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1 Non-monotonic evolution of GD

Consider a stationary population with one individual born every year who lives exactly

for 4 periods, with a mortality rate at age 3 equal to 1. The mortality vector is thus

µ = (0, 0, 0, 1, . . . ). We assume that the age threshold, â, is equal to 12, and γ = 1.

There is no alive deprivation. GD for this situation is equal to 8/12, and is equal to

ID. In period ts, there is a permanent mortality shock such that the new mortality rate

at age 1 is equal to 1. The new mortality vector is thus µs = (0, 1, 0, 1, . . . ). Table 1

summarizes the evolution of this population after this permanent shock.

Table 1: Non-monotonicity of GD indices after permanent mortality shock.

period 0 1 2 3 4 . . . 11 GD

t < ts NP NP NP NP D . . . D 8/12 = 0.66
ts NP NP NP NP D . . . D 18/22 = 0.82
ts + 1 NP NP D NP D . . . D 18/21 = 0.86
ts + 2 NP NP D D D . . . D 10/12 = 0.83

Two individuals die at the end of period ts and GD records 18 PYPLs. Given that

four individuals lived in period ts, GD is equal to 18/22. In period ts + 1, there is no
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individual of age 2, and one individual of age 0, 1 and 3. GD records again 18 PYPLs,

but given that only three individuals were alive, GD is equal to 18/21. Two periods after

the shock, the new demographic equilibrium is such that there are only two individuals

alive, of age 1 and 2 respectively. There are 10 PYPLs, out of a total of 12, so that GD

is equal to 10/12. Because of the mechanical adaptation of the population pyramid, GD

increases in ts + 1 but decreases in ts + 2.

How should we think about the non-monotonic behavior of GD? This behavior re-

flects the evolution of the population. Indeed, the presence of the 3-years old individual

in ts + 1 implies that the mortality vector µs does create more PYPLs in ts + 1 than

in ts + 2. So GD conveys correct information about actual deprivation. However, a

fixed mortality vector µs is related to the fundamentals for a population’s health situa-

tion. One should therefore not necessarily conclude from the evolution of GD that these

fundamentals have necessarily changed.

2 Proofs

2.1 Proof of Proposition 1

It is easy to check that ID satisfies the seven axioms, so that the proof of necessity is

omitted. Herebelow, we concentrate on the proof of sufficiency.

Let Q+ denote the set of non-negative rational numbers. Consider ∆, the 2-simplex

on rational numbers, i.e. ∆ = {v ∈ Q3
+ | v1 + v2 + v3 = 1}.

Step 1: Construct a mapping m : X → ∆ such that m(X ) = ∆ and for any two

x,x′ ∈ X , if m(x) = m(x′) then P (x) = P (x′).

We construct mapping m as the composition of four mappings, i.e. m(x) = m4 ◦

m3 ◦m2 ◦m1(x).1

First, mapping m1 removes all individuals who are not in the reference population.

Let X ∗ be the subset of distributions that do not have any individual who is dead and

was born at least â years before t, i.e. X ∗ = {x ∈ X | bi > t− â for all i for whom si =

D}. Let mapping m1 : X → X ∗ return for any x ∈ X the image x∗ = m1(x) with

n(x∗) = f(x) + p(x) + d(x) and for any i ≤ n(x∗) the ith component of x∗ is defined

as x∗
i ≡ xj , where j is the ith individual in x for whom either si 6= D or si = D and

bi > t − â. By the definition of mapping m1, we have for all x ∈ X ∗ that m1(x) = x.

1The composite mapping m is defined a m(x) = m4(m3(m2(m1(x)))).
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Hence, m1(X ) = X ∗. Also, any two x,x′ ∈ X for which m1(x) = m1(x′) are such that

P (x) = P (x′) by Weak Independence of Dead and Anonymity.

Second, mapping m2 removes the birth year of all remaining individuals. Recalling

that S = {NP,AP,D}, let mapping m2 : X ∗ → ∪n∈NSn return for any x ∈ X ∗ the

image o = m2(x) with n(o) = n(x) and for any i ≤ n(o) the ith component of o is defined

from xi = (bi, si) as oi ≡ si. By construction of m2, we have m2(X ∗) = ∪n∈NSn. By

construction of m1, all dead individuals in a distribution x ∈ X ∗ are prematurely dead.

Hence, if oi = D, then i is prematurely dead. Therefore, any two x,x′ ∈ X ∗ for which

m2(x) = m2(x′) are such that P (x) = P (x′) by Weak Independence of Birth Year.

Third, mappingm3 counts the number of individuals exhibiting each status. Consider

the set N 3
0 \(0,0,0), which contains all triplets of numbers in N0 = {0, 1, 2, . . . } except

the nul triplet (0, 0, 0). Let the mapping m3 : ∪n∈NSn → N 3
0 \(0,0,0) return for any

o ∈ ∪n∈NSn the image w = m3(o) such that w1 ≡ #{i ≤ n(o) | oi = NP}, w2 ≡

#{i ≤ n(o) | oi = AP} and w3 ≡ #{i ≤ n(o) | oi = D}.2 By construction, we have

m3 ◦m2(X ∗) = N 3
0 \(0,0,0).

3 Also, any two x,x′ ∈ X ∗ for which m3 ◦m2(x) = m3 ◦m2(x′)

are such that P (x) = P (x′) by Anonymity and Weak Independence of Birth Year.

Fourth, mapping m4 computes the fraction of individuals having each status. Let

mapping m4 : N 3
0 \(0,0,0) → ∆ return for any w ∈ N 3

0 \(0,0,0) the image v = m4(w)

defined as

v = (v1,v2,v3) ≡

(
w1

w1 +w2 +w3
,

w2

w1 +w2 +w3
,

w3

w1 +w2 +w3

)

,

where v1 is the fraction of non-poor, v2 is the fraction of poor and v3 is the fraction of

prematurely dead. Let mapping m : X → ∆ be defined as m(x) = m4 ◦m3 ◦m2 ◦m1(x).

First, we show that for any v ∈ ∆ there exists a x ∈ X ∗ such that m(x) = v. As

v ∈ ∆, there exist c1, c2, c3, e1, e2, e3 ∈ N such that (v1,v2,v3) = (c1/e1, c2/e2, c3/e3).

Consider any distribution x with n(x) = e1e2e3, where c1e2e3 individuals are non-

poor, c2e1e3 individuals are poor, and c3e1e2 individuals are prematurely dead. As

v1 + v2 + v3 = 1, we have that c1e2e3 + c2e1e3 + c3e1e2 = e1e2e3. All individuals in

x who are dead are prematurely dead, hence, x ∈ X ∗. By construction of x, we have

m(x) = v.

There remains to show that for any two x,x′ ∈ X such that m(x) = m(x′) we have

P (x) = P (x′). We have shown above that if m3 ◦ m2 ◦ m1(x) = m3 ◦ m2 ◦ m1(x′),

then P (x) = P (x′). There remains to show that if m3 ◦ m2 ◦ m1(x) 6= m3 ◦ m2 ◦

2For any set A, we denote the cardinality of A by #A.
3By definition of X , there is no x ∈ X ∗ such that m3 ◦m2(x) = (0, 0, 0).
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m1(x′) and m(x) = m(x′), we have P (x) = P (x′). To do so, we show that for any

two w,w′ ∈ N 3
0 \(0,0,0) such that m4(w) = m4(w′), there exist y,y′ ∈ X such that

m3 ◦ m2 ◦ m1(y) = w, m3 ◦ m2 ◦ m1(y′) = w′ and P (y) = P (y′). By construction

of mapping m4, any two w,w′ ∈ N 3
0 \(0,0,0) for which m4(w) = m4(w′) are such that

for k = w′
1 + w′

2 + w′
3 and k′ = w1 + w2 + w3 we have a w′′ ∈ N 3

0 \(0,0,0) such that

w′′ = kw = k′w′. Then, there exist y,y′,y′′,y′′′ ∈ X ∗ with m3 ◦ m2 ◦ m1(y) = w,

m3 ◦m2 ◦m1(y′) = w′, m3 ◦m2 ◦m1(y′′) = m3 ◦m2 ◦m1(y′′′) = w′′ such that y′′ is a

k-replication of y and y′′′ is a k’-replication of y′. By Replication Invariance, we have

that P (y) = P (y′′) and P (y′) = P (y′′′). As m3 ◦m2 ◦m1(y′′) = m3 ◦m2 ◦m1(y′′′), we

have P (y′′) = P (y′′′). Together, P (y) = P (y′).

Step 2: Using mapping m, define an ordering � on ∆ from the ordering on X repre-

sented by P .4

Let � be an ordering on ∆ defined such that for any two v,v′ ∈ ∆ we have v ≻ v′

(resp. v ∼ v′) if there exist x,x′ ∈ X such that v = m(x) and v′ = m(x′) and

P (x) < P (x′) (resp. P (x) = P (x′)). We showed at the end of Step 1 that there always

exist x,x′ ∈ X such that v = m(x) and v′ = m(x′), which shows that ordering � is

complete. Moreover, any two x,x′ ∈ X with m(x) = m(x′) are such that P (x) = P (x′),

which shows that ordering� is well-defined. Together, we have that for any two x,x′ ∈ X

and v,v′ ∈ ∆ with v = m(x) and v′ = m(x′), we have

P (x) ≤ P (x′) ⇔ v � v′. (1)

Step 3: Identifying the appropriate value for γ.

First, we show that � satisfies the following convexity property: for any two

v,v′ ∈ ∆ with v ≻ v′ and any rational λ ∈ (0, 1) we have v ≻ λv+(1−λ)v′ ≻ v′. Take

any two x,y ∈ X ∗ such that v = m(x) and v′ = m(y). Using Replication Invariance,

these two distributions can be taken such that n(x) = n(y), which we assume henceforth.

By Equivalence (1), we have P (x) < P (y). By definition of λ, there exists c, e ∈ N such

that λ = c/e. Let xc be a c-replication of x, x(e−c) be a (e − c)-replication of x, yc be

a c-replication of y and y(e−c) be a (e − c)-replication of y. By construction, we have

4An ordering is a complete, reflexive and transitive binary relation.
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n(xc) = n(yc) and n(x(e−c)) = n(y(e−c)). By Replication Invariance, we have

P (xc) = P (x(e−c)) = P (xc,x(e−c)) < P (yc) = P (y(e−c)) = P (yc,y(e−c)).

As all these distributions belong to X ∗, we have by Subgroup Consistency that P (xc,x(e−c)) <

P (xc,y(e−c)) and that P (xc,y(e−c)) < P (yc,y(e−c)). Now, we constructed these repli-

cations such that v = m(xc,x(e−c)), v′ = m(yc,y(e−c)) and also λv + (1 − λ)v′ =

m(xc,y(e−c)). This yields the desired result by Equivalence (1).

Second, we derive the value γ > 0 for which P is ordinally equivalent to IDγ . Let

the three vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ ∆ be respectively denoted by v100, v010

and v001. By Least Deprivation and Equivalence (1), we have that v100 ≻ v010 and

v100 ≻ v001. There are three cases.

• Case 1: v010 ∼ v001.

Take γ = 1.

• Case 2: v010 ≻ v001.

Consider the edge connecting vertices v100 and v001, which we denote by E100
001 =

{v ∈ ∆ | v2 = 0}. As v100 ≻ v001, the convexity property implies that for any

v,v′ ∈ E100
001 , if v1 > v′

1 then v ≻ v′ and if v1 < v′
1 then v ≺ v′. Let ∆R+ be

the 2-simplex on the set of real numbers. As v100 ≻ v010 ≻ v001, there exists a

v∗ ∈ ∆R+ on the edge connecting the two vertices v100 and v001 such that for any

v ∈ E100
001 , if v1 > v∗

1 then v ≻ v010 and, if v1 < v∗
1 then v ≺ v010. Moreover, if

v∗ ∈ ∆, then v∗ ∼ v010 (see proof below). As Q is dense in R, there is always an

irrational between two rationals. Therefore, v∗ is the unique element of ∆R+ with

these properties.

We show that if v∗ ∈ ∆, then v∗ ∼ v010. Consider the contradiction assumption

that v∗ ∈ ∆ and v∗ ≻ v010.5 We construct a v′ ∈ E100
001 such that v′

1 < v∗
1 and

v′ ≻ v010. Such v′ is in contradiction with the definition of v∗, which requires

that for any v′ ∈ E100
001 with v′

1 < v∗
1 we have v′ ≺ v010. We construct v′ ∈ E100

001

as follows. Take any two distributions x,y ∈ X ∗ such that v010 = m(x) and v∗ =

m(y). As v∗ ≻ v010, we have by Equivalence (1) that P (x) > P (y). Let z ∈ X ∗

be a distribution with n(z) = 1 and whose unique individual is prematurely dead.

By Young Continuity, there exists some k such that P (x) > P (yk, z). Consider

5The alternative contradiction assumption for which v
∗ ∈ ∆ and v

∗ ≺ v
010 also leads to an impossi-

bility.
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v′ = m(yk, z). By Equivalence (1), we have v′ ≻ v010. As v∗ ∈ E100
001 , we have by

construction that v′ ∈ E100
001 and v′

1 < v∗
1, the desired result.

We take γ = 1
v
∗

3
. We have v∗

3 ∈ (0, 1) because v010 ≻ v001 and v100 ≻ v010

respectively imply that v∗ 6= v001 and v∗ 6= v100. As v∗
3 ∈ (0, 1), we have γ > 1.

• Case 3: v010 ≺ v001.

The construction of γ is similar to that proposed in Case 2. We find the unique

element v∗∗ ∈ ∆R+ that splits the edge from v100 to v010 between elements v for

which v ≻ v001 and elements v′ for which v′ ≺ v001. We take γ = v∗∗
2 and have

γ ∈ (0, 1).

We assume henceforth that Case 2 applies, i.e. v010 ≻ v001. We omit the proof for

Case 1 that is simpler and the proof for Case 3 that is very similar.

Step 4: Show that IDγ is ordinally equivalent to P .

Let function F : ∆R+ → R− be defined by F (v) = −(v2 + γv3). By construction of

mapping m and the definition of IDγ , for any v ∈ ∆ and any x ∈ X such that v = m(x)

we have that F (v) = −IDγ(x). If we show that F represents the ordering � on ∆, then

we get from Equivalence (1) that IDγ is ordinally equivalent to P , the desired result.

First, we show that for any v ∈ ∆ we have v � v010 if and only if F (v) ≥ F (v010). By

definition of F , we have that F (v100) = 0, F (v010) = −1 and F (v001) = −γ. Partition ∆

into three subsets, i.e. ∆ = ∆100 ∪∆010 ∪∆001 defined as ∆010 = {v ∈ ∆ | F (v) = −1},

∆100 = {v ∈ ∆ | F (v) > −1} and ∆001 = {v ∈ ∆ | F (v) < −1}.6 We need to show

that any v ∈ ∆100 is such that v ≻ v010, any v ∈ ∆010 is such that v ∼ v010 and any

v ∈ ∆001 is such that v ≺ v010. In order to avoid repetitions, we only prove that any

v ∈ ∆100 is such that v ≻ v010. To do so, we show that v = λv010 + (1 − λ)v′ for

some rational λ ∈ [0, 1) and some v′ on the edge E100
001 with v′

1 > v∗
1. This construction

is illustrated in Panel A of Figure 1. Given that any v′ ∈ E100
001 for which v′

1 > v∗
1 is

such that v′ ≻ v010, the convexity property of � then implies that v ≻ v010. Take

v′ ≡
(

1− v3
1−v2

, 0, v3
1−v2

)

. As v ∈ ∆, the definition of v′ is such that v′ ∈ E100
001 . Let

v′′ ≡ λv010 + (1− λ)v′ where λ ≡ v2 ∈ [0, 1) since v ∈ ∆100. We have v′′ = v since, by

6We have defined F and γ such that F (v∗) = F (v010). From a geometric perspective, the set of
elements v ∈ ∆R+ for which F (v) = −1 is the segment connecting v

010 with v
∗. Observe that if

v
∗ /∈ ∆, then the only element in this segment belonging to ∆ is the vertex v

010 and, therefore, ∆010

degenerates to {v010}. The subset ∆100 contains vertex v
100 and all elements of ∆ that are on v

100’s
side of the segment connecting v

010 with v
∗. In turn, ∆001 contains vertex v

001 and all elements of ∆
that are on v

001’s side of the segment connecting v
010 with v

∗.
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construction of v′, we have v′′
2 = λ = v2 and v′′

3 = (1 − λ)v′
3 = v3. There remains to

show that v′
1 > v∗

1. Last inequality is equivalent to 1 − v3
1−v2

> 1 − 1
γ
, which simplifies

to 1
γ
> v3

1−v2
. This inequality holds because, as v ∈ ∆100, we have F (v) > −1, which

simplifies to the same inequality.

v100

v010 v001

v∗

v′

v ⊗

b

b

b

b b

(A) v100

v010 v001

v∗

v′

v̂

⊗

b
b

b

b b

(B)

b
v

b v̂∗

v̂′
b

Figure 1: Panel A: construction used in order to show that v ≻ v
010 when F (v) > F (v010). Panel B:

construction used in order to show that v ≻ v
′ when F (v) > F (v′). Iso-F lines are dashed.

Geometrically, we have shown that the segment connecting v010 to v∗ is an “implicit”

indifference curve of �.7 The intuition for the rest of the proof is that all parallel

segments are also “implicit” indifference curves of �.

Take any two v,v′ ∈ ∆ with F (v) ≥ F (v′), we show that v � v′. If F (v) ≥

−1 ≥ F (v′), then the previous argument directly yields the result. We focus on the

particular case −1 > F (v) > F (v′) and show that v ≻ v′ (the proofs for the other

cases are similar). The construction is illustrated in Panel B of Figure 1. This case is

such that there exists a v̂ = (0, v̂2, 1 − v̂2) ∈ E010
001 with F (v) > F (ŝ) > F (v′), because

F (v010) = −1 and F (v001) = minv′′∈∆ F (v′′). By the convexity property of �, our

assumption v010 ≻ v001 implies that v010 ≻ v̂ � v001. Therefore, there exists a unique

v̂∗ ∈ ∆R+ on the edge connecting vertices v100 and v001 such that for any v′′ ∈ E100
001 , if

v′′
1 > v̂∗

1 then v′′ ≻ v̂, if v′′
1 < v̂∗

1 then v′′ ≺ v̂ and if v̂∗ ∈ ∆, then v̂∗ ∼ v̂ (the omitted

proof for this claim follows the argument provided in Step 3 Case 2).

First, we show that the segment connecting v̂ to v̂∗ is parallel to the segment con-

necting v010 to v∗. Formally, this is equivalent to showing that v̂2 =
v̂
∗

1
v∗

1
. Consider the

contradiction assumption for which v̂2 >
v̂
∗

1
v
∗

1
.8 Assume that v̂∗ ∈ ∆.9 Consider now

7We call this indifference curve “implicit” because it is defined in ∆R+ rather than in ∆.
8The alternative contradiction assumption for which v̂2 <

v̂
∗

1

v
∗

1

also leads to an impossibility.
9If v̂∗ /∈ ∆, then replace v̂

∗ by a nearby ṽ
∗ ∈ E100

001 for which ṽ
∗

1 > v̂
∗

1 and v̂2 >
ṽ
∗

1

v
∗

1

. As ṽ∗

1 > v̂
∗

1 , we

have ṽ
∗ ≻ v̂.
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v̂
′

= (
v̂
∗

1
v̂2
, 0, 1 −

v̂
∗

1
v̂2
) ∈ E100

001 . By the contradiction assumption, we have v̂
′

1 < v∗
1 and,

hence, v010 ≻ v̂
′

. By construction, for the rational λ = v̂2 we have:

v̂ = λv010 + (1− λ)v001 and v̂∗ = λv̂
′

+ (1− λ)v001.

We use the fact that v010 ≻ v̂
′

in order to show that v̂ ≻ v̂∗, a contradiction to the

definition of v̂∗. Take any three distributions x,y, z ∈ X ∗ such that v010 = m(x),

v̂
′

= m(y) and v001 = m(z). By Equivalence (1), we have P (x) < P (y) < P (z).

Using Replication Invariance, these three distributions can be taken such that n(x) =

n(y) = n(z), which we assume henceforth. As λ = v̂2, there exist c, e ∈ N such that

λ = c/e. Let xc be a c-replication of x, yc be a c-replication of y and z(e−c) be a

(e− c)-replication of z. By Replication Invariance, we have P (xc) < P (yc) < P (z(e−c)).

Thus, by Subgroup Consistency, we have that P (xc, z(e−c)) < P (yc, z(e−c)). Now, we

constructed these replications such that v̂ = m((xc, z(e−c))) and v̂∗ = m((yc, z(e−c))).

By Equivalence (1), we obtain v̂ ≻ v̂∗, the desired contradiction. Therefore, we have

v̂2 =
v̂
∗

1
v
∗

1
, which implies that F (v̂) = F (v̂∗) as γ = 1

v
∗

3
for Case 2.

Second, we use the previous result to show that v ≻ v′. Partition ∆ into three

subsets, i.e. ∆ = ∆100′ ∪ ∆v̂ ∪ ∆001′ defined as ∆v̂ = {v′′ ∈ ∆ | F (v′′) = F (v̂)},

∆100′ = {v′′ ∈ ∆ | F (v′′) > F (v̂)} and ∆001′ = {v′′ ∈ ∆ | F (v′′) < F (v̂)}. We have by

construction that v ∈ ∆100′ and v′ ∈ ∆001′ . We can show that v′ ≺ v̂ using the same

proof technique as above, i.e. show that v′ is on a segment connecting v̂ to a v′′ on the

edge E100
001 with v′′

1 < v̂∗
1 and, hence, such that v′′ ≺ v̂. By the convexity property of �,

this yields in turn v′ ≺ v̂. Similarly, we can show that v ≻ v̂ by showing that v is on a

segment connecting v̂ to a v′′′ that is either on the edge E100
001 with v′′′

1 > v̂∗
1 and, hence,

such that v′′′ ≻ v̂ or on the edge E100
010 and, as v100 ≻ v010 ≻ v̂, such that v′′′ ≻ v̂. This

implies in both cases that v ≻ v̂.

2.2 Proof of Proposition 2

We first prove necessity. Proving that GD satisfies Independence of Dead* is straight-

forward and left to the reader. Proposition 1 (see Appendix 2.3) shows that GD satisfies

ID Equivalence. Finally, GD satisfies Additive Decomposibility when the size function is

defined as η(x, µ) = f(x) + p(x) + dGD(x, µ). We show that this function is indeed such

that η(x, µ) = η(x′, µ′) + η(x′′, µ′′). Given that f(x′,x′′) + p(x′,x′′) = f(x′) + p(x′) +

f(x′′) + p(x′′), there remains to show that dGD((x′,x′′), µ) = dGD(x′, µ′) + dGD(x′′, µ′′).
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We have

dGD((x′,x′′), µ) =
â−1∑

a=0

na(x
′,x′′) ∗ µa ∗ (â− (a+ 1))

=
â−1∑

a=0

(na(x
′) + na(x

′′)) ∗
na(x

′) ∗ µ′
a + na(x

′′) ∗ µ′′
a

na(x′) + na(x′′)
∗ (â− (a+ 1))

= dGD(x′, µ′) + dGD(x′′, µ′′).

It is then straighforwd to verify Equation (4) by replacing P and η by their expressions.

We now prove sufficiency. Take any pair (x′, µ) ∈ O. Consider the distribution x

obtained from x′ by removing all dead individuals in x. We have P(x, µ) = P(x′, µ) by

Independence of Dead* and also GDγ(x, µ) = GDγ(x
′, µ).

The proof requires to define, for each a ∈ {0, . . . , a∗}, two counterfactual pairs

(x∗
a, µ

∗
a) and (x0

a, µ
0
a), which are illustrated in the center and right panels of Figure

2.

Age

Number

0 1 2 4
â = a∗
3

indiv.

pair (x, µ)

na(x)

# Death at age a at end of period t

a

# NP at age a

# AP at age a

Age

0 1 2 4
â = a∗
3

pair (x∗
a, µ

∗
a)

na(x)

a

Age

0 1 2 4
â = a∗
3

pair (x0
a, µ

0
a)

na(x)

a

Figure 2: Left panel: pair (x, µ). Center panel: stationary pair (x∗

a, µ
∗

a), where dead individuals are not
shown. Right panel: degenerated pair (x0

a, µ
0
a).

The counterfactual pair (x∗
a, µ

∗
a) is stationary. The vector µ∗

a is such that mor-

tality rates are zero except for two cases: µ∗
a = µa and µ∗

a∗ = 1, which is µ∗
a =

(0, . . . , 0, µa, 0, . . . , 0, 1). We now turn to the construction of the distribution x∗
a. At

all ages a′ ≤ a, there are exactly na(x) alive individuals (i.e. na′(x
∗
a) = na(x)); for all

ages a′ > a we have na′(x
∗
a) = na(x) ∗ (1 − µa). At all ages a′ ≤ a, there are no dead

individuals; for all ages a′ > a, this number is na(x) ∗ µa. There are no poor individuals
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in x∗
a except at age a, where this number is equal to the number of a-years old individuals

in x whose status is AP, i.e. #{i ≤ n(x)|si = AP and bi = t− a}.

The counterfactual “degenerated” pair (x0
a, µ

0
a) is not stationary and all its alive

individuals are a-years old. The vector µ0
a = µ∗

a, which is µ0
a = (0, . . . , 0, µa, 0, . . . , 0, 1).

We now turn to the construction of distribution x0
a. At all ages a′ 6= a, there are no

alive individuals (i.e. na′(x
0
a) = 0); and we have na(x

0
a) = na(x). There are no dead

individuals. The number of AP individuals in x0
a is equal to the number of a-years old

individuals in x whose status is AP, i.e. #{i ≤ n(x)|si = AP and bi = t− a}.

By iterative application of Additive Decomposibility, we have that

P(x, µ) =

∑a∗

j=0 η(x
0
j , µ

0
j ) ∗P(x0

j , µ
0
j )

∑a∗

j=0 η(x
0
j , µ

0
j)

. (2)

By Independence of Dead*, Equation (2) also holds for the stationary distribution

(x∗
a, µ

∗
a):

P(x∗
a, µ

∗
a) =

∑a∗

j=0 η((x
∗
a)

0
j , (µ

∗
a)

0
j ) ∗P((x∗

a)
0
j , (µ

∗
a)

0
j )

∑a∗

j=0 η((x
∗
a)

0
j , (µ

∗
a)

0
j )

, (3)

where the pair ((x∗
a)

0
j , (µ

∗
a)

0
j ) is the degenerated pair for age j associated to the stationary

pair (x∗
a, µ

∗
a), i.e. the mortality vector (µ∗

a)
0
j = µ∗

a for j = a and (µ∗
a)

0
j = (0, . . . , 0, 1) for

j 6= a; and for j = a we have ((x∗
a)

0
j , (µ

∗
a)

0
j) = (x0

a, µ
0
a).

For all j 6= a we show that P((x∗
a)

0
j , (µ

∗
a)

0
j) = 0. Recall that (µ∗

a)
0
j = (0, . . . , 0, 1) and

that distribution (x∗
a)

0
j has no individual whose status is AP. Consider the stationary pair

(x′′′, µ′′′) such that µ′′′ = (0, . . . , 0, 1), distribution x′′′ has no individual whose status

is AP and no dead individual. Provided that n(x′′′) = nj(x
∗
a) ∗ (a

∗ + 1), we have that

P((x∗
a)

0
j , (µ

∗
a)

0
j ) appears in the decomposition (2) applied to (x′′′, µ′′′). By construction,

IDγ(x
′′′, µ′′′) = 0. By ID Equivalence, we have that P(x′′′, µ′′′) = IDγ(x

′′′, µ′′′) = 0.

Given that P does not yield negative images, we must have that P((x∗
a)

0
j , (µ

∗
a)

0
j ) = 0.10

As (x∗
a, µ

∗
a) is stationary, we have from ID Equivalence that P(x∗

a, µ
∗
a) = IDγ(x

∗
a, µ

∗
a)

for some γ > 0. As GD satisfies ID Equivalence, we have P(x∗
a, µ

∗
a) = GDγ(x

∗
a, µ

∗
a).

Given that P((x∗
a)

0
j , (µ

∗
a)

0
j ) = 0 for all j 6= a, and

∑a∗

j=0 η((x
∗
a)

0
j , (µ

∗
a)

0
j) = η(x∗

a, µ
∗
a),

10To be complete, there remains to show that η((x∗

a)
0
j , (µ

∗

a)
0
j ) > 0 when nj(x

∗

a) > 0. If it is not the
case, one can derive a contradiction with the requirement that η(x, µ) = η(x′, µ′) + η(x′′, µ′′).
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Equation (3) may be rewritten as

P((x∗
a)

0
a, (µ

∗
a)

0
a) =

η(x∗
a, µ

∗
a) ∗GDγ(x

∗
a, µ

∗
a)

η((x∗
a)

0
a, (µ

∗
a)

0
a)

.

As ((x∗
a)

0
a, (µ

∗
a)

0
a) = (x0

a, µ
0
a), this last identity becomes

P(x0
a, µ

0
a) =

η(x∗
a, µ

∗
a) ∗GDγ(x

∗
a, µ

∗
a)

η(x0
a, µ

0
a)

.

Inserting this last expression in Equation (2), where
∑a∗

j=0 η(x
0
j , µ

0
j ) = η(x, µ), yields

P(x, µ) =

∑a∗

j=0 η(x
∗
j , µ

∗
j ) ∗GDγ(x

∗
j , µ

∗
j )

η(x, µ)
. (4)

Equation (4) holds for all pairs. If we have that function η is defined as η(x, µ) =

f(x) + p(x) + dGD(x, µ), then Equation (4) simplifies to P(x, µ) = GDγ(x, µ) and the

proof is complete. We now show that the function η is indeed expressed as η(x, µ) =

f(x)+p(x)+dGD(x, µ). Equation (4) holds in particular for any stationary pair (x′, µ′).

Therefore, by ID Equivalence we have

GDγ(x
′, µ′) =

∑a∗

j=0 η((x
′)∗j , (µ

′)∗j ) ∗GDγ((x
′)∗j , (µ

′)∗j )

η(x′, µ′)
, (5)

which only holds if function η has the appropriate expression.

2.3 Proof that GD satisfies ID Equivalence

Lemma 1 implies that GD satisfies ID Equivalence, but is slightly more general. This

lemma shows that GD is equivalent to ID as soon as natality is constant for the â − 1

periods preceding t and mortality rates are consistent with the population pyramid up

to age â− 1.

Lemma 1 (Equivalence between GD and ID indices in stationary pairs).

If the pair (x, µ) ∈ O is such that for some n∗ ∈ N and all a ∈ {0, . . . , â− 1}, we have:

• na(x) + da(x) = n∗ ∈ N ,

• na+1(x) = na(x) ∗ (1− µa),

then we have that GDγ(x, µ) = IDγ(x).
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Proof. By the definitions of GDγ and IDγ , we have GDγ(x, µ) = IDγ(x) if d(x) =

dGD(x, µ). There remains to show that d(x) = dGD(x, µ).

By definition, the number of prematurely dead individuals counted in period t by

the inherited deprivation approach is

d(x) =

â−1∑

a=1

da(x).

As the number of newborns is assumed constant in the â− 1 periods preceding t,

d(x) =

â−1∑

a=1

(n∗ − na(x)) .

As n0(x) = n∗, we may rewritte the previous equation as

d(x) =

â−1∑

a=1

(
a−1∑

a′=0

(na′(x)− na′+1(x))

)

,

and developing the sums, we get

d(x) = (â− 1)(n0(x)− n1(x)) + (â− 2)(n1(x)− n2(x)) + · · ·+ (â− (â− 1))(nâ−2(x)− nâ−1(x)),

=
â−2∑

a=0

(na(x)− na+1(x))(â − (a+ 1)),

and given that â− ((â− 1) + 1) = 0, this is equivalent to

d(x) =
â−1∑

a=0

(na(x)− na+1(x))(â − (a+ 1)).

Finally, as na+1(x) = na(x)− na(x) ∗ µa for all a ∈ {0, . . . , â− 2}, we get

d(x) =
â−1∑

a=0

na(x) ∗ µa ∗ (â− (a+ 1)) = dGD(x, µ).
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2.4 Proof of Proposition 3

We prove sufficiency. If GDγ satisfies Monotonicity in Current Mortality, then for any

two pairs (x, µ), (x, µ′) ∈ O with µa ≥ µ′
a for all a ∈ {0, . . . , â− 2} we have GDγ(x, µ) ≥

GDγ(x, µ
′). As the two pairs share the same distribution x, the precondition that µa ≥

µ′
a for all a ∈ {0, . . . , â−2} implies dGD(x, µ) ≥ dGD(x, µ′). As GDγ(x, µ) ≥ GDγ(x

′, µ),

inequality dGD(x, µ) ≥ dGD(x, µ′) implies that
∂GDγ

∂dGD ≥ 0. By chain derivation, we have

∂GDγ

∂dGD
=

γ(p+ f)− p

(p+ f + dGD)2
.

Thus, we have
∂GDγ

∂dGD ≥ 0 if and only if γ ≥ p
p+f

. As this must hold for all x, we must

have γ ≥ 1.

The proof for necessity is easily obtained by reversing the above argument.

3 GD and ID count the same number of PYPLs

In the absence of migration, many aspects of distribution x are mechanically related to

the distribution and mortality vector of the preceding period. We say that a distribution

x′ in period t is generated by the pair (x, µ) in period t−1 if (i) the number of individuals

born in each period before t is the same in both distributions, (ii) all individuals in x′

who do not have a counterpart in x are newborns, (iii) individuals that are dead in x

have their counterpart also dead in x′ and (iv) the number of a-year-old individuals in

x′ is equal to the number of (a− 1)-year-old individuals in x multiplited by the survival

rate 1− µa−1. Formally, that is

(i) na+1(x
′) + da+1(x

′) = na(x) + da(x) for all a ≥ 0,

(ii) bj = t for all j present in x′ but not in x,

(iii) (s′i, b
′
i) = (si, bi) for all i present in x such that si = D,

(iv) na+1(x
′) = na(x) ∗ (1− µa) for all a ≥ 0.

Let the set of all periods up to t be denoted by Zt = {−∞, . . . , t − 1, t}. In theory,

a pair
(
xt, µt

)
is the last element of a stream of pairs (xτ , µτ )τ∈Zt

∈ OZt , which are

such that xτ+1 is generated by (xτ , µτ ) for all τ ∈ Zt. When evaluating (xτ , µτ )τ∈Zt
in

time t, ID only considers the information in current alive population xt as well as past

natality n0(x
τ ) for τ ∈ {t−(â−1), . . . , t−1}. In turn, GD only consider the information

in current alive population xt together with current mortality µt.
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Proposition 1 shows that GD and ID count the same number of PYPLs even outside

stationary populations. Consider a population in a stationary state up to period 0. As-

sume that, over the time-frame {0, . . . , t∗}, this population is hit by a series of mortality

and natality shocks. From period t∗ + 1 onwards, natality and mortality return to the

values they took before period 0. Mechanically, the young part of the population pyra-

mid may need up to â− 1 periods after period t∗ in order to come back to its previous

stationary state. By Lemma 1, GD and ID indices are equal outside the (extended)

time-frame {0, . . . , t∗ + â− 1}. Proposition 1 shows that GD and ID compute the same

number of PYPLs over the (extended) time frame. Let n(xt) = p(xt) + f(xt) be the

number of alive individuals in xt.

Proposition 1 (GD and ID count the same number of PYPLs).

Let the stream of pairs
(
xt, µt

)

t∈Z
∈ OZ be such that xt+1 is generated by

(
xt, µt

)
for

all t ∈ Z. Take any t∗ ≥ 0. If we have for all t ∈ Z\{0,...,t∗+â−1} that

• n0(x
t) = n∗ ∈ N++ and µt = µ∗ ∈ M

then we have

t∗+â−1∑

t=0

(
n(xt) + d(xt)

)
∗ IDγ(x

t) =
t∗+â−1∑

t=0

(
n(xt) + dGD(xt, µt)

)
∗GDγ(x

t, µt), (6)

and for all t ∈ Z\{0,...,t∗+â−1} we have IDγ(x
t) = GDγ(x

t, µt).

Proof. We prove the two implications in turn.

• Step 1: For all t ∈ Z\{0,...,t∗+â−1} we have IDγ(x
t) = GDγ(x

t, µt).

Take any t ∈ Z\{0,...,t∗+â−1}. By definition, we have IDγ(x
t) = GDγ(x

t, µt) if

d(xt) = dGD(xt, µt). By the proof of Lemma 1, we have d(xt) = dGD(xt, µt) if

(A) for all a ∈ {0, . . . , â− 2} we have na+1(x
t) = na(x

t) ∗ (1− µt
a) and (B) for all

cohorts a ∈ {0, . . . , â− 1} we have na(x
t) + da(x

t) = n∗ ∈ N++.

First, we prove (A). As t /∈ {0, . . . , t∗ + â− 1}, we have by assumption that for all

previous periods t′ ∈ {t− (â− 1), . . . , t− 1}

– distribution xt′+1 is generated by (xt′ , µt′),

– n0(x
t′) = n∗ and µt′ = µ∗.
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As a result, we have for all a ∈ {0, . . . , â− 2} that

na+1(x
t) = n∗ ∗

a∏

l=0

(1− µ∗
l ),

which implies for all a ∈ {1, . . . , â−2} that na+1(x
t) = na(x

t)∗(1−µ∗
a). Finally, last

equation also holds for a = 0 as by n0(x
t) = n∗ we also have n1(x

t) = n∗ ∗(1−µ∗
0),

the desired result.

Second, we prove (B). Given that for all t′ ∈ {t−(â−1), . . . , t−1} distribution xt′+1

is generated by (xt′ , µt′), we have for all a ∈ {1, . . . , â− 1} that na(x
t) + da(x

t) =

n0(x
t−a). As for all t′ ∈ {t − (â − 1), . . . , t} we have n0(x

t′) = n∗, the previous

claim implies that na(x
t) + da(x

t) = n∗ for all a ∈ {0, . . . , â− 1}.

• Step 2: Equation (6) holds.

By definition of IDγ(x
t) and GDγ(x

t, µt), Equation (6) is

t∗+â−1∑

t=0

(
n(xt) + d(xt)

)
∗

(
n(xt) ∗HC(xt)

n(xt) + d(xt)
+ γ

d(xt)

n(xt) + d(xt)

)

=

t∗+â−1∑

t=0

(
n(xt) + dGD(xt, µt)

)
∗

(
n(xt) ∗HC(xt)

n(xt) + dGD(xt, µt)
+ γ

dGD(xt, µt)

n(xt) + dGD(xt, µt)

)

,

which is equivalent to

t∗+â−1∑

t=0

d(xt)

︸ ︷︷ ︸

≡SID

=

t∗+â−1∑

t=0

dGD(xt, µt)

︸ ︷︷ ︸

≡SGD

. (7)

In order to prove Equation (7), we develop the sums SID and SGD.

First, we develop SGD. Using the short notation ∆a = â− (a+ 1), the definition

of dGD is

dGD(xt, µt) =

â−1∑

a=0

na(x
t) ∗ µt

a ∗∆a,
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and as ∆â−1 = 0, we have

SGD =
t∗+â−1∑

t=0

â−2∑

a=0

na(x
t) ∗ µt

a ∗∆a. (8)

Equation (8) shows that SGD counts the number of person-years prematurely lost

(PYPL) due to deaths occuring in the time-frame T = {0, . . . , t∗ + â − 1}. All

these PYPLs are lost for periods in {1, . . . , t∗+2â−2}. Equation (9) divides these

PYPLs between the PYPLs that are lost for periods in the time-frame T – i.e. for

periods 1 to t∗ + â − 1 – and those lost for periods following the time-frame T –

i.e. for periods t∗ + â to t∗ + 2â− 2.

SGD′ =
t∗+â−2∑

t=0

(â−2)
∑

a=0

min{t+(â−1)−a,t∗+â−1}
∑

τ=t+1

na(x
t) ∗ µt

a

︸ ︷︷ ︸

SGD′−inside T

+
t∗+â−1∑

t=t∗+1

(â−2)
∑

a=0

t+(â−1)−a
∑

τ=t∗+â

na(x
t) ∗ µt

a

︸ ︷︷ ︸

SGD′−outside T

.

(9)

We show that SGD′ = SGD. As term na(x
t) ∗ µt

a is independent on τ we have

SGD′ =
t∗+â−2∑

t=0

(â−2)
∑

a=0

na(x
t) ∗ µt

a

min{t+(â−1)−a,t∗+â−1}
∑

τ=t+1

1 +
t∗+â−1∑

t=t∗+1

(â−2)
∑

a=0

na(x
t) ∗ µt

a

t+(â−1)−a
∑

τ=t∗+â

1.

We consider the expression of SGD’ in turn for the set of periods {0, . . . , t∗}, then

for the set of periods {t∗+1, . . . , t∗+â−2} and finally for period t∗+â−1. For each

of these three sets of periods, we show that the expression of SGD’ corresponds to

the expression of SGD.

– Periods t ∈ {0, . . . , t∗}.

We have for all a ∈ {0, . . . , â− 2} that

min{t+ (â− 1)− a, t∗ + â− 1} = t+ â− 1− a,

which implies

t+(â−1)−a
∑

τ=t+1

1 = â− (a+ 1) = ∆a,
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and therefore

t∗∑

t=0

(â−2)
∑

a=0

na(x
t) ∗ µt

a

min{t+(â−1)−a,t∗+â−1}
∑

τ=t+1

1 =
t∗∑

t=0

(â−2)
∑

a=0

na(x
t) ∗ µt

a ∗∆a.

– Periods t ∈ {t∗ + 1, . . . , t∗ + â− 2}.

We have for all a ∈ {0, . . . , â− 2} that

t∗+â−2∑

t=t∗+1

(â−2)
∑

a=0

na(x
t) ∗ µt

a

min{t+(â−1)−a,t∗+â−1}
∑

τ=t+1

1 +

t∗+â−2∑

t=t∗+1

(â−2)
∑

a=0

na(x
t) ∗ µt

a

t+(â−1)−a
∑

τ=t∗+â

1,

=
t∗+â−2∑

t=t∗+1

(â−2)
∑

a=0

na(x
t) ∗ µt

a





min{t+(â−1)−a,t∗+â−1}
∑

τ=t+1

1 +

t+(â−1)−a
∑

τ=t∗+â

1



 ,

=

t∗+â−2∑

t=t∗+1

(â−2)
∑

a=0

na(x
t) ∗ µt

a

t+(â−1)−a
∑

τ=t+1

1,

=

t∗+â−2∑

t=t∗+1

(â−2)
∑

a=0

na(x
t) ∗ µt

a ∗∆a.

– Period t = t∗ + â− 1.

We have for all a ∈ {0, . . . , â− 2} that

t∗+2(â−1)−a
∑

τ=t∗+â

1 = â− (a+ 1) = ∆a.

and therefore

t∗+â−1∑

t=t∗+â−1

(â−2)
∑

a=0

na(x
t) ∗ µt

a

t+(â−1)−a
∑

τ=t∗+â

1 =

t∗+â−1∑

t=t∗+â−1

(â−2)
∑

a=0

na(x
t) ∗ µt

a ∗∆a.

Second, we develop SID. The sum SID counts the number of person-years that

are prematurely lost for periods in the time-frame T = {0, . . . , t∗ + â − 1}. As

distribution xt+1 is generated by (xt, µt) for all t ∈ Z, these PYPLs are lost due

to deaths occuring in the set of periods t ∈ {−(â− 1), . . . , t∗ + â− 2}. We express

SID by counting all these PYPLs in the following way:

– run all periods t at which the occurrence of a death potentially generates a

PYPL for a period in T ,
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– for each such period t, run all age-cohorts a whose death generates a PYPL

for a period in T ,

– count all periods in T that are prematurely lost due to a death occuring at

age a in period t.

Using this way of counting, the sum SID is

SID =

t∗+â−2∑

t=−(â−1)

(â−2)
∑

a=0

min{t+(â−1)−a,t∗+â−1}
∑

τ=max{0,t+1}

na(x
t) ∗ µt

a. (10)

We illustrate the order in which (10) counts all the relevant PYPLs in Figure 3.

Figure 3: Order in which blocks of PYPLs are counted in (10). Block 1 corresponds to PYPLs due to
newborns dying in period −(â− 1). Block 2 and 3 are due to newborns dying in period −(â− 2). Block
4 is due to 1-year-old dying in period −(â − 2). Block 5, 6 and 7 are due to newborns dying in period
−(â − 3). Block 8 and 9 are due to 1-year-old dying in period −(â− 3). Block 10 is due to 2-year-old
dying in period −(â− 3). For simplicity, this order is illustrated for pairs (xt, µt) that are stationary.

Equation (11) divides these PYPLs between the PYPLs generated by deaths oc-

curing before the time-frame T = {0, . . . , t∗+ â− 1}, and the PYPLs generated by

deaths occuring during the time-frame T . This division yields the sum SID’

SID′ =
−1∑

t=−(â−1)

t+(â−1)
∑

a=0

t+(â−1)−a
∑

τ=0

na(x
t) ∗ µt

a

︸ ︷︷ ︸

SID′−outside T

+
t∗+â−2∑

t=0

(â−2)
∑

a=0

min{t+(â−1)−a,t∗+â−1}
∑

τ=t+1

na(x
t) ∗ µt

a

︸ ︷︷ ︸

SID′−inside T

.

(11)

We show that SID′ = SID. We consider the expression of SID’ in turn for the set
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of periods {−(â−1), . . . ,−1} and then for the set of periods {0, . . . , t∗+ â−2}. For

each of these two sets of periods, we show that the expression of SID’ corresponds

to the expression of SID.

– Periods t ∈ {−(â− 1), . . . ,−1}.

For this case we have max{0, t + 1} = 0. Furthermore, for all a ≥ 0 we have

t− a ≤ 0 ≤ t∗ and thus

min{t+ (â− 1)− a, t∗ + â− 1} = t+ (â− 1)− a.

Thus, we can rewritte the sum SID’ on these periods as

−1∑

t=−(â−1)

t+(â−1)
∑

a=0

t+(â−1)−a
∑

τ=0

na(x
t) ∗ µt

a

=

−1∑

t=−(â−1)

t+(â−1)
∑

a=0

min{t+(â−1)−a,t∗+â−1}
∑

τ=max{0,t+1}

na(x
t) ∗ µt

a.

Finally, for all a > t+ (â− 1) we have t+ (â− 1)− a < 0, implying that

t+(â−1)−a
∑

τ=0

na(x
t) ∗ µt

a = 0.

and therefore the sum SID’ is further rewritten as

−1∑

t=−(â−1)

(â−2)
∑

a=0

min{t+(â−1)−a,t∗+â−1}
∑

τ=max{0,t+1}

na(x
t) ∗ µt

a.

– Periods t ∈ {0, . . . , t∗ + â− 2}.

For this periods we have max{0, t + 1} = t + 1. Hence, we can rewritte the

sum SID’ on these periods as

t∗+â−2∑

t=0

(â−2)
∑

a=0

min{t+(â−1)−a,t∗+â−1}
∑

τ=t+1

na(x
t) ∗ µt

a =

t∗+â−2∑

t=0

(â−2)
∑

a=0

min{t+(â−1)−a,t∗+â−1}
∑

τ=max{0,t+1}

na(x
t) ∗ µt

a.

Third, we show that SGD′ = SID′. Given that SGD′ inside T and SID′ inside T

are trivially equal to each other, we only need to show that SGD′ outside T =
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SID′ outside T , which is

t∗+â−1∑

t=t∗+1

(â−2)
∑

a=0

t+(â−1)−a
∑

τ=t∗+â

na(x
t) ∗ µt

a =

−1∑

t=−(â−1)

t+(â−1)
∑

a=0

t+(â−1)−a
∑

τ=0

na(x
t) ∗ µt

a. (12)

Part 1. We show that for both SGD′ outside T and SID′ outside T we have for

all relevant t and a that

na(x
t) ∗ µt

a = n∗
a ∗ µ

∗
a,

where for all a ∈ {0, . . . , â− 1} we have n∗
a = n∗

∏a−1
l=0 (1− µ∗

l ).

Recall that, by assumption, xt is generated by (xt−1, µt−1), xt−1 is generated by

(xt−2, µt−2), and so on. By assumption again, n0(x
t) = n∗ ∈ N++ and µt = µ∗ ∈

M for all t ∈ Z\{0,...,t∗}.

– SGD′ outside T .

Take any t ∈ {t∗ + 1, . . . , t∗ + â − 1} and any a ∈ {0, . . . , â − 2} such that a

death occuring in period t at age a generates a PYPL for a period outside

the time-frame T , i.e. t and a are such that

t+ (â− 1)− a ≥ t∗ + â.

Given that t ≥ t∗ + 1, we have that µt = µ∗ and hence µt
a = µ∗

a. There

remains to show that

na(x
t) = n0(x

t−a)

a−1∏

l=0

(1− µt−a+l
l ) = n∗

a−1∏

l=0

(1− µ∗
l ) = n∗

a. (13)

As from period t∗+1 onwards, natality and mortality are fixed, last equation

holds if t−a ≥ t∗+1. This is the case for all t and a for which t+(â−1)−a ≥

t∗ + â, the desired result.

– SID′ outside T .

Take any t ∈ {−(â−1), . . . ,−1} and any a ∈ {0, . . . , â−2}. Given that t ≤ 0,

we have that µt
a = µ∗

a. Finally, given that natality and mortality are fixed for

all periods preceding t, (13) holds, the desired result.

Part 2. We develop each side of Equation (12) using Part 1 and obtain identical

mathematical expressions.
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Consider first SGD’ outside T . By Part 1, for all relevant t and a we have na(x
t) ∗

µt
a = n∗

a ∗ µ
∗
a. Therefore, we rewrite SGD’ outside T as

t∗+â−1∑

t=t∗+1

(â−2)
∑

a=0

t+(â−1)−a
∑

τ=t∗+â

na(x
t) ∗ µt

a =

t∗+â−1∑

t=t∗+1

(â−2)
∑

a=0

n∗
a ∗ µ

∗
a

t+(â−1)−a
∑

τ=t∗+â

1.

From last expression, the relevant t and a are such t + (â − 1) − a ≥ t∗ + â,11 or

yet t ≥ t∗ + 1 + a, hence

t∗+â−1∑

t=t∗+1

(â−2)
∑

a=0

n∗
a ∗ µ

∗
a

t+(â−1)−a
∑

τ=t∗+â

1

=

(â−2)
∑

a=0

t∗+â−1∑

t=t∗+1+a

n∗
a ∗ µ

∗
a ∗ (t− t∗ − a) ,

=

(â−2)
∑

a=0

n∗
a ∗ µ

∗
a ∗

(
t∗+â−1∑

t=t∗+1+a

t− (t∗ + a)

t∗+â−1∑

t=t∗+1+a

1

)

,

=

(â−2)
∑

a=0

n∗
a ∗ µ

∗
a ∗

((

(t∗ + a) ∗ (â− 1− a) +

â−1−a∑

t=1

1

)

− (t∗ + a) (â− 1− a)

)

,

=

(â−2)
∑

a=0

n∗
a ∗ µ

∗
a ∗

(â− 1− a)(â− a)

2
.

Consider then SID’ outside T . From Part 1 again, we may rewritte SID’ outside

T as

−1∑

t=−(â−1)

(â−2)
∑

a=0

t+(â−1)−a
∑

τ=0

na(x
t) ∗ µt

a =

−1∑

t=−(â−1)

(â−2)
∑

a=0

n∗
a ∗ µ

∗
a

t+(â−1)−a
∑

τ=0

1.

From last expression, the relevant t and a are such t + (â − 1) − a ≥ 0,12 or yet

11If t+ (â− 1)− a < t∗ + â, then we have
∑t+(â−1)−a

τ=t∗+â 1 = 0.
12If t+ (â− 1)− a < 0, then we have

∑t+(â−1)−a

τ=0 1 = 0.

21



t ≥ a− (â− 1). Therefore, we rewrite SID’ outside T as

−1∑

t=−(â−1)

(â−2)
∑

a=0

n∗
a ∗ µ

∗
a

t+(â−1)−a
∑

τ=0

1

=

(â−2)
∑

a=0

−1∑

t=a−(â−1)

n∗
a ∗ µ

∗
a ∗ (t+ â− a)

=

(â−2)
∑

a=0

n∗
a ∗ µ

∗
a ∗





−1∑

t=a−(â−1)

t+ (â− a)
−1∑

t=a−(â−1)

1



 ,

=

(â−2)
∑

a=0

n∗
a ∗ µ

∗
a ∗

(

−
â−1−a∑

t′=1

t′ + (â− a) ∗ (â− 1− a)

)

,

=

(â−2)
∑

a=0

n∗
a ∗ µ

∗
a ∗

(

−
(â− 1− a)(â− a)

2
+ (â− a) ∗ (â− 1− a)

)

,

=

(â−2)
∑

a=0

n∗
a ∗ µ

∗
a ∗

(â− 1− a)(â− a)

2
,

which shows that (12) holds.

4 List of countries in dataset

Table 2 lists all the countries and region of the dataset, along with their HC and GD as

measured in 2015.

Table 2: Countries’s deprivation measures in 2014

Country/Region HC GD(50)

World 11.7 17.3

East Asia Pacific 2.3 4.6

Europe Central Asia 1.7 4.5

Latin America Caribbean 4.3 7.6

Middle East North Africa 4.3 8.8

South Asia 12.4 18.3

Sub Saharan Africa 41.2 50.3
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Table 2: Countries’s deprivation measures in 2014

Country/Region HC GD(50)

China 0.7 2.3

Fiji 1.0 5.5

Indonesia 7.2 10.9

Lao PDR 17.7 25.8

Malaysia 0.0 2.1

Micronesia Fed Sts 15.1 19.1

Mongolia 0.3 5.9

Myanmar 6.2 12.1

Papua New Guinea 29.2 37.9

Philippines 7.8 13.1

Samoa 1.0 4.3

Solomon Islands 24.8 30.1

Thailand 0.0 2.2

Tonga 1.0 4.5

Vanuatu 15.3 21.5

Vietnam 2.4 4.9

Albania 0.7 2.4

Armenia 1.9 3.4

Azerbaijan 0.0 4.6

Belarus 0.0 1.6

Bosnia and Herzegovina 0.1 1.0

Bulgaria 1.2 2.4

Georgia 3.8 5.8

Kazakhstan 0.0 3.4

Kyrgyz Republic 2.5 6.7

Macedonia FYR 5.2 6.4

Moldova 0.0 2.3

Montenegro 0.0 0.9

Romania 5.7 7.0

Russian Federation 0.0 2.8

Serbia 0.1 1.0

Tajikistan 4.8 12.2
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Table 2: Countries’s deprivation measures in 2014

Country/Region HC GD(50)

Turkey 0.3 2.4

Turkmenistan 2.8 7.8

Ukraine 0.1 3.2

Uzbekistan 14.0 17.7

Belize 12.3 16.0

Bolivia 6.4 11.2

Brazil 3.4 6.5

Colombia 4.5 7.2

Costa Rica 1.5 3.3

Dominican Republic 1.8 6.6

Ecuador 3.4 6.8

El Salvador 1.9 6.7

Guatemala 7.9 13.5

Guyana 6.6 11.4

Haiti 23.5 32.1

Honduras 16.2 20.4

Jamaica 1.8 4.8

Mexico 3.4 6.2

Nicaragua 2.9 6.0

Paraguay 1.9 4.7

Peru 3.6 6.5

St Lucia 6.3 8.7

Suriname 18.8 22.4

Algeria 0.4 3.7

Djibouti 19.3 26.0

Egypt Arab Rep 1.3 5.9

Iran Islamic Rep 0.3 3.5

Iraq 2.4 8.3

Jordan 0.2 3.2

Lebanon 0.0 1.9

Morocco 0.9 4.6

Syrian Arab Rep 21.2 28.0

Tunisia 0.4 2.2
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Table 2: Countries’s deprivation measures in 2014

Country/Region HC GD(50)

Yemen Rep 30.4 36.9

Bangladesh 15.2 19.9

Bhutan 0.9 4.9

India 13.4 18.9

Nepal 7.0 12.4

Pakistan 5.3 15.8

Sri Lanka 0.7 2.4

Angola 28.2 38.9

Benin 49.5 57.8

Botswana 16.2 21.4

Burkina Faso 42.8 54.5

Burundi 74.8 78.8

Cabo Verde 7.2 11.1

Cameroon 22.8 33.4

Central African Rep 77.7 83.5

Chad 33.9 49.9

Comoros 18.1 24.2

Congo Dem Rep 71.7 76.7

Congo Rep 34.9 41.9

Cote d Ivoire 28.2 39.7

Ethiopia 30.9 39.3

Gabon 4.0 11.8

Gambia 11.0 20.3

Ghana 13.2 22.2

Guinea 32.8 45.5

Guinea Bissau 65.3 71.2

Kenya 37.3 43.5

Lesotho 54.8 62.4

Liberia 39.4 48.2

Madagascar 77.5 80.9

Malawi 70.2 74.7

Mali 47.7 60.0

Mauritania 6.2 14.0
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Table 2: Countries’s deprivation measures in 2014

Country/Region HC GD(50)

Mauritius 0.3 2.4

Mozambique 61.6 68.4

Namibia 13.4 20.9

Niger 44.2 56.5

Nigeria 47.0 57.5

Rwanda 55.2 59.7

Senegal 33.9 40.4

Sierra Leone 48.5 59.1

South Africa 18.9 26.2

Sudan 7.7 17.4

Tanzania 40.7 48.6

Togo 49.2 55.7

Uganda 39.4 47.9

Zambia 57.5 63.5

Zimbabwe 16.6 27.6
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