (Cartis, Gould,T.):

solve the problem in nested Krylov subspaces

Lanczos → factorization of tridiagonal matrices

different scalar secular equation (solution by Newton’s method)
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The keys to convergence theory for quadratic regularization

The Cauchy condition:

m(xk)−m(xk + sk) ≥ κQR

‖JT
k ck‖
‖ck‖

min

[
‖JT

k ck‖
1 + ‖JT

k Jk‖
,
‖JT

k ck‖
σk‖ck‖

]

The bound on the stepsize:

‖sk‖ ≤
1

2

‖JT
k ck‖

σk‖ck‖
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Convergence theory for the quadratic regularization

Convergence results:

Global convergence to first-order critical points

Quadratic convergence to roots

Valid for

general values of m and n,

exact/approximate subproblem solution

(Bellavia/Cartis/Gould/Morini/T.)
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6.2: A unifying concept:
nonlinear stepsize control
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Towards a unified global convergence theory

Objectives:

recover a unified global convergence theory

possibly open the door for new algorithms

Idea:

cast all three methods into a generalized TR framework

allow this TR to be updated nonlinearly

Philippe Toint (Namur) April 2009 302 / 323



Regularization methods and nonlinear step control Nonlinear stepsize control

Towards a unified global convergence theory (2)

Given

3 continuous first-order criticality measures ψ(x), φ(x), χ(x)

an adaptive stepsize parameter δ

define a generalized radius ∆(δ, χ(x)) such that

∆(·, χ) is C 1, strictly increasing and concave,

∆(0, χ) = 0 for all χ,

∆(δ, ·) is non-increasing

δ ∂∆
∂δ

(δ, χ) ≤ κ∆∆(δ, χ)

. . .
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6.3: Cubic regularization
for constrained problems
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The constrained case

Can we apply regularization to the constrained case?

Consider the constrained nonlinear programming problem:

minimize f (x)
x ∈ F

for x ∈ IRn and f : IRn → IR smooth, and where

F is convex.

Main ideas:

exploit (cheap) projections on convex sets

define using the generalized Cauchy point idea

prove global convergence + function-evaluation complexity
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Constrained step computation (1)

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
σ‖s‖3

subject to
x + s ∈ F

σ is the (adaptive) regularization parameter

Criticality measure: (as before)

χ(x)
def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇x f (x), d〉
∣∣∣∣ ,
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The generalized Cauchy point for ARC

Cauchy step: Goldstein-like piecewise linear seach on mk along the
gradient path projected onto F

Find
xGC
k = PF [xk − tGC

k gk ]
def
= xk + sGC

k (tGC
k > 0)

such that

mk(xGC
k ) ≤ f (xk) + κubs〈gk , s

GC
k 〉 (below linear approximation)

and either

mk(xGC
k ) ≥ f (xk) + κlbs〈gk , s

GC
k 〉 (above linear approximation)

or
‖PT (xGC

k )[−gk ]‖ ≤ κepp|〈gk , s
GC
k 〉| (close to path’s end)

no trust-region condition!
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Searching for the ARC-GCP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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5

mk (0 + s) = −3.57s1 − 1.5s2 − s3 + s1s2 + 3s2
2 + s2s3 − 2s2

3 + 1
3
‖s‖3 such that s ≤ 1.5
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Remember the same for a quadratic model?

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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4

5

mk (0 + s) = −3.57s1 − 1.5s2 − s3 + s1s2 + 3s2
2 + s2s3 − 2s2

3 such that s ≤ 1.5 and ∆ ≤ 2.8
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A constrained regularized algorithm

Algorithm 6.2: ARC for Convex Constraints (COCARC)

Step 0: Initialization. x0 ∈ F , σ0 given. Compute f (x0), set k = 0.

Step 1: Generalized Cauchy point. If xk not critical, find the
generalized Cauchy point xGC

k by piecewise linear search on the
regularized cubic model.

Step 2: Step calculation. Compute sk and x+
k

def
= xk + sk∈ F such

that mk(x+
k ) ≤ mk(xGC

k ).

Step 3: Acceptance of the trial point. Compute f (x+
k ) and ρk .

If ρk ≥ η1, then xk+1 = xk + sk ; otherwise xk+1 = xk .

Step 4: Regularisation parameter update. Set

σk+1 ∈


(0, σk ] if ρk ≥ η2,
[σk , γ1σk ] if ρk ∈ [η1, η2),
[γ1σk , γ2σk ] if ρk < η1.
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Local convergence theory for COCARC

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κCRχk min

[
χk

1 + ‖Hk‖
,

√
χk

σk
, 1

]

The bound on the stepsize:

‖sk‖ ≤ 3 max

[
‖Hk‖
σk

,

(
χk

σk

) 1
2

,

(
χk

σk

) 1
3

]

And therefore. . .

lim
k→∞

χk = 0

(Cartis/Gould/T)
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Function-Evaluation Complexity for COCARC (1)

But

What about function-evaluation complexity?

If, for very successful iterations, σk+1 ≤ γ3σk for γ3 < 1,
the COCARC algorithm requires at most⌈

κC

ε2

⌉
function evaluations

(for some κC independent of ε) to achieve χk ≤ ε

c.f. steepest descent

Do the nicer bounds for unconstrained optimization extend to the
constrained case?
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Function-evaluation complexity for COCARC (2)

As for unconstrained, impose a termination rule on the subproblem
solution:

Do not terminate solving minxk+s∈F mk(xk + s) before

χm
k (x+

k ) ≤ min(κstop, ‖sk‖)χk

where

χm
k (x)

def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇xmk(x), d〉
∣∣∣∣

c.f. the “s-rule” for unconstrained

Note: OK at local constrained model minimizers
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Walking through the pass...

x
k

feasible

x
k
−α g

k
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+
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A “beyond the pass” constrained problem with

m(x , y) = −x − 42
100

y − 3
10

x2 − 1
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3
[x2 + y2]

3
2
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Walking through the pass...with a sherpa

x
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A piecewise descent path from xk to x+
k on

m(x , y) = −x − 42
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Function-Evaluation Complexity for COCARC (2)

Assume also

xk ← x+
k in a bounded number of feasible descent substeps

‖Hk −∇xx f (xk)‖ ≤ κ‖sk‖2

∇xx f (·) is globally Lipschitz continuous

{xk} bounded

The COCARC algorithm requires at most⌈
κC

ε3/2

⌉
function evaluations

(for some κC independent of ε) to achieve χk ≤ ε

Caveat: cost of solving the subproblem c.f. unconstrained case!!!
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Conclusions for lesson 6

Much left to do. . . but very interesting

Unconstrained nonliear stepsize control could lead to very untypical
methods. Example:

ψk = φk = χk = ‖gk‖, ∆(δ, χ) =
√
δχ

Meaningful numerical evaluation still needed for many of these
algorithms

Many issues regarding regularizations still unresolved
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Conclusions

Not covered in the course

non-smooth techniques

specifically convex problems

penalty functions

augmented Lagrangians

affine scaling methods

general sequential quadratic programming (SQP)

systems of nonlinear equations

. . .

Many thanks to you all for your patience!
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