
Poverty-Adjusted Life Expectancy: a consistent

index in the quantity and the quality of life ∗

Jean-Marie Baland†, Guilhem Cassan‡, Benoit Decerf§

June 17, 2022

Abstract

Poverty and mortality are arguably the two major sources of well-being

losses. Most mainstream measures of human development capturing these two

dimensions aggregate them in an ad-hoc and controversial way. In this paper,

we develop a new index aggregating the poverty and the mortality observed in

a given period in a consistent way. We call this index the poverty-adjusted life-

expectancy (PALEθ). This indicator is based on a single normative parameter

that transparently captures the trade-off between well-being losses from being

poor or from being dead. We first show that PALEθ follows naturally from the

expected life-cycle utility approach a la Harsanyi (1953). Empirically, we then

proceed to between countries or across time comparisons and focus on those

situations in which poverty and mortality provide conflicting evaluations. Once

we assume that being poor is (at least weakly) preferable to being dead, we

show that about a third of these conflicting comparisons can be unambiguously

ranked by PALEθ. Finally, we show that our index naturally defines a new

and simple index of multidimensional poverty, the expected deprivation index.
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1 Introduction

Comparing well-being across societies in a simple, meaningful and unambiguous man-

ner is a difficult task. The reason is that well-being is multidimensional. Looking at

a dashboard of dimension-specific indicators is complex and typically yields a very

partial ranking of societies. A summary index avoids these issues, but it is often

meaningless and its comparisons are non-robust and therefore remain ambiguous.

In this paper, we develop a new index of human well-being which focusses on two

main dimensions, poverty and mortality. This index, called the poverty adjusted life

expectancy, cumulates the following advantages which other competing indices typ-

ically fail to satisfy. First, it accounts for the multi-dimensional aspect of well-being

in a straightforward manner by combining the two major ingredients of well-being,

which are the quantity of life (through mortality) and its quality (through poverty).

Being derived from a lifecycle utility approach, it is based on sound micro-foundations

and is easily interpretable. Moreover, it takes into account distributional concerns,

by focussing on individuals with low outcomes in each dimension. It also provides

a ranking of societies in which mortality and poverty evolve in opposite directions.

For a non trivial share of these comparisons, this ranking does not depend on the

normative weight one gives to each dimension. Finally, our index does not require

eliciting preferences and applies straighforwardly using available data.

There is a long-standing tradition looking for an indicator able to track the level

of human development in a society (Hicks and Streeten, 1979; Stiglitz et al., 2009;

Fleurbaey, 2009). Measuring well-being in a given period allows comparing human

development across countries and across time. For this purpose, simple monetary

measures, such as GDP per head, have been heavily criticized, essentially on two

accounts.1 First, income aggregates such as GDP are insensitive to the distribution

of consumption across the population. This concern led to the design and adoption

of income poverty measures (see, e.g., World Bank (2015)). Second, key aspects of

human well-being, such as health, are extremely hard to meaningfully translate into

monetary values. As a result, monetary measures do not provide a sufficient infor-

mational basis to account for the multi-dimensional nature of human development.

They are therefore unfit to assess a country’s performance at promoting well-being

or to evaluate policies that imply trade-offs between different dimensions, e.g. envi-

ronmental regulations or health policies.

Given these limitations, one strategy is to adopt instead a dashboard of indica-

tors, such as the 17 Sustainable Development Goals (SDG) adopted in 2015 by the

UN. One can also attempt to aggregate different dimensions of well-being into a sin-

gle indicator of human development. Among these indicators, one finds the Human

Development Index (HDI) (UNDP, 1990), the Level of Living Index (Drewnowski

and Scott, 1966) or the Physical Quality of Life Index (Morris, 1978). Echoing the

distributional concern, some of them focus on deprivations, like the Global Multidi-

mensional Poverty Index (Alkire et al., 2015) or the Human Poverty Index (Watkins,

2006). These summary measures provide a rough yardstick of human development,

which is arguably easier to communicate than a full list of various indicators. More

importantly, they have the potential to solve the partial ranking of societies yielded

1Another important critique relates to sustainability of the well-being achieved in a particular
period.
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by a menu of indicators, when one society performs better along one dimension but

not along another. A dashboard cannot indeed compare two societies when two or

more dimensions are conflicting.

All these composite indices are subject to the same fundamental criticisms (Raval-

lion, 2011a,b; Ghislandi et al., 2019). First, the selection of the appropriate indicator

in each dimension and the choice of the aggregation function are often arbitrary and

do not follow from a defensible notion of individual well-being. This is particu-

larly true for some dimensions, such as sanitation, which are essentially “inputs” into

well-being, rather than “outcomes”. Second, the system of weights embedded in the

aggregation function is often arbitrary, for instance by giving an equal weight to

each dimension. Such weights are typically not related to the choices individuals

would make when facing a trade-off between these dimensions, and cannot therefore

be taken as representative of human well-being. More fundamentally, different indi-

viduals may make different choices, which implies that no system of weights can be

completely consensual or universal.

Taken together, these critics are devastating. Indeed, the full ranking of societies

yielded by composite indices is of little value if the trade-offs they imply between

“conflicting” dimensions is not meaningful. Moreover, the value of a summary indica-

tor also depends on how quickly it can be grasped. Unfortunately, these indicators,

originally conceived as pragmatic ordinal indicators, do not usually offer a simple

interpretation that can be easily communicated.

Given these weaknesses, some scholars even argue in favor of reducing the in-

formational basis to a unique dimension, such as health (Hicks and Streeten, 1979),

thereby avoiding the need to choose a particular aggregation process. In this respect,

a prominent and easily interpretable indicator is life-expectancy at birth, which can

also be adapted in order to account for distributional concerns (Silber, 1983; Ghis-

landi et al., 2019; Gisbert, 2020). According to these authors, the cost of focussing

on a single dimension may not be that high, as not all dimensions carry the same

importance for human well-being.

In this paper, we propose to measure human well-being using the poverty-adjusted

life-expectancy, PALEθ, a new summary index that aggregates well-being losses

resulting from the poverty and mortality observed in a given period. There are

good reasons to focus on poverty and mortality when measuring human develop-

ment. First, poverty and mortality are arguably the two major sources of welfare

losses: poverty entails welfare losses by reducing the quality of life while mortality

entails welfare losses by reducing the quantity of life. Prominent scholars in wel-

fare economics such as Deaton and Sen have dedicated a large part of their work to

the study of poverty and mortality (Deaton, 2013; Sen, 1998). Unsurprisingly, the

first two Sustainable Development Goals of the UN are directly related to poverty

while the third one refers to mortality.2 Second, focussing on poverty and mortality

naturally reflects distributional concerns as they are the worst possible outcomes

associated with consumption and health.

This summary index makes substantial progress on the criticisms identified above.

In particular, the aggregation of poverty and mortality is normatively grounded on

the expected life-cycle utility, the measure of social welfare proposed by Harsanyi

2The first two SDGs are entitled “No Poverty” and “Zero Hunger”, while the majority of the
indicators in the third “Good Health and Well-being” section refer to some form of mortality.
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(1953). According to Harsanyi, social welfare in a given period can be understood

as the life-cycle utility expected by a newborn when drawing at random a life that

reflects the outcomes observed in that particular period. Our main simplification is

to consider a binary quality of life: in any period, an individual is either poor or

non-poor.3 Life-cycle utility is then the sum of period utilities over one’s lifetime,

where period utility takes two values, one high when non-poor and one low when

poor. Our index therefore normalizes the expected life-cycle utility when one expects,

throughout her lifetime, to be confronted to the poverty and mortality prevailing in

the current period. We call this index “poverty-adjusted life-expectancy” since, in a

stationary society, this index simply counts the number of periods that a newborn

expects to live but weighs down the periods that she expects to live in poverty. That

is, our index has similar hypothesis and interpretation as the extremely popular

life expectancy index. Mathematically, our index is obtained by multiplying life-

expectancy at birth by a factor one minus the fraction of poor, where the fraction of

poor is weighed down. This (normative) weight θ, the value of which lies between zero

and one, corresponds to the fraction of the period utility lost when poor. When being

poor has no utility cost, this weight takes the value zero and PALE0 corresponds to

life expectancy at birth. When being poor is as bad as losing one year of life, θ = 1

and our index PALE1 then corresponds to the poverty-free life-expectancy at birth

(Riumallo-Herl et al., 2018), i.e. the number of years of life a newborn expects to

live out of poverty.

As stressed above, some pairs of societies cannot be compared using a dashboard

considering poverty and mortality separately because the two dimensions are “in

conflict”, for instance if one society has less poverty but higher mortality than the

other. Even though our index relies in general on some weight given in the trade-

off between poverty and mortality, we show that it can sometimes improve on this

partial ranking for all plausible values of its weight, as long as one considers that

being poor is not worse than being dead. (As we show below, a necessary and

sufficient condition for an unambiguous ranking is that the index makes the same

comparison for the two extreme values for its weight.) For instance, consider two

societies A and B where B has a higher fraction of poor but a higher life-expectancy

at birth. Suppose that the situation is such that one may expect to spend more

periods in poverty in B than in A but also more periods out of poverty in B than

in A, as people live longer in society B. It is easy to show that life-cycle utility is

larger in B, regardless of the weight given to periods of poverty, because individuals

on average live more periods of both types in B. Hence, provided that being poor

is not worse than being dead, our index unambiguously ranks A and B, which a

dashboard approach is unable to do. As a result, our index increases the set of pairs

of societies that can be unambiguously compared. As long as the larger number of

years spent in poverty is more than compensated by a longer life expectancy, PALEθ

and, therefore, welfare can only increase.

As we make clear later, our index, being closely related to the concept of life

expectancy, is based on “expectations” whereby a newborn assumes to be exposed

throughout his lifespan to the poverty and mortality observed in the current period.

3Clearly, we do not claim that our index is superior to Harsanyi’s approach, but it is a plausible
measure of expected life-cycle utility when considering poverty as the main factor reducing the
quality of life. Also, the poverty status we consider here could also be a measure resulting from
some aggregation of different dimensions of the quality of life.
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It is therefore not a projection or a forecast of the average life-cycle utility of the

cohort born in a particular period, implying that it cannot in general be interpreted as

the expected life-cycle utility of a newborn, unless the society is stationary. However,

even when mortality is selective and affects predominantly poor people, we also

show that our index still provides a meaningful way to aggregate the two sources of

welfare losses observed in a particular period. The reason why a risk-neutral social

welfare function a la Harsanyi does not require to account for selective mortality

is that mortality is a peculiar dimension as, once dead, all the other dimensions of

deprivation become irrelevant. As a result, the aggregation of mortality and poverty

is much simpler than the aggregation of other dimensions of deprivations affecting

alive individuals.4

Empirically, we combine datasets provided by the World Bank data on income

poverty (PovCalNet) and internationally comparable dataset on mortality data (the

Global Burden of Disease) from 1990 to 2019. Again assuming that one year spent

in poverty is (weakly) preferred to one year of life lost, we show that PALEθ is

able to solve a non-trivial number of ambiguous comparisons across time or between

countries for which the two dimensions are conflicting. For instance, when comparing

all possible pair of countries in each year, across all years, there are about 21 percent

of such comparisons for which mortality and poverty move in opposite directions.

Out of these ambiguous cases, PALEθ is able to solve 35 percent of them. We also

investigate the evolution of each country in the dataset, by comparing the situation

in a particular year to that prevailing five years earlier. We find that, out of 27

percent of conflicting comparisons, PALEθ is able to solve 38 percent of them.

Finally, we propose a generalization of our index that explicitly addresses dis-

tributional concerns about unequal lifespans. We define a new indicator of mul-

tidimensional poverty that also captures deprivation in the quantity of life, which

requires the introduction of a normative age threshold below which one is considered

as deprived, i.e. a definition of premature mortality. This new index, which we call

the expected deprivation index (EDθâ), is a weighted sum of the number of years

that a newborn expect to lose prematurely and the number of years she expects to

spend in poverty, using the same weight as in PALEθ. (Again, these expectations

imply that a newborn assumes to be exposed throughout her lifespan to the poverty

and mortality observed in the current period.) We show that this index enjoys the

same advantages as PALEθ and can usefully complement PALEθ if one is concerned

with unequal lifespans. In particular, it also increases the set of pairs that can be

unambiguously compared when considering each dimension separately. In its spirit,

EDθâ is similar to the Generated Deprivation index recently proposed by Baland

et al. (2021), and they are in fact equal in stationary societies. We show that EDθâ

is more reactive to contemporaneous policies (e.g. in the case of permanent mortality

shocks), simpler to interpret and less data demanding than Generated Deprivation.

The poverty-adjusted life-expectancy is reminiscent of several indicators proposed

in health economics, like the quality-adjusted life-expectancy (QALE) or the quality-

adjusted life year (QALY).5 Both account for the quality and quantity of life, by

4The mutual exclusivity of mortality and poverty simplifies their aggregation (Baland et al.,
2021). In this paper, we show that a risk-neutral social welfare function justifies to first aggregate
within each dimension and then aggregate across dimensions. In this sense, our index satisfies a
form of path independence (Foster and Shneyerov, 2000).

5See for instance Whitehead and Ali (2010) for an economic interpretation of QALYs, or Heijink
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weighting down the quantity of life for periods with low quality. They have been

developed following the method of Sullivan (1971) and we show that these approaches

directly follow from the expected life-cycle utility approach in stationary societies.

Our index however accounts for another important dimension of well-being than

health, which is poverty. Also, PALEθ takes advantage of the existence of the well-

established concept of a poverty threshold, which splits the population into poor

and non-poor, thereby transforming the quality of life into a binary variable. This

transformation is key to the simple interpretation of our index. There is, to the best

of our knowledge, no immediate equivalent of such threshold in health economics.

There exist other indicators of a society’s well-being which are arguably much

superior to the one we propose. Yet, these indicators either rely on techniques that

are not mature yet, require many arbitrary assumptions or cannot be readily applied

on a large scale using existing data. For instance, Becker et al. (2005) and Jones

and Klenow (2016) follow more sophisticated versions of Harsanyi’s expected life-

cycle utility approach by imposing a specific structure on preferences. Alternatively,

Fleurbaey and Tadenuma (2014), in the case of well-being, or Decancq et al. (2019),

for poverty, propose to aggregate different dimensions using individual preferences.6

Also, there is a large litterature investigating the weights to be given to different

dimensions of well-being (Benjamin et al., 2014; Decancq and Lugo, 2013). However,

this literature has not reached full maturity, or cannot be applied on a large scale

due to data constraints.

The remainder of the paper is organized as follows. In Section 2, we present the

theory supporting our PALEθ index and provide some empirical implications. In

Section 3, we present the EDθâ index, which we compare to PALEθ and Generated

Deprivation. Section 4 concludes.

2 A transparent index of welfare

Our objective is to propose a simple indicator to measure and compare the level

of human development of different societies in a given period. In particular, we

would like this indicator to aggregate two major sources of welfare losses: mortality,

which reduces the quantity of life, and poverty, which reduces the quality of life.

This aggregation should follow from the way individuals aggregate these losses and

therefore be related to life-cycle preferences.

The rationality requirements of decision theory provide a structure on admissi-

ble life-cycle preferences. Rational preferences over streams of consumption have

been axiomatized by Koopmans (1960) and later generalized by Bleichrodt et al.

(2008). Such preferences must be represented by a discounted utility function, which

aggregates these streams as a discounted sum of period utilities

U =

d∑

a=0

βau(ca) (1)

where d ∈ N is the age at death, β ∈ [0, 1] is the discount factor, ca is consumption

at age a and u is the period utility function.

et al. (2011); Jia et al. (2011) for applications of the QALE index to comparisons of health outcomes
across populations.

6The limits of these different approaches are reviewed in Fleurbaey (2009).
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Building on this representation of preferences, Harsanyi (1953) proposes to mea-

sure the welfare of a society by aggregating life-cycle utilities over the whole society.

According to Harsanyi (1953), behind the veil of ignorance, each newborn faces a

lottery whereby she ignores whether and when she will be poor and for how long she

will live. When evaluating her life-cycle utility, she considers the life of a randomly

drawn individual in that society. Following the formulation of Jones and Klenow

(2016), her expected life-cycle utility is given by

EU = E

a∗−1∑

a=0

βau(ca)V (a), (2)

where V (a) is the (unconditional) probability that the newborn survives to age a,

a∗ is the maximal lifespan one can reach and the expectation operator E applies to

the uncertainty with respect to consumption ca. The period utility when being dead

is normalized to zero. As a result, mortality is valued through its opportunity cost:

death reduces the number of periods during which a newborn expects to consume.

Although this approach has solid theoretical foundations, it does not seem that

the indicator defined by Eq. (2) could be directly used as a summary measure

of human development. Indeed, this indicator requires the choice of a particular

expression for the period utility function u(). Moreover, the trade-off between the

quantity and quality of life that underlies this indicator depends on the definition

of u and remains relatively obscure. And, finally, this indicator, being expressed in

utility-units, does not lend itself to a direct interpretation.

2.1 The PALEθ index

In order to improve on these issues, we consider two assumptions that simplify Eq.

(2) into a simple index of human development. Our first simplifying assumption is

to ignore discounting, i.e. β = 1. We argue that such assumption is necessary in

order to assign equal weights to all individuals, regardless of their age. Indeed, Eq.

(2) equates a society’s welfare in a given period to the expected life-cycle utility of

individuals born in that period. Clearly, the expected life-cycle utility of newborns

is related to the society’s welfare in a given period only when one assumes that their

expected lives reflect at each age the outcomes observed for individuals of that age

during the period considered. Discounting with a factor less than one would give less

weight to the outcomes of older individuals.

Our second simplifying assumption is to transform consumption into a binary

variable, i.e., ca can be either being non-poor (NP ) or being poor (P ). This is

obviously a strong assumption because we ignore the impact on period utility of

consumption differences within these two categories. However, we argue that this

assumption reflects the distributional concern, i.e. the desire to evaluate a society’s

development by focussing on the fate of its least well-off individuals. We believe this

assumption is the price to pay when one wishes to focus on poverty as the main

source of welfare losses, rather than other more general determinants of the quality

of life.7

7This assumption is also used by Decerf et al. (2021) in a study of the poverty and mortality
effects of the Covid-19 pandemic. These authors compare the relative sizes of poverty and mortality
shocks, whereas we derive here an indicator of well-being.
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Taken jointly, these two assumptions require the use of a simple indicator, which

we call the poverty-adjusted life-expectancy (PALEθ). Our second assumption im-

plies Eu(ca) = π(a)uP + (1 − π(a))uNP where uNP = u(NP ), uP = u(P ) and π(a)

is the probability to be poor at age a conditional on being alive at age a. As, by

definition, life-expectancy at birth is LE =
∑a∗−1

a=0 V (a), we can rewrite Eq. (2) as

EU = uNPLE − (uNP − uP )
a∗−1∑

a=0

V (a)π(a). (3)

In Section 2.3, we show that these two assumptions are sufficient to define PALEθ.

We now provide a simple illustration showing how these two assumptions naturally

lead to our index under a third assumption of “independence”. Under the latter

assumption, the conditional probability of being poor at each age a is a constant equal

to the fraction of poor in the population, i.e., π(a) = H for all a ∈ {0, . . . , a∗ − 1}

where H is the head-count ratio. (Clearly, this independence assumption does not

hold when mortality is selective, for instance when the poor die younger than the

non-poor. We discuss this limitation in more details in Section 2.3.) We can then

normalize Eq. (3) as
EU

uNP

= LE

(

1−
uNP − uP

uNP
︸ ︷︷ ︸

θ

H

)

.

This last expression defines the poverty-adjusted life-expectancy index:

PALEθ = LE(1− θH). (4)

The monotonicity of the period utility function implies that uNP ≥ uP . Moreover,

since being poor is not worse than being dead, we have uP ≥ 0. The parameter

θ, which captures the fraction of utility lost when a non-poor individual becomes

poor in a given period, is therefore such that θ ∈ [0, 1]. Importantly, this parameter

directly captures the trade-off between poverty and mortality. Indeed, as the period

utility of being dead uD is normalized to zero, we have 1
θ
= uNP−uD

uNP−uP
. Hence, the

ratio 1
θ

measures, for a non-poor individual, the number of periods in poverty that

are equivalent to being dead for one period.

PALEθ has a simple expression: its first factor measures life-expectancy, whereas

its second factor captures the fall in the quality of life due to poverty. This reduction

depends on the value assigned to the parameter θ. When θ = 0, becoming poor does

not affect the quality of life and PALE0 corresponds to life-expectancy at birth.

When θ = 1, being poor is equivalent to being dead and PALE1 corresponds to the

Poverty Free Life Expectancy (PFLE), an indicator proposed by Riumallo-Herl et al.

(2018),which measures the number of years that an individual expects to live free

from poverty.8 For other values for θ, PALEθ corresponds to the number of years

of life free from poverty that provides the same life-cycle utility as that expected by

a newborn.

PALEθ aggregates a measure of mortality, LE, with a measure of poverty, H , in

8Riumallo-Herl et al. (2018) do not relate their PFLE index to a formal notion of social welfare.
As our theory makes clear, the PFLE index reflects an extreme view on the trade-off between
poverty and mortality, namely that being poor is as bad as being dead. One key difference between
our work and Riumallo-Herl et al. (2018) is that, through our formal framework, we provide a sound
theoretical basis for the aggregation process, even when mortality is selective, solve a number of
“conflicting” situations and derive a parallel index of multidimensional deprivation.
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a way consistent with life-cycle preferences. This is a progress over most composite

indices, but PALEθ also relies on a normative parameter, θ, that weights these

two dimensions. Thus, one may wonder whether aggregating the two component

indices is very useful given that there is a priori no consensus on the value that this

parameter should take. Indeed, the welfare comparison of two societies based on

PALEθ may depend on the particular value assigned to the parameter θ. We show

that a non-trivial part of these comparisons does not depend on the parameter value

even for some pairs not related by domination. In other words, there exist pairs of

societies such that one is poorer but the other has a higer mortality rate, that can

be ranked by PALEθ unambiguously, in the sense that this comparison holds for

all admissible values of θ. Hence, the structure of expected life-cycle utility allows

to extend comparisons beyond those associated to domination independently of the

particular value assigned to θ.

We illustrate this property in Figure 1. Without aggregation, domination alone

allows comparing society A with the NW quadrant (where societies have more poverty

and more mortality) and the SE quadrant (where societies have less poverty and less

mortality). For any value of θ, we can draw the iso-PALEθ curves passing through

A. The iso-PALE0 curve (associated to θ = 0) is a vertical line since poverty has no

welfare costs and life expectancy is the sole determinant of welfare. Note however

that the iso-PALE1 curve (associated to θ = 1) is not a horizontal line. This defines

two additional areas for which welfare can be unambiguously compared with that of

society A. The iso-PALEθ curves associated to intermediate values of θ ∈ [0, 1] are

indeed all located in the area between the iso-PALE0 curve and the iso-PALE1 curve.

The area in the NE quadrant below the iso-PALE1 curve yields an unambiguously

higher welfare than A, even though these societies have a higher poverty than A.

The area in the SW quadrant above the iso-PALE1 yields an unambiguously lower

welfare than A, even though these societies have a lower poverty than A. The size of

these new areas depends on the marginal rate of substitution of PALE1 at A. For

society A and PALE1, this marginal rate of substitution is given by LE(A)(1−H(A))
(LE(A))2 .

If LE(A) = 70 and H(A) = 20, this marginal rate of substitution is equal to 0.011,

meaning that one additional year of life is exactly compensated by an increase in the

head-count ratio H of 1.1% percentage points.

We now provide some intuition for these additional unambiguous comparisons.

They follow from (i) the fact that expected life-cycle utility sums period utilities

and (ii) the assumption that a period in poverty is not worse than a period lost (i.e.

uP ≥ uD). For simplicity let us compare the life-cycle utility of two individuals iA

and iB, who respectively live in societies A and B depicted in Figure 1. Assume that

the larger poverty and smaller mortality of society B is such that the life of iB has

more periods in poverty than that of iA, and the life of iB also has more periods out of

poverty than that of iA. As both types of period are positively valued (ii), the value

selected for the weight does not matter anymore. Indeed, iB has a larger expected

life-cycle utility because her life has more periods in each consumption status than

the life of iA. In other words, the larger poverty rates in society B is more than

compensated by a longer life expectancy, so that an individual in society B always

expect to live more years out of poverty than in society A. Conversely, in the SW

quadrant above the iso-PALE1, societies exhibit lower poverty rates but the fall in

life expectancy in these societies is so large compared to society A that, despite the
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than A

b

Dominated by A

H

1

Figure 1: A simplified version of Harsanyi’s expected life-cycle utility approach
increases unambiguous comparisons.

redution in poverty rates, an individual expects to live less years out of poverty and

society A is unambiguously preferred.

As an illustration, Table 1 below reports the situation of Pakistan and Bangladesh

in 2019. Note that Life Expectancy can trivially be decomposed into Poverty Ex-

pectancy (LE*H) and PALE1 (LE*(1-H)) which corresponds to Poverty Fee Life

Expectancy. Pakistan has a lower headcount ratio than Bangladesh, but life ex-

pectancy is also lower in Pakistan. Therefore, it is a priori difficult to rank those

two societies. Assuming that poverty and mortality remain unchanged, an individual

born in Bangladesh can expect to spend 4.9 years of his life in poverty and 68.8 years

out of poverty. In Pakistan, he can expect 2.8 years in poverty and 62.1 years out

of poverty. Hence, a new born in Bangladesh can not only expect to spend more

years poverty, but also more years out of poverty since the longer life expectancy

there more than compensates for the higher poverty rate. As a result, PALEθ ranks

Bangladesh above Pakistan for all possible values of θ.

Table 1: An example of unambiguous comparison: Pakistan and Bangladesh in
2019.

Headcount Life Poverty Poverty Free
ratio Expectancy Expectancy Life Expectancy

(LE ∗H) LE ∗ (1−H) = PALE1

Pakistan 4.3% 64.8 2.8 62.1
Bangladesh 6.7% 73.6 4.9 68.8

Ignoring mortality leads to correct welfare comparisons whenever there is dom-

ination, meaning that H and LE yield the same ranking. Theses cases correspond

to the NW and SE quadrants in Figure 1. (Clearly, when H yield the same ranking

as LE, PALE0 automatically yields the same ranking as PALE1.) In the absence

of domination (NE and SW quadrants in Figure 1), ignoring mortality may lead to

erroneous welfare comparisons. First there are cases such that ignoring mortality al-

ways lead to unambiguously wrong comparisons, independently of the value assigned
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to he normative parameter θ. In Figure 1, these cases correspond to the areas in

the NE and SW quadrants that are between the iso-PALE1 curve and the dashed

horizontal line. For other cases, disregarding mortality leads to correct or incorrect

comparisons depending on the value of θ. This occurs when PALE0 and PALE1

yield opposite rankings, which corresponds in Figure 1 to the areas between the iso-

PALE0 and iso-PALE1 curves. Proposition 1 provides the conditions under which

ignoring mortality, i.e., comparing two societies based on H , always leads to wrong

welfare comparisons.

Proposition 1. (Unambiguous comparisons of welfare)

(i) For any two societies A and B, PALEθ(A) < PALEθ(B) for all θ ∈ [0, 1] if and

only if

PALE0(A) < PALE0(B) and PALE1(A) < PALE1(B) (Condition C1)

(ii) There exist societies A and B for which PALEθ(A) < PALEθ(B) for all θ ∈

[0, 1] even though H(A) < H(B). These societies are such that H(A) < H(B) and

LE(A) < LE(B).

Proof. See Appendix 5.1.

2.2 Applications of PALEθ

The data on population and mortality by country, age group and year comes from the

Global Burden of Disease database (2019). Comparable information across countries

and over time is available for the 1990-2019 period and is, to our knowledge, the

most comprehensive mortality data available for international comparison.9 Data on

alive deprivation come from the PovcalNet website which provides internationally

comparable estimates of income deprivation level. This data set is based on income

and consumption data from representative surveys carried out in low- and middle-

income countries between 1981 and 2019.10 In our empirical application, we follow

the World Bank’s definition of extreme income deprivation, corresponding to the $1.9

a day threshold (Ferreira et al., 2016). We merged the two databases at the year and

country level. Since the Global Burden of the Disease data are only available since

1990, we focus on the 1990-2019 period for a total of 120 low- and middle-income

countries.

We first present in Figure 2 the evolution of life expectancy, the headcount ratio

and PALEθ for these countries during the period 1990-2019. When θ = 1, life ex-

pectancy can be trivially decomposed into poverty expectancy and poverty adjusted

life expectancy: the difference between LE and PALE1 is the number of years a

9To construct this database, population and mortality data are systematically recorded across
countries and time from various data sources (official vital statistics data, fertility history data as
well as data sources compiling deaths from catastrophic events). These primary data are then con-
verted into data in five years age groups, at year and country level using various interpolations and
inference methods (see Global Burden of Disease Collaborative Network (2020) for more informa-
tion on the GBD data construction). Following the literature, we only consider the point estimate
in the number of deaths (see also Hoyland et al. (2012) for a critique of this approach).

10The website address is http://iresearch.worldbank.org/PovcalNet/povOnDemand.aspx. Each
country’s income deprivation level in PovCalNet is computed on a three year basis, and yearly data
are obtained by linear interpolation. In order to keep the panel balanced, we also extrapolate the
data and keep countries for which only 5 years or less of data have been extrapolated. A more
detailed description of the data source is given in Chen and Ravallion (2013).
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newborn expects to live in poverty. (For θ < 1, the corresponding PALEθ curves

all lie between life expectancy and the PALE1 curve.) Throughout the period, life

expectancy increased from 62.3 in 1990 to 71.1 in 2019 but the decrease in poverty

expectancy is even more spectacular, from 27.9 years in 1990 down to 6.9 years in

2019. This decrease in poverty combined with an increase in life expectancy resulted

in a large increase in PALE1, from 34.4 in 1990 to 64.2 years in 2019.

Figure 2: Evolution of PALE1 and Life Expectancy, 1990-2019
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We now attempt to quantify the value added of the PALEθ index as compared to

a menu of two separate indicators (LE and H). To do this, we quantify the number

of situations for which the two indicators are “in conflict” and the percentage of

these conflicting’ situations that are unambiguously ranked by PALEθ. We again

assume that the weight θ is equal to one, which corresponds to the most conservative

approach consistent with the idea that being poor is weakly preferable to being dead.

(Choosing a lower maximal value for θ, by decreasing the maximal weight given to

the poverty component, would mechanically increase the number of situations that

we can unambiguously compare with PALEθ.)

We first provide an empirical version of Figure 1 above by comparing the situa-

tions of different countries in 2019. The resulting diagram is presented in Figure 3

below. The point of reference (point A in Figure 1) chosen for this diagram is defined

as a hypothetical reference country with a median head count ratio and a median

life-expectancy at birth, which corresponds roughly to the situation of Nepal in 2019.

The iso-PALE1 curve is represented by the dotted curve. All countries below this

iso-PALE1 curve have a larger PALE1 value than the reference country. Among

these, some countries, located in the south east quadrant, are obviously better off,

with a larger life-expectancy and lower poverty levels. Others, located in the north
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west quadrant, are unambiguously worse off. In the other two quadrants, there is a

significant number of countries for which the evolution of life-expectancy and poverty

are conflicting as they go in opposite directions. Among these, those represented by

shaded triangles correspond to situations in which the comparison by PALEθ is un-

ambiguous. In the north-east quadrant, PALEθ is always larger, as higher poverty is

more than compensated for by lower mortality. In the south-west quadrant, PALEθ

is unambiguously smaller, as the fall in poverty is not large enough to compensate for

the higher mortality. Countries represented by a small dots are countries we cannot

rank unambiguously, as this ranking depends on the particular value assigned to θ.

Figure 3: Comparing countries in 2019
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Note: for the sake of presentation, we only report in the figure observations for which
life-expectancy is larger than 40.

Figure 4 replicates this exercice by comparing all pairs of countries for each year

between 1990 and 2019, and reports, among all these comparisons, the proportion

of cases which are ambiguous, and the share of these ambiguous cases for which

PALEθ provides a unambiguous answer. Out of 23 percent of ambiguous compar-

isons, PALEθ is able to solve at least 37 percent of them. The share of ambiguous

comparisons that our index unambiguously solves strongly increases overtime due to

the falling incidence of absolute poverty in many countries.

In Figure 5, we provide PALEθ comparisons within countries between present

and past situations. More precisely, for each year, we compare the situation in period

t to the situation prevailing in the same country five years earlier. Given that each

country’s situation changed over time, we need to adapt our graphical presentation

to represent the set of situations for which PALEθ stays constant over time. We

again conservatively assume θ equal to one.
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Figure 4: Evolution of the resolution of ambiguous inter-country comparisons, 1990-
2019

20

30

40

50

%

1990 2000 2010 2020
Year

Share of ambiguous comparisons

Minimal share of ambiguous comparisons solved with PALE

Reading: in 1990, countries had on average 23% of ambiguous comparisons, out of
which at least 26% were solved by the use of PALE.

By definition, PALE1 = LE(1 − H), and thus PALE1 increases if and only if

dLE/LE > d(1−H)/(1−H). This simple expression allows us to contruct a figure

in the (dLE/LE, d(1 − H)/(1 − H)) plan, in which the rate of growth of LE is

measured on the horizontal axis, and the rate of growth of (1−H), which we refer to

as the “Non-poverty Headcount”, on the vertical axis.11 We define the “zero-growth

PALE1” curve, which represents all the combinations of the two growth rates such

that PALE1 remains unchanged: dLE/LE = d(1−H)/(1−H) . Above this curve,

PALE1 increases and below this curve PALE1 decreases.

The situations of interest are located in the North West and in South East quad-

rants in which the two indicators move in opposite directions. In these quadrants,

there are two regions, one in the triangle below the curve in the north west quadrant,

and one in the triangle above the curve in the south east quadrant for which PALEθ

is able to provide a clear welfare comparison. In these two areas, the shaded trian-

gles represent situations in which, in a particular country, the situation either strictly

improved (in the south east quadrant) or deteriorated (in the north west quadrant)

compared to the situation prevailing in the same country five years earlier.12

11For the sake of the graphical presentation, we excluded from the graph measures that could
be considered as outliers (growth in non poverty headcount larger or smaller than 100 percent,
and growth rates in life-expectancy larger than 90 percent or smaller than -40 percent). These are
however adequately accounted for in the following graph.

12Again, if being dead is strictly worse than being poor, so that θ is always strictly lower than
one, more situations can be strictly signed. They are located in the triangle above the “zero-growth
PALE1” in the NW quadrant, and in the triangle below the “zero-growth PALE1” in the SE
quadrant.
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Figure 5: Resolution of ambiguous countries’ evolutions, 1990-2019
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Finally, Figure 6 reports, using the same comparisons, the evolution over time

of the share of ambiguous situations in which life-expectancy and poverty moved

in opposite directions in one country between t and t+5, and the share of these

ambiguous situations for which the most conservative definition of PALEθ provides

a clear ranking. Overall, the share of ambiguous comparisons declines from about 30

to 20 percent over the period considered (with an overall average of 27 percent). Out

of these, we can solve an average of 38 percent of welfare comparisons, from about

20 in 1990 to more than 50 percent in the last years considered.

2.3 PALEθ beyond the independence case

We have shown in Section 2.1 that PALEθ corresponds to a simplified version of

expected life-cycle utility (Eq. (3)) under the assumption of independence. How-

ever, independence is unlikely in practice: mortality is selective as the poor die

younger than the non-poor (Chetty et al., 2016). Canudas-Romo (2018) points to

this limitation when criticizing the PFLE index of Riumallo-Herl et al. (2018), which

corresponds to PALE1. This may cast some doubts on whether PALEθ is a valid

measure of the welfare losses suffered in a given period. In this section, we show

that, in the absence of independence, PALEθ still corresponds to the expected life-

cycle utility in any stationary society. We then argue that this result provides the

conceptual foundation for the use of PALEθ even in societies that are not stationary.

The particularity of a stationary society is that all outcomes observed in one

period are replicated in the following period. In our setting, a society is stationary if

natality, mortality and poverty are constant over time. As a result, in a stationary

society, one can perfectly infer his expected life-cycle utility from the mortality and
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Figure 6: Evolution of the resolution of ambiguous countries’ evolutions, 1990-2019
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poverty prevailing at the time of his birth. PALEθ is then a simple normalization

of his expected life-cycle utility, even when the independence assumption does not

hold.13

Proposition 2 (Correspondence between Harsanyi and PALEθ).

For any stationary society, PALEθ = EU
uNP

.

Proof. A formal statement and proof is provided in Appendix 5.2.

Clearly, in practice, populations are not stationary and we cannot in general

interpret PALEθ as the expected life-cycle utility of a newborn. Indeed, the poverty

and mortality observed at birth might not be good predictors for the future, in

particular as mortality and mortality decline over time with medical progress or

economic growth. Therefore, PALEθ should not in general be interpreted as a

projection or a forecast of the average life-cycle utility that the cohort of individuals

born in the period will enjoy during their lives. This being said, the validity of

PALEθ as an indicator of a society’s welfare in period t does not rely on whether

this indicator correctly forecasts the future. Our objective is to aggregate the welfare

losses observed in period t using a lifecycle utility approach. This aggregation should

not depend on the future evolutions of poverty and mortality.14 Rather, the way to

aggregate the welfare losses in period t that is consistent with a lifecycle utility

13We discuss in the conclusion how to adapt PALEθ if the social planner is not indifferent to
the fact that some individuals cumulate poverty and early mortality, which typically happens when
mortality is selective. Harsanyi’s social welfare as defined in Eq. (2) is indifferent to such cumulation.

14For instance, a transitory mortality or poverty shock – due to war or to another disaster –
does reduce current welfare, even if the country fully recovers in the next period. In contrast, the
transitory nature of the shock implies that its consequences affect essentially the current generations.
Its impact on the actual expected life-cycle utility of newborns can therefore be negligible, or nil if
the shock did not affect the mortality rates of the newborns.
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approach is to take the perspective of a newborn who assumes that she is born in

a stationary population, i.e. that the poverty and mortality observed at the time of

her birth remain unchanged during her whole life. Proposition 2 shows that PALEθ

is a normalization of the expected life-cycle utility of a newborn who makes this

assumption. In other words, even if we had a perfect forecast of the future average

lifecycle utility of individuals born in a non-stationary society, PALEθ provides a

much better picture of the welfare losses in the period of their birth.

It is worth noting that the same point can be made about life-expectancy at birth

(LE). In practice, this measure is derived from the mortality vector observed in a

given period. As a result, this index does not correspond to the average lifespan of a

cohort born in that period if the society is not stationary. However, life expectancy

corresponds to the number of years of life that a newborn expects to live when she

assumes she is born in a stationary society. The way it aggregates current mortality

rates is widely accepted as a meaningful measure of period mortality.

3 A transparent index of deprivation

The normative relevance of one’s death may depend on the age at which death

occurs. This judgment is implicit in several mainstream multidimensional indicators.

For instance, the global Multidimensional Poverty Indicator only accounts for deaths

below 18 years old (Alkire et al., 2015), or the Human Poverty Index only accounts for

deaths below 40 years old (Watkins, 2006). The widespread focus on child mortality

follows the same logic.

This shows that one normative limitation of PALEθ is that it does not reflect the

distributional concern in both its dimensions. Although PALEθ does focus on a low

quality of life due to poverty, PALEθ does not particularly focus on a low quantity of

life. Indeed, an additional year of life given to an old individual has the same impact

on PALEθ as an additional year of life given to a young one. It is true that, in

general, lifespans are distributed less unequally than consumption (Peltzman, 2009),

which slightly tunes down the need to capture unequal lifespans when monitoring

human development. Nevertheless, concerns around unequal lifespans justify the use

of an indicator that is sensitive to very low lifespans.

In this section, we extend our welfare index to measure deprivation in both the

quality and quantity of life. As stressed in the introduction, multidimensional poverty

indices capturing the quality and quantity of life are plagued by the same limitations

as welfare indices. They typically lack solid theorethical foundations and black box

opaque trade-offs (Ravallion, 2011b).

Two properties of a measure of deprivation require us to adapt the PALEθ in-

dex. First, we must define deprivation in the quantity of life. Borrowing from a long

tradition focussing on absolute poverty, we consider as deprived an individual who

dies prematurely, i.e. who dies before reaching a minimal age threshold â. Follow-

ing Baland et al. (2021), we call “lifespan deprived” an individual who dies before

reaching this age threshold. Second, deprivation is the opposite concept of welfare,

i.e. deprivation decreases when welfare increases. As we now show, under these two

properties, PALEθ naturally leads to a particular index of deprivation.
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3.1 Expected deprivation: the EDθâ index

We call expected deprivation at birth (EDθâ) the generalization of index PALEθ in

a deprivation context. The main difference is that EDθâ is based on an indicator of

mortality different from LE. Indeed, when focusing on deprivation in the quantity of

life, only the years of life lost before reaching the minimal age threshold â matter. We

therefore define another indicator of mortality, the lifespan gap expectancy, which

measures the number of years that a newborn expects to lose prematurely.15 Letting

nt(a) denote the number of individuals born in period t who survive at least to age

a and nt = nt(0), we have:16

LGEâ =

â−1∑

a=0

(â− (a+ 1)) ∗
nt(a)− nt(a+ 1)

nt

.

We illustrate in Figure 7 the close connection between LGEâ and LE, where

LE =
∑a∗−1

a=0
nt(a)
nt

. In the figure, we construct a counterfactual population pyramid

by reporting for each age a the number nt(a) of newborns who are still alive at age a.

As explained in Section 2.3, this counterfactual pyramid corresponds to the popula-

tion pyramid in period t if the society is stationary in period t.17 In the left panel of

Figure 7, LE is proportional to the area below the population pyramid. By contrast,

LGEâ is proportional to the area between this pyramid and the age threshold. The

right panel illustrates the property that, for large enough age thresholds, LGEâ is

the complement of LE. Formally, when â ≥ a∗, LGEâ = â− LE.

Figure 7: Life Expectancy and Lifespan Gap Expectancy
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Note: in the Left panel, the light grey area below the counterfactual “stationary”
population pyramid is a multiple of LE and the dark grey area is a multiple of
LGEâ.

The expected deprivation index, EDθâ, aggregates the poverty and lifespan de-

privation expected by a newborn, if she considers facing, throughout her life-cycle,

the poverty and mortality prevailing at the time of her birth. It combines a com-

ponent for deprivation in the quality of life and a component for deprivation in the

15LGEâ is a particular version of the Years of Potential Life Lost, an indicator used in medical
research in order to quantify and compare the burden on society due to different death causes
(Gardner and Sanborn, 1990).

16See Proposition 5 for a mathematical expression for LGEâ that only depends on the mortality
observed in period t. See also Appendix 5.2 for more details on the formal framework.

17In a stationary society, the current population pyramid can be obtained by successively applying
the current age-specific mortality rates to each age group.
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quantity of life:

EDθâ =
LGEâ

LE + LGEâ
︸ ︷︷ ︸

quantity deprivation

+ θ
LE ∗H

LE + LGEâ
︸ ︷︷ ︸

quality deprivation

, (5)

where the parameter θ ∈ [0, 1] is defined in exactly the same way as for PALEθ and

the age threshold â ∈ N0 must respect a lower-bound â ∈ N0, such that â ≥ â ≥ 0.

The value for the lower bound â influences the set of comparisons that are robust to

the values selected for θ and â (see below).

The two normative parameters θ and â jointly define the respective importance

attributed to poverty and mortality. Parameter θ determines the relative weights of

being dead or being poor for one period. In contrast, parameter â determines the

number of periods for which “being prematurely dead” is accounted for by the index.

Hence, â also affects the relative sizes of these two sources of welfare losses throught

its impact on LGEâ.

Both components have the same denominator, which measures a normative lifes-

pan corresponding to the sum of LE and LGEâ. This normative lifespan can be

interpreted as the (counterfactual) life-expectancy at birth that would prevail if all

premature deaths were postoned to the age threshold. It is at least as large as LE,

and corresponds to LE if the age treshold is equal to 0. The numerator of each

term measures the expected number of years characterized by one of the two dimen-

sions of deprivation. The numerator of the quantity deprivation component measures

the number of years that a newborn expects to lose prematurely (when observing

mortality in the period) given the age threshold, â. The numerator of the quality

deprivation component measures the number of years that a newborn expects to

spend in poverty.

As said above, these expectations are correct in the case of independence (see

Section 2.1) or in stationary societies (see Section 2.3). As discussed above, in a

stationary population, the poverty and mortality rates prevailling at its birth per-

fectly reflect the poverty and mortality a new cohort will be confronted to in the

future. This restriction does not however invalidate the use of EDθâ as an indicator

of deprivation in the current period (see Section 2.3): again, a widely used index

such as life-expectancy suffers from exactly that same limitation but is nevertheless

widely interpreted as if the society was in a stationary state.

Finally, the definition of EDθâ is such that each year prematurely lost is as bad

as 1/θ years spent in poverty. This trade-off between the relative costs of poverty

and mortality is the same as for PALEθ.
18 When θ = 1, EDθâ has a transparent

interpretation, as it computes the expected proportion of the normative lifespan that

a newborn expects to lose prematurely or spend in poverty.

Unlike PALEθ, EDθâ accounts for the distributional concern in the mortality

dimension. The age threshold â, above which some deaths are normatively irrelevant,

is to mortality what the poverty line is to poverty. In Proposition 3, we show that

index EDθâ is a generalization of index PALEθ: EDθâ ranks societies exactly in the

same way as PALEθ as long as its age threshold â is at least as large as the maximal

age a∗. For such values, the age threshold becomes not binding, and all deaths

become relevant in terms of deprivation because they all occur at younger ages than

18We assume here that the welfare cost of a year prematurely lost is equal to uNP .
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the age threshold. When the age treshold is binding (smaller than the maximal age

a∗), the rankings obtained under EDθâ do not correspond to the rankings obtained

under PALEθ.

Proposition 3 (EDθâ generalizes PALEθ).

For all â ≥ a∗ we have PALEθ = â(1 − EDθâ), which implies that, for any two

societies A and B,

PALEθ(A) ≥ PALEθ(B) ⇔ EDθâ(A) ≤ EDθâ(B).

Proof. See Appendix 5.3.

Taken together, Propositions 2 and 3 show that EDθâ aggregates two indices of

mortality, LE and LGEâ, with an index of poverty, H , in a way which is consistent

with life-cycle preferences. This improves on standard multidimensional poverty

indices. However, EDθâ relies on two normative parameters: (θ, â). Proposition 4

below provides the conditions under which the ranking by EDθâ for some pairs of

societies A and B does not depend on the values selected for its normative parameters.

Proposition 4 (Unambiguous comparisons of deprivation).

(i) For any two societies A and B we have EDθâ(A) > EDθâ(B) for all θ ∈ [0, 1]

and all â ≥ â if and only if

ED0â(A) > ED0â(B) for all â ≥ â, and

ED1â(A) > ED1â(B) for all â ≥ â (generalized Condition C1)

(ii) For any â > 1, there exist societies A and B for which EDθâ(A) > EDθâ(B) for

all θ ∈ [0, 1] and all â ≥ â even though H(A) < H(B). These societies are such that

LE(A) < LE(B).

Proof. See Appendix 5.4 for the straightforward proof.

The first part of Proposition 4 tells us that EDθâ provides unambiguous compar-

isons if ED0â and ED1â provide the same ranking for all age thresholds â above â.

The intuition for this result is essentially the same as that provided in Proposition 1

above (since, when â ≥ a∗, EDθâ is equivalent to PALEθ).

The second part of the Proposition indicates when ignoring mortality and focusing

exclusively on H leads to deprivation comparisons that are unambiguously correct

or wrong. When â < a∗, it no longer suffices that H and LE yield separately the

same ranking for that ranking to be unambiguously correct. The reason is that, when

â < a∗, LE no longer contains all the relevant information on mortality: for instance,

two societies can share the same life-expectancy at birth but one with several deaths

occuring below â while the other has all deaths occuring above â. Note also that the

larger the lower-bound â, i.e., the smaller the set of plausible values for â, the larger

the set of comparisons for which the generalized condition can be met.

We illustrate the above results in Figure 8.19 The vertical axis represents the

share of pairs of societies for which H and LE provide similar (at the top) or opposite

rankings (at the bottom). By definition, these rankings are insensitive to the age

19All graphs that follow are constructed using a lower bound on â equal to 1. Indeed, for θ = 0 and
â = 0, EDθâ is equal to zero for all societies and cannot therefore deliver unambiguous comparisons.
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threshold â considered. The horizontal axis represents all possible values of â, the

lower bound on the age threshold.

The left panel describes the share of cases in which EDθâ provides unambiguous

rankings as a function of â. Lower values of â imply a fall in the share of cases that

EDθâ can rank unambiguously. Indeed, a larger age interval over which EDθâ has to

be computed implies a larger number of comparisons for ED. As a result, the number

of cases for which it can provide the same ranking for all age thresholds falls. Second,

if H and LE agree, EDθâ provides the same ranking as H when â = a∗. Finally, as

discussed above, when H and LE disagree, a larger value of â implies that the share

of cases for which H provides a unambiguously wrong ranking gets larger.

The right panel reports, for all values of â, the share of pairs of societies for

which PALEθ and EDθâ provide unambiguous rankings. Since PALEθ doesn’t

depend on the age threshold, it is able to rank a larger set of comparisons. As shown

in Proposition 3, when â = a∗, the two indices are equivalent.

Figure 8: H may make unambiguously wrong deprivation comparisons when â > 1.

Reading: The smaller the lower-bound â, the lower the share of societies pairs unambiguously

ranked by EDθâ even when H and LE agree with one another. The higher the lower-bound â, the

higher the share of societies pairs unambiguously ranked by both EDθâ and PALEθ.

3.2 Mortality shocks and the evolution of EDθâ and PALEθ

We now briefly contrast the impact of mortality shocks on PALEθ and EDθâ, as-

suming that these mortality shocks are independent of the poverty status. Consider

a mortality shock that equalizes individual lifespans across the age threshold â while

keeping life-expectancy LE constant. This lower dispersion in mortality does not

affect PALEθ, which only accounts for mortality through LE. By contrast, this

shock reduces EDθâ, since LGEâ is thereby reduced. It is indeed easy to show that
∂EDθâ

∂LGEâ
> 0 (for θH < 1).

Consider instead a mortality shock that reduces mortality above the age thresh-

old â. Such shock increases LE but does not affect LGEâ. As a result, PALEθ

mechanically increases. It is also easy to show that deprivation, as measured by

EDθâ, decreases: ∂EDθâ

∂LE
< 0, for θH < 1. Moreover, PALEθ is more sensitive to
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this kind of shock than EDθâ, as the elasticity of PALEθ to LE is equal to 1 while

the elasticity of EDθâ to LE lies in (−1, 0). If the mortality shock is such that it

reduces mortality below the age threshold â, this shock simultaneously increases LE

and reduces LGEâ. Again, PALEθ improves and deprivation decreases since both

LE increases and LGE decreases.

3.3 Empirical relation between EDθâ and PALEθ

Figure 9 reports the diagnostic delivered by PALEθ and EDθâ over all pairwise com-

parisons of countries in 2019 for which H and LE yield opposite rankings, focusing

on the share of these cases that can be ranked by EDθâ and PALEθ independently

of the value assigned to θ for a given age threshold.

Since PALEθ does not depend on the age threshold, the discrepancies between

PALEθ and EDθâ across ages can only come from variations in EDθâ. As is clear

from the Figure, the share of cases solved by PALEθ is constant but the share of

cases solved by both PALEθ and EDθâ increases with the age threshold. Since the

age threshold acts as a form of weight on the poverty component of EDθâ, the relative

importance of poverty in EDθâ decreases as â increases. When â ≥ a∗, mortality and

poverty have the same weight in EDθâ and PALEθ and the two indices yield exactly

the same ranking (Proposition 3). For lower age thresholds, the number of periods

of life considered as prematurely lost decreases, and EDθâ becomes more sensitive

to its poverty component. In the extreme case in which â = 0, EDθ0 can solve all

the cases for which H and LE yield opposite rankings since EDθ0 is unidimensional

and equal to θH .

Figure 9: Resolution of ambiguous comparisons of PALEθ and EDθâ, by age
threshold
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Figure 10 presents the evolution of EDθâ (with θ = 1 and â = 50) and the head-

count ratio, H , for the world. As can be seen from the figure, the incidence of poverty

massively decreased over that period, while premature mortality (that is, before the

age 50) decreased at a much lower rate. As a result, at the world scale, ED1,50

follows closely the evolution of H and gets closer in the recent years. Overall, in

2019, a newborn can expect, under stationarity, to lose 15% of his normative lifespan

in poverty of through premature mortality. The corresponding figure in 1990 was as

high as 50%.

Figure 10: Evolution of EDθâ and H, 1990-2019 (where θ = 1 and â = 50).
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3.4 Relation with other indices of deprivation

We limit here our comparison to other indices in the literature to the index of gen-

erated deprivation (GDθâ) we proposed in a companion paper (Baland et al., 2021).

Generated deprivation is indeed the closest index to EDθâ, and Baland et al. (2021)

discuss in details the relationships between GDθâ and other indices of multidimen-

sional poverty. In short, EDθâ and GDθâ are identical in stationary societies, but

EDθâ has a simpler interpretation than GDθâ, reacts faster to permanent mortality

shocks and is less demanding in terms of data. However, GDθâ is decomposable in

subgroups whereas EDθâ is not.

In any year t, the GDθâ index is defined as follows: 20

GDθâ =
Y Lt

Nt + Y Lt
︸ ︷︷ ︸

quantity deprivation

+ θ
Nt ∗Ht

Nt + Y Lt
︸ ︷︷ ︸

quality deprivation

, (6)

20Strictly speaking, the generated deprivation index proposed in Baland et al. (2021) is 1
θ
GDθâ,

which is ordinally equivalent to GDθâ since θ is a constant.

23



where θ ∈ [0, 1] and Nt =
∑a∗−1

a=0 nt−a(a) is the population observed in t. Y Lt is the

total number of years of life prematurely lost due to mortality in year t, and can be

defined as follows:

Y Lt =

â−2∑

a=0

nt−a(a) ∗ µ
t
a ∗ (â− (a+ 1)),

where µt = (µt
0, . . . , µ

t
a∗−1) stands for the vector of age-specific mortality rates.21

The GDθâ index is also based on two components, one capturing quality depriva-

tion, measured by the number of man-years spent in poverty in year t, and the other

quantity deprivation, measured by all the years prematurely lost in year t. When

compared to EDθâ, the same normative weight is also used for these two compo-

nents. The components of GDθâ are however harder to interpret. This is because

GDθâ combines a number of poor with a number of years of life prematurely lost.

The rationale behind this aggregation is that, in a given year, the total number of

“poor individuals” in a given year also corresponds to the total number of “years”

lived in poverty in that year. This equivalence also explains why the denominator of

GDθâ sums a number of individuals, Nt with a number of years Y Lt. By contrast,

the numerators of the two terms in EDθâ are more easily interpretable: they are the

number of years that a newborn expects to prematurely lose or spend in poverty (if

she expects mortality and poverty to stay at their currently observed levels).

The following proposition establishes that GDθâ and EDθâ are identical in sta-

tionary societies:

Proposition 5 (EDθâ and GDθâ are identical in stationary societies).

For any stationary society,

LGEâ =

â−1∑

a=0

(â− (a+ 1)) ∗ µt
a ∗

a−1∏

k=0

(1− µt
k), (7)

which yields GDθâ = EDθâ.

Proof. See Appendix 5.5.

EDθâ and GDθâ yield the same ranking for stationary societies. However, so-

cieties are typically not stationary so that EDθâ and GDθâ may rank countries

differently. The main difference between EDθâ and GDθâ comes from the way the

two indices compute the number of years prematurely lost. EDθâ takes the perspec-

tive of a newborn who faces throughout her life the mortality rates observed in t. In

contrast, GDθâ computes the number of years that are lost by the current population

due to the premature mortality observed in t. It records, over all premature deaths

in t, the number of years prematurely lost. Thus, if an individual dies at age 20 and

the age threshold is 70, her premature death leads to a loss of 50 years of life in that

year. EDθâ also counts the number of years prematurely lost, but instead of being

computed on the actual population pyramid, EDθâ uses a counterfactual population

pyramid, which is the one that would prevail in a stationary society characterized by

the age-specific mortality rates observed in the period.

21They are more formally defined in Appendix 5.2.
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A major implication of this difference is that EDθâ is more reactive to policy

changes than GDθâ. Consider a permanent mortality shock. The population dy-

namics is such that a transition phase sets in during which the population pyramid

slowly adjusts to the new mortality rates. This transition stops when a new station-

ary population pyramid is reached, typically after a∗ periods. GDθâ records each

step of this transition and therefore exhibits inertia in its response to a permanent

mortality shock. By contrast, EDθâ immediately refers to the new stationary pop-

ulation pyramid and disregards the inertia caused by these transitory demographic

adjustments. We provide an illustration of this property in Appendix 6.

Finally, Baland et al. (2021) show that GDθâ is essentially the only index decom-

posable in subgroups to compare stationary societies in a way that satisfy some basic

properties. As a result, EDθâ cannot be decomposable in subgroups.22 This is no

surprise given that EDθâ is based on life expectancy, which cannot be decomposed

in subgroups. In Appendix 7, we also show that EDθâ is essentially the only index

that is independent on the actual population pyramid and compares stationary pop-

ulation in a way that respect basic properties of deprivation. As a result, the actual

population pyramid is irrelevant for EDθâ, the only information required for EDθâ

is age-specific mortality rates.

4 Concluding remarks

An important limitation of the two indices proposed in this paper, PALEθ and EDθâ,

is that they account for the distributional concern “dimension-by-dimension” instead

of accounting for them in terms of life-cycle utility. Indeed, our indices are insensitive

to the allocation of years of life prematurely lost between the poor and the non-poor.

This allocation may however have important implications for the distribution of life-

cycle utility. Indeed, when the poor die early, they cumulate low achievements in

the two dimensions and the difference between their life-cycle utility and that of the

non-poor increases.

Without denying the importance of this limitation, let us first note that this

limitation is shared by most standard indices of human development.23 Second,

addressing this limitation requires data that are typically not available. One natural

way of accounting for such “concentration” of deprivations on the same individuals

would be to define as “life-cycle poor” individuals whose life-cycle utility is smaller

than that of a reference life, e.g., a life characterized by a lifespan of 40 years with

no period of poverty. One can then define an index of human development that

would, for instance, correspond to the expected fraction of newborns who will be

“life-cycle poor”. This type of index would not be ad-hoc, but would require better

data, combining poverty and mortality at the individual level, than what is currently

available in most countries. Moreover, this type of data, recording mortality up to

22In other words, if decomposibility in subgroups is seen as a key property, one should use GDθâ.
Indeed, this index yields the same ranking as EDθâ in stationary populations. In those populations,
GDθâ thus yields the same ranking as PALEθ when all deaths are normatively relevant (â ≥ a∗).

23To the best of our knowledge, the global MPI index is the only one to account, in an indirect
way, for such concentration. In a nutshell, the deprivation-score of an individual is increased if she
lives in a household that has experienced the death of a less than 18 year child in the past five
years. Arguably, this aggregation of the quantity and quality of life is essentially practical. It is not
related to any concept of life-cycle utility. Moreover, it critically depends on the definition of the
household as it does not account for the occurrence of multiple deaths in the same households.
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a given threshold, would necessarily be historical in nature, with little relevance

to the current situation. Alternatively, one may want to define indices that are

less demanding in terms of information, and are based on the observed mobility

between poverty and non-poverty, as well as on mortality figures for the poor and

the non-poor. Some additional assumptions would be required to then translate this

information into the lifecycle profiles for newborns.
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5 Appendix: Proofs

5.1 Proof of Proposition 1

Proof of (i). We start by the “only if” part. Assume to the contrary that PALE0(A) >

PALE0(B) or PALE1(A) > PALE1(B). This directly implies that PALEθ(A) >

PALEθ(B) for some θ ∈ {0, 1} and therefore we cannot have PALEθ(A) < PALEθ(B)

for all θ ∈ [0, 1].

We now turn to the “if” part. By definition of the PALEθ index, we have to show

that

LE(B)− LE(A) > θ ∗ (H(B)−H(A)), (8)

for all θ ∈ [0, 1]. As PALE0(A) < PALE0(B), we directly have that LE(B) −

LE(A) > 0 because PALE0 = LE. As PALE1(A) < PALE1(B), we have LE(B)−

LE(A) > H(B)−H(A). It immediately follows that the inequality (8) is verified for

all values of θ smaller than 1.

Proof of (ii). From (i), proving (ii) only requires providing societies A and B with

H(A) < H(B) such that PALE0(A) < PALE0(B) and PALE1(A) < PALE1(B).

If H(A) = 0.2, H(B) = 0.4, LE(A) = 50 and LE(B) = 75 we have PALE1(A) = 40

and PALE1(A) = 45, the desired result because PALE0 = LE.

5.2 Stationary societies and PALEθ

We first provide a formal definition of a stationary society. Consider a discrete set

of periods {. . . , t − 1, t, t + 1, . . . }. In each period, some individuals are born and

some individuals die (at the end of the period). All alive individuals are assigned a

consumption status for the period (P or NP ) . We define the life of an individual

i as the list of consumption statuses li = (li0, . . . , lidi
) she enjoys between age 0 and

age di ∈ {0, . . . , a∗ − 1} at which she dies, where lia ∈ {NP,P}. The set of lives is

thus L = ∪d∈{0,...,a∗−1}{NP,P}d+1.

The number of newborns in period t is denoted by nt. The profile of lives for

the cohort born in t is denoted by Ct = (li)i∈{1,...,nt}, where {1, . . . , nt} is the set of

newborns in t. Clearly, the profile of lives Ct contains all the information necessary

to compute a newborn’s expected life-cycle utility (Eq. (3)). Let nt(a) denote the

number of individuals born in period t who are still alive when reaching age a. In

particular, we have nt(0) = nt. Let pt(a) denote the number of individuals born in

period t who are poor at age a, with pt(a) ≤ nt(a). By definition, the probability

that an individual born in t survives to age a is given by Vt(a) = nt(a)
nt

, and the

conditional probability that an individual born in t will be poor when reaching age a

is πt(a) =
pt(a)
nt(a)

. To compute Eq. (3), it is sufficient to know the distribution of the

set of lives that Ct implicitly defines. We denote this distribution by Γt : L → [0, 1],

with
∑

l∈L Γt(l) = 1.

In period t, we cannot observe the profile of lives for the cohort born in t. The only

elements of Ct that we observe in that period are nt(0), pt(0) and nt(1). However, we

also have information about the profile of lives of the cohorts born before t. Formally,

let a society St be the list of profiles of lives for all cohorts born during the a∗ periods
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in {t− (a∗ − 1), . . . , t}, i.e. St = (Ct−a∗+1, . . . , Ct). In period t, we observe (i) the

number Nt of individuals who are alive in t:

Nt =

a∗−1∑

a=0

nt−a(a),

(ii) the fraction Ht of alive individuals who are poor in t:

Ht =

∑a∗−1
a=0 pt−a(a)

∑a∗−1
a=0 nt−a(a)

,

and (iii) the age-specific mortality vector µt = (µt
0, . . . , µ

t
a∗−1) in period t where for

each a ∈ {0, . . . , a∗ − 1} we have

µt
a =

nt−a(a)− nt−a(a+ 1)

nt−a(a)
,

with µt
a∗−1 = 1.

We now show that, in stationary societies, the information available in period t

is sufficient to compute the value of the expected lifecycle utility using Eq. (3). The

particularity of stationary societies is to have their natality, mortality and poverty

constant over time, so that all (average) outcomes in a given period are replicated

over the next period. More formally, a society is stationary if both the distribution

of lives and the size of generations are constant over the last a∗ periods.

Definition 1 (Stationary Society).

A society St is stationary if, at any period t′ ∈ {t− a∗ + 1, . . . , t}, we have

• Γt′ = Γt (constant distribution of lives),

• nt′ = nt (constant size of cohorts).

It follows from this definition that nt(a) = nt−a(a) and pt(a) = pt−a(a) for all

a ∈ {1, . . . , a∗ − 1}.24 These equalities lead to the following Lemma, which allows us

to relate Eq. (3) to the information available in period t.25

Lemma 1. If St is stationary,

Vt(a) = Πa−1
k=0(1− µt

k) for all a ∈ {0, . . . , a∗ − 1}, (9)

Nt = nt ∗ LEt, (10)

Nt ∗Ht = nt ∗

a∗−1∑

a=0

V (a)π(a). (11)

Proof. We first prove Eq (9). As St is stationary, we have nt(k) = nt−k(k) for all

k ∈ {1, . . . , a∗−1} and nt(k+1) = nt−k(k+1) for all k ∈ {0, . . . , a∗−2}. Therefore,

24Clearly, a constant distribution of lives is not sufficient for these equalities, one also needs a
constant size of cohorts.

25Lemma 1 also requires that nt(a + 1) = nt−a(a + 1) for all a ∈ {0, . . . , a∗ − 2}, which follows
from the definition of a stationary society.
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we have for all a ∈ {1, . . . , a∗ − 1} that

Vt(a) =
nt(a)

nt

,

= Πa−1
k=0

nt(k + 1)

nt(k)
,

= Πa−1
k=0

nt−k(k + 1)

nt−k(k)
,

= Πa−1
k=0(1 − µt

k).

We then prove Eq (10). As St is stationary, we have nt(a) = nt−a(a) for all a ∈

{1, . . . , a∗ − 1}. Recalling that Vt(a) =
nt(a)
nt

, we can successively write

LEt =

a∗−1∑

a=0

Vt(a),

=

∑a∗−1
a=0 nt(a)

nt

,

=

∑a∗−1
a=0 nt−a(a)

nt

,

= Nt/nt.

Finally, we prove Eq. (11). As St is stationary, we have pt(a) = pt−a(a) for all

a ∈ {1, . . . , a∗ − 1}. Given that πt(a) =
pt(a)
nt(a)

and Vt(a) =
nt(a)
nt

, we can successively

write

Ht =

∑a∗−1
a=0 pt−a(a)

∑a∗−1
a=0 nt−a(a)

,

=

∑a∗−1
a=0 pt(a)

Nt

,

=

∑a∗−1
a=0 πt(a)Vt(a)nt

Nt

.

The three equations in Lemma 1 imply that an individual born in a stationary

society can infer her expected life-cycle utility from the information available at the

year of her birth. (These direct relationships between current and future outcomes

in stationary societies are well-known to demographers (Preston et al., 2000).) We

illustrate this important insight using an example. Consider a stationary society

for which two individuals are born in each cohort, one living only for one period in

poverty and the other living for two periods out of poverty, i.e. n = 2, l1 = (P ) and

l2 = (NP,NP ). In period t, three individuals are alive: the poor born in t, the non-

poor born in t and the non-poor born in t−1. Also, two individuals die at the end of

period t: the poor born in t and the non-poor born in t− 1. Eq. (9) states that the

mortality rates observed in period t (the right hand side of the equation) can be used

to infer the mortality rates that the newborn can expect to face during her life-cycle

(the left hand side). Thus, in our example, a newborn observes that, at the end of

period t, half of the individuals of age 0 die and all individuals of age 1 die. Eq. (9)

implies that he has a 50 percent chance to survive period t and a zero percent chance
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to survive period t + 1. According to Eq. (10), the number of individuals who are

alive in period t, Nt, is equal to the number of person-periods in the profile of lives

of the cohort born in period t. In our example, there are three individuals alive in

period t and there are three person-periods in Ct = (l1, l2) = (P ;NP,NP ). Finally,

Eq. (11) states that the number of poor observed in period t, Nt ∗ Ht, is equal to

the number of person-periods of poverty in the profile of lives of the cohort born in

period t. Indeed, there is one poor individual alive in period t and one person-period

P in Ct.

Lemma 1 shows that, in a stationarity society, the poverty and mortality ob-

served in a given period perfectly define the life profile of newborns. Proposition 6

shows that PALEθ is a normalisation of the expected life-cycle utility of a newborn

in a stationary society even when mortality is selective, i.e. when the conditional

probability of being poor depends on age.

Proposition 6 (Equivalence between Harsanyi and PALEθ).

If society St is stationary, then PALEθ = EUt

uNP
.

Proof. The result follows directly when substituting Eq. (10) and (11) into Eq.

(3).

5.3 Proof of Proposition 3

The proof builds on the complete framework presented in Appendix 5.2.

We first show that LE + LGEâ = â when â ≥ a∗.

LGEâ(Ct) =

â−1∑

a=0

â ∗
nt(a)− nt(a+ 1)

nt

−

â−1∑

a=0

(a+ 1) ∗
nt(a)− nt(a+ 1)

nt

,

=
1

nt

(

â ∗ (nt(0)− nt(â))−

â−1∑

a=0

nt(a) + â ∗ nt(â)

)

,

= â−

â−1∑

a=0

nt(a)

nt

.

By definition of a∗, we have nt(a) = 0 for all a ≥ a∗. When â ≥ a∗, this implies

that
∑â−1

a=0
nt(a)
nt

=
∑a∗−1

a=0
nt(a)
nt

, where by definition LE =
∑a∗−1

a=0
nt(a)
nt

, the desired

result.

The fact that LE + LGEâ = â implies that PALEθ = â(1− EDθâ) because

â(1 − EDθâ) = (LE + LGEâ)(1− EDθâ) = LE(1− θH).

Thus, when â ≥ a∗, PALEθ is a linear function of EDθâ that depends negatively

on EDθâ. Therefore, these two indicators yields opposite ranking of any two societies

A and B, i.e. PALEθ(A) ≥ PALEθ(B) ⇔ EDθâ(A) ≤ EDθâ(B).

5.4 Proof of Proposition 4

We first prove the following: for any â ≥ â and any two societies A and B, we have

EDθâ(A) > EDθâ(B) for all θ ∈ [0, 1] if and only if

ED0â(A) > ED0â(B) and ED1â(A) > ED1â(B).
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We start with the “only if” part. Assume on the contrary that ED0â(A) <

ED0â(B) or ED1â(A) < ED1â(B). This implies that EDθâ(A) < EDθâ(B) for

some θ ∈ {0, 1} and therefore we cannot have EDθâ(A) > EDθâ(B) for all θ ∈ [0, 1].

We turn to the “if” part. By definition of the EDθâ index, we have to show that

LGEâ(A)

LE(A) + LGEâ(A)
−

LGEâ(B)

LE(B) + LGEâ(B)
>

θ

(
LE(B) ∗H(B)

LE(B) + LGEâ(B)
−

LE(A) ∗H(A)

LE(A) + LGEâ(A)

)

for all θ ∈ [0, 1].

(12)

As ED1â(A) > ED1â(B), Eq. (12) holds for θ = 1. As ED0â(A) > ED0â(B),

the left hand side of Eq. (12) is strictly positive. As a result, inequality (12) holds

for all values of θ smaller than 1.

Proof of (i). This is an immediate implication of the statement proven above.

Proof of (ii). Consider two societies A and B with H(A) < H(B) for which the

generalized condition C1 holds.

Society A is such that H(A) = 0.4 and all its individuals die in their first year of

life, which implies that LE(A) = 1 and LGEâ(A) = â − 1. Therefore, society A is

such that ED0â(A) =
â−1
â

and ED1â(A) = 1 − 0.6
â

for all â ≥ â. Society B is such

that H(B) = 0.5 and all its individuals die at the maximal age a∗, which implies that

LE(B) = a∗ + 1 and LGEâ(B) = 0. Therefore, society B is such that ED0â(B) = 0

and ED1â(B) = 0.5 for all â ∈ {2, . . . , a∗}.

By the statement we have proven above, we have EDθâ(A) > EDθâ(B) for all

θ ∈ [0, 1] and all â ∈ {2, . . . , a∗} because

ED0â(A) > ED0â(B) for all â ∈ {2, . . . , a∗}

as â−1
â

> 0 for all â ∈ {2, . . . , a∗}, and

ED1â(A) > ED1â(B) for all â ∈ {2, . . . , a∗}

as â > 1 for all â ∈ {2, . . . , a∗}.

By (i), there remains to show that EDθâ(A) > EDθâ(B) for all θ ∈ [0, 1] and all

â > a∗. We have shown that EDθa∗(A) > EDθa∗(B) for all θ ∈ [0, 1], which implies

by Proposition 3 that PALEθ(A) < PALEθ(B) for all θ ∈ [0, 1]. By Proposition 3

again, PALEθ(A) < PALEθ(B) for all θ ∈ [0, 1] implies that EDθâ(A) > EDθâ(B)

for all θ ∈ [0, 1] and all â > a∗, the desired result.

5.5 Proof of Proposition 5

The proof builds on the complete framework presented in Appendix 5.2.

We first derive expression (7). As society St is stationary, we have that nt(a) =

nt−a(a) and nt(a + 1) = nt−a(a + 1) for all a ∈ {0, . . . , a∗ − 1}. We can thus
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successively write

LGEâ(St) =

â−1∑

a=0

(â− (a+ 1)) ∗
nt(a)− nt(a+ 1)

nt(a)
∗
nt(a)

nt

,

=

â−1∑

a=0

(â− (a+ 1)) ∗
nt−a(a)− nt−a(a+ 1)

nt−a(a)
∗ Vt(a).

As society St is stationary, Lemma 1 applies and we have Vt(a) = Πa−1
k=0(1−µt

k) (Eq.

(9)). This result follows from our definition of the age-specific mortality rate, where

µt
a = nt−a(a)−nt−a(a+1)

nt−a(a)
.

We now prove that GDθâ(St) = EDθâ(St). As society St is stationary, Lemma

1 applies and Nt = ntLEt (Eq. (10)). Substituting this expression for Nt into the

definition of GDθâ proves our result, provided Y Lt = ntLGEâ, which remains to

be shown. As society St is stationary, Lemma 1 applies and we have nt−a(a)
nt

=
∏a−1

k=0(1− µt
k) (Eq. (9)). Substituting this expression for nt−a(a) into the definition

of Y Lt, with Y Lt =
∑â−2

a=0 nt−a(a) ∗ µ
t
a ∗ (â− (a+ 1)), gives:

Y Lt = nt

â−2∑

a=0

(â− (a+ 1)) ∗ µt
a ∗

a−1∏

k=0

(1− µt
k),

which shows that Y Lt = ntLGEâ (see Eq. (7) and recall that â− (a+ 1) = 0 when

a = â− 1), the desired result.

6 Appendix: EDθâ and GDθâ under a transitory shock:

an illustration

We illustrate this difference between EDθâ and GDθâ in their reaction to a transitory

mortality shock with the help of a simple example. Consider a population with a

fixed natality nt(0) = 2 for all periods t. At each period, all alive individuals are

non-poor, implying that Ht = 0. For all t < 0, we assume a constant mortality vector

µt = µ∗ = (0, 1, 1, 1), so that each individual lives exactly two periods. Let us assume

â = 4, so that an individual dies prematurely if she dies before her fourth period of

life. Before period t = 0, the population pyramid is stationary, and the two indices

are equal to 1/2 because there is no poor and individuals live for two periods instead

of four. Consider now a permanent shock starting from period 0 onwards, such

that half of the newborns die after their first period of life: µ0 = (1/2, 1, 1, 1). The

population pyramid returns to its stationary state in period 1, after a (mechanical)

transition in period 0. This example is illustrated in Figure 11.

Consider first GDθâ. In period 0, the actual population pyramid is not stationary

because of the mortality shock. The premature death of one newborn leads to the

loss of three years of life. Also, two one-year old individuals die in period 0, each

losing two years of life. There are thus 7 years of life prematurely lost in period 0,

and GDθâ takes value 7/11. In period 1, the population pyramid is stationary, and

GDθâ is equal to 5/8 from then on.

We now turn to EDθâ. Even if the actual population pyramid is not stationary

in period 0, EDθâ is immediately equal to 5/8 since it records premature mortality

34



t /∈ {0, 1, 2} t = 0 t = 1

Age

Number

1 2

â
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ED = 5

8

Age

Number

â
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Figure 11: Response of GDθâ and EDθâ to a permanent mortality shock in t = 0.
The years prematurely lost are shaded.

as if the population pyramid had already reached its new stationary level. EDθâ

focusses on the newborn and the one-year old who die prematurely, ignoring that

there are two one-year old dying in the actual population pyramid in period 0 (which

is a legacy of the past).

7 Appendix: Characterization of the EDθâ index

We first introduce the set-up provided by Baland et al. (2021), which we will use to

charcterize EDθâ.

Each individual i is associated to a birth year bi ∈ Z. In period t, each individual

i with bi ≤ t is characterized by a bundle xi = (ai, si), where ai = t− bi is the age

that individual i would have in period t given her birth year bi, and si is a categorical

variable capturing individual status in period t, which can be either alive and non-

poor (NP ), alive and poor (AP ) or dead (D), i.e. si ∈ S = {NP,AP,D}. In the

following, we often refer to individuals whose status is AP as “poor”. We consider

here that births occur at the beginning while deaths occur at the end of a period.

As a result, an individual whose status in period t is D died before period t.26

An individual “dies prematurely” if she dies before reaching the minimal lifespan

â ∈ N. Formally, period t is “prematurely lost” by any individual i with si = D and

ai < â. A distribution x = (x1, . . . , xn(x)) specifies the age and the status in period

t of all n(x) individuals. Excluding trivial distributions for which no individual is

alive or prematurely dead, the set of distributions in period t is given by:

X = {x ∈ ∪n∈N(Z × S)n | there is i for whom either si 6= D or si = D and â > t− bi}.

Baland et al. (2021) show that the most natural consistent index to rank distri-

butions in X is the inherited deprivation index (IDθâ). Let d(x) denote the number

26All newborns have age 0 during period t and some among these newborns may die at the end
of period t. This implies that bi = t ⇒ si 6= D.
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of prematurely dead individuals in distribution x, which is the number of individuals

i for whom si = D and â > t− bi, p(x) the number of individuals who are poor and

f(x) the number of alive and non-poor individuals. The IDθâ index is defined as:

IDθâ(x) =
d(x)

f(x) + p(x) + d(x)
︸ ︷︷ ︸

quantity deprivation

+θ
p(x)

f(x) + p(x) + d(x)
︸ ︷︷ ︸

quality deprivation

, (13)

where θ ∈ [0, 1] is a parameter weighing the relative importance of alive deprivation

and lifespan deprivation. An individual losing prematurely period t matters 1/θ

times as much as an individual spending period t in alive deprivation.

We introduce additional notation for the mortality taking place in period t. Con-

sider the population pyramid in period t, and let na(x) be the number of alive indi-

viduals of age a in distribution x, i.e. the number of individuals i for whom ai = a

and si 6= D. (The definition of na(x) corresponds to nt−a(a) in the notation used in

the main text of the paper. In this section, we adopt the notation of Baland et al.

(2021), which does not require to mention period t.) The age-specific mortality rate

µa ∈ [0, 1] denotes the fraction of alive individuals of age a dying at the end of period

t: the number of a-year-old individuals dying at the end of period t is na(x) ∗ µa.

Letting a∗ ∈ N stand for the maximal lifespan (which implies µa∗−1 = 1), the vector

of age-specific mortality rates in period t is given by µ = (µ0, . . . , µa∗−1). Vector

µ summarizes mortality in period t, while distribution x summarizes alive depriva-

tion in period t as well as mortality before period t. The set of mortality vectors is

defined as:

M =
{

µ ∈ [0, 1]a
∗

∣
∣
∣µa∗−1 = 1

}

.

We consider pairs (x, µ) for which the distribution x is a priori unrelated to

vector µ. We assume that the age-specific mortality rates µa must be feasible given

the number of alive individuals na(x). Given that distributions have finite numbers

of individuals, mortality rates cannot take irrational values, i.e. µa ∈ [0, 1]∩Q, where

Q is the set of rational numbers. The set of pairs considered is given by:

O =

{

(x, µ) ∈ X ×M
∣
∣
∣for all a ∈ {0, . . . , a∗} we have µa =

ca
na(x)

for some ca ∈ N

}

.

Letting da(x) be the number of dead individuals born a years before t in dis-

tribution x, the total number of individuals born a years before t is then equal to

na(x) + da(x). Formally, the pair (x, µ) is stationary if, for some n∗ ∈ N and all

a ∈ {0, . . . , a∗}, we have:

• na(x) + da(x) = n∗ ∈ N (constant natality),

• na+1(x) = na(x) ∗ (1− µa) (identical population pyramid in t+ 1).

In a stationary pair, the population pyramid is such that the size of each cohort can

be obtained by applying to the preceding cohort the current mortality rate. The

pair associated to a stationary society (as defined in the main text) is stationary. An

index is a function P : O × N → R+. We simplify the notation P (x, µ, â) to P (x, µ)

as a fixed value for â is assumed.
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We now introduce the properties characterizing EDθâ. IDθâ Equivalence requires

that, as the current mortality (in period t) is the same as the mortality prevailing in

the previous periods in stationary societies, any index defined on current mortality

rates is equivalent to IDθâ in the case of a stationary pair:27

Deprivation axiom 1 (IDθâ Equivalence). There exists some θ ∈ (0, 1] and â ≥ â

such that for all (x, µ) ∈ O that are stationary we have P (x, µ) = IDθâ(x).

Independence of Dead requires that past mortality does not affect the index.

More precisely, the presence of an additional dead individual in distribution x does

not affect the index:

Deprivation axiom 2 (Independence of Dead). For all (x, µ) ∈ O and i ≤ n(x),

if si = D, then P ((xi, x−i), µ) = P (x−i, µ).

Independence of Birth Year requires that the index does not depend on the birth

year of individuals, i.e. only their status matters. As Independence of Dead requires

to disregard dead individuals, the only relevant information in x is whether an alive

individual is poor or not.

Deprivation axiom 3 (Independence of Birth Year). For all (x, µ) ∈ O and

i ≤ n(x), if si = s′i, then P ((xi, x−i), µ) = P ((x′
i, x−i), µ).

Replication Invariance requires that, if a distribution is obtained by replicating

another distribution several times, they both have the same deprivation when asso-

ciated to the same mortality vector. By definition, a k-replication of distribution x

is a distribution xk = (x, . . . , x) for which x is repeated k times.

Deprivation axiom 4 (Replication Invariance). For all (x, µ) ∈ O and k ∈ N,

P (xk, µ) = P (x, µ).

Proposition 7 shows that these properties jointly characterize the EDθâ index.

Proposition 7 (Characterization of EDθâ).

P = EDθâ if and only if P satisfies Independence of Dead, IDθâ Equivalence,

Replication Invariance and Independence of Birth Year.

Proof. We first prove sufficiency. Proving that the EDθâ index satisfies Independence

of Dead, Replication Invariance and Independence of Birth Year is straightforward

and left to the reader. Finally, EDθâ index satisfies IDθâ Equivalence because EDθâ

is equal to GDθâ in stationary populations (Proposition 5) and GDθâ satisfies IDθâ

Equivalence (Proposition 2 in Baland et al. (2021)). (The pairs associated to sta-

tionary societies are stationary).

We now prove necessity. Take any pair (x, µ) ∈ O. We construct another pair

(x′′′, µ) that is stationary and such that P (x′′′, µ) = P (x, µ) and EDθâ(x
′′′, µ) =

EDθâ(x, µ). Given that (x′′′, µ) is stationary, we have by IDθâ Equivalence that

P (x′′′, µ) = IDθâ(x
′′′, µ) for some θ ∈ (0, 1]. As IDθâ = GDθâ = EDθâ for stationary

pairs, we have P (x′′′, µ) = EDθâ(x
′′′, µ) for some θ ∈ (0, 1]. If we can construct such

pair (x′′′, µ), then P (x, µ) = EDθâ(x, µ) for some θ ∈ (0, 1], the desired result.

27Recall that past mortality is recorded in distribution x while current mortality is recorded in
vector µ. As vector µ is redundant in stationary pairs, in the sense that µ can be inferred from the
population pyramid, the index can be computed on distribution x only. See Baland et al. (2021)
for a complete motivation for this axiom.
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We turn to the construction of the stationary pair (x′′′, µ), using two intermediary

pairs (x′, µ) and (x′′, µ). One difficulty is to ensure that the mortality rates µa can be

achieved in the stationary population given the number of alive individuals na(x
′′′),

that is µa = c
na(x′′′) for some c ∈ N.

We first construct a n′−replication of x that has sufficiently many alive individuals

to meet this constraint. For any a ∈ {0, . . . , a∗ − 1}, take any naturals ca and ea

such that µa = ca
ea

. Let e =
∏a∗−1

j=0 ej , n
′
a = e

∏a−1
j=0 (1 −

cj
ej
) and n′ =

∑a∗−1
j=0 n′

j .
28

Let x′ be a n′−replication of x. Letting nx =
∑a∗−1

j=0 nj(x) be the number of alive

individuals in distribution x, we have that x′ has n′ ∗ nx alive individuals. We have

P (x′, µ) = P (x, µ) by Replication Invariance.

We define x′′ from x′ by changing the birth years of alive individuals in such a

way that (x′′, µ) has a population pyramid that is stationary. Formally, we construct

x′′ with n(x′′) = n(x′) such that

• dead individuals in x′ are also dead in x′′,

• alive individuals in x′ are also alive in x′′ and have the same status,

• the birth year of alive individuals are changed such that, for each a ∈ {0, . . . , a∗−

1}, the number of a-years old individuals is n′ ∗ nx ∗

∏a−1

j=0
(1−

cj
ej

)
∑a∗

−1

k=0

∏k−1

j=0
(1−

cj
ej

)
.29

One can check that (x′′, µ) has a population pyramid corresponding to a station-

ary population and that each age group has a number of alive individuals in N. We

have P (x′′, µ) = P (x′, µ) by Independence of Birth Year.

Define x′′′ from x′′ by changing the number and birth years of dead individuals in

such a way that (x′′′, µ) is stationary. To do so, place exactly n0(x
′′)− na(x

′′) dead

individuals in each age group a. We have P (x′′′, µ) = P (x′′, µ) by Independence of

Dead.

Together, we have that P (x′′′, µ) = P (x, µ). Finally, by construction we have

H(x′′′) = H(x), which implies that EDθâ(x
′′′, µ) = EDθâ(x, µ).

28These numbers imply that a constant natality of e newborns leads to a stationary population
of n′ alive individuals.

29Observe that
∑a∗

−1
k=0

∏k−1
j=0 (1−

cj
ej

) = LE, implying that e = n′
∗nx

∑a∗
−1

k=0

∏k−1

j=0
(1−

cj
ej

)
.
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