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ABSTRACT

We present a genetic algorithm (GA) we developed for the optimization of light-emitting diodes (LED) and solar
collectors. The surface of a LED can be covered by periodic structures whose geometrical and material paran
be adjusted in order to maximize the extraction of light. The optimization of these parameters by the GA enal
get a light-extraction efficiency of 11.0% from a GaN LED (for comparison, the flat material has a light-extrz
efficiency n of only 3.7%). The solar thermal collector we considered consists of a waffle-shaped Al substr
NiCrO, and SnQ@ conformal coatings. We must in this case maximize the solar absosptidrie minimizing the
thermal emissivity in the infrared. A multi-objective genetic algorithm has to be implemented in this case in ¢
determine optimal geometrical parameters. The parameters we obtained using the multi-objective Gd-8rdia
and €~4.8%, which improves results achieved previously when considering a flat substrate. These two ap
demonstrate the interest of genetic algorithms for addressing complex problems in physics.
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1. INTRODUCTION

Nature has developed its own algorithms for determining optimal solutions. With genetic algorithms (GA), we
mimic natural selection in order to determine the optimal solutions of complex problems in physics. The
implement natural selection to problems that are not related to biology is due to Hdlitirea. pioneering works on tt
subject were presented by De Jérgaker’ Goldberg® Harik> etc. While fundamental aspects of these evolutio
algorithms continue to be investigatetheir usefulness is proven by a growing number of applicafidns.

The idea of genetic algorithms consists in working with a population of individuals, each of them representin(
set of physical parameters and therefore a given value of the objective function we seek at optimizing. T
population usually consists of individuals with random parameters. The best individuals are selected for
generation. They are also allowed to breed in order to generate new individuals. Mutations are finally intro
additional mean of exploration. When applied from generation to generation, this evolutionary strategy makes i
to get closer and closer to the global optimum of a problem.

These general principles actually leave room for a variety of interpretations regarding the way a genetic algoritt
be implemented. The differences appear in the details when implementing the different steps of the algor
coding of parameters, the definition of an effective fithess to work with when the objective function has
components and the strategy to use for the selection are a few examples. Every developer of a genetic alg
finally implement his own tricks to help the genetic algorithm converge more efficiently to the global optimun
given implementation of a genetic algorithm, one must take decisions regarding the size of the population, t
crossover and the rate of mutation. This is essentially done from experience.
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We present in this article a genetic algorithm vexedoped for the optimization of light-emitting dies and solar
thermal collectors. The genetic algorithm is présémwith details in Sec. Il. Sec. Il presents #pplication of the GA
to the optimization of a GaN light-emitting diodgec. IV presents the optimization of a solar thémo#ector using a
multi-objective version of the GA. We finally conicle this work in Sec. V.

2. DESCRIPTION OF THE GENETIC ALGORITHM
Let f = f(X) be an objective function af physical parameters, wherex; € [x™", x™] with a specified granularity of

Ax; in the representation of each parameter. A salutioche mathematical sense will consist of a gisehof physical
parameters. We want to find, amongst this wholeo$giossibilities for the parametexs the values that maximize
globally the objective functiofi

Each parametes is represented by a stringmfbits (0 or 1), also called a “gene”. The correspog value ofx; is given
in most applications by

max __ .min
o &)
Where<gene>i 0[02" —1] stands for the value coded by the gemeGray binary codind® The lengt; of each gene is
chosen so thatx™ - x™) /(2" —-1) < Ax .

Xi = Ximin +<gene>i

If a strict enforcement of the granularity; is required, one can use instead of Eq. (1) tesssion

x = X" +(gene) Ax )

. max

where(Q;]ene>i 00[02" —1] as previously. The genetic algorithm must rejachis case gene values that lead; to .

The advantage of working with a strict represeatatf the parameters is that the number of possibilities to explore is
smaller. The genetic algorithm is therefore likilyconverge more rapidly to the solution.

A given set of parametel{sg}inzlis finally represented by the juxtaposition of thgenes used for the representation of

each parameter. These stringsnofienes are also called “DNA”. The genetic algoritaotually works on the DNA
representation of these parameters when searahine optimal solution.

We work with a population afi,,,=100 individuals. Each individual has its own DNAis therefore representative of a
given set of parameters. The initial populationalilyuconsists of random individuals. These indidtiu must be
evaluated in order to determine their fithess. Wihenobjective functioffiis a scalar function, the fitness is simply taken
as the value of this function. When the objectivactionf has several components, we work with an effeditness
that depends on the different componédnts this objective function and on the Pareto-gfasgtion of the individuals
regarding these different components (see the Atiperirhe evaluation of these individuals can beeln parallel on
most recent computers since multi-core architestare today the standard. This makes genetic #igwsiespecially
suited to parallel-programming techniques.

The individuals are then sorted according to tfitness. We seleat,,/2 individuals (“the parents”) by a rank-based
“Roulette Wheel Selection”. This is a random setectprocedure in which the probability for an indiwal to be
selected is proportional to its weight on a “whé&IThe individual with the highest fitness receiveseight 0fNnpep, the
second-best individual receives a weighhgf-1, etc. The individual with the smallest fitnesseives a weight of 1. A
given individual can be selected several times.sTémables the best individuals to progressively idata the
population.

The parents are transferred to the next generdtioaddition, they determine new individuals (“ttigildren”). For any
pair of parents, two children are obtained eitliely a one-point crossover of the parents’ DNAogmbility of 90%), or
(i) by a simple replication of the parents’ DNAr@bability of 10%). The point at which the two Eadf the parents’
DNA is exchanged is chosen randorflyThe transmission of unchanged individuals to teet generation enables the
conservation of good solutions. The exploratiomeiv solutions is achieved by the individuals olgdinvhen crossing
the parents’ DNA. These individuals combine thetdess of individuals that passed the selection ggec These
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individuals will from time to time have a highetrfess than their parents, which makes the genlgicitnm progress in
its search for optimal solutions.

We finally introduce random mutations on the chélds DNA. Each bit of the children’s DNA has a pabbity of 1%
to be reversed. This is an essential ingredienthferexploration of parameters. When the rate dftian is too small,
the genetic algorithm may converge too quicklyhaiit finding the global optimum. When the rate aftation is too
high, the exploration of parameters tends to bergigdly random and therefore inefficient considgrthe number of
possibilities to explore. The mutation rates to ametypically between 0.1% (mild value for easpwargence) and 5%
(aggressive value). We use a value of 1% basecdmerience with previous problems.

These steps of selection, crossover and mutatiost beirepeated from generation to generation oativergence is
achieved (maximum of 100 generations). By this garheatural selection, the genetic algorithm witbgressively
converge to the global optimum of the functfolVe implemented elitism in order to make sure thatbest individual
is not lost when going from one generation to thetnWe also replaced the bottom 10% of the pojuuaty random
individuals. This incorporation of random individsiat each generation enables the introductioreefls to the global
optimum that may have been missing in the initigppydation. It also enables the genetic algorithncaasider useful
directions in the exploration of parameters. Althlouhis requires additional evaluations of thedfits, experience shows
that convergence is actually improved when doingSsace the evaluation of the fithess was espgciamie-consuming
for the applications presented in this paper, wabdished a record with all individuals that wekaleated. This record
was checked systematically by the genetic algorittefiore each evaluation of the fitness in ordesitoid unnecessary
repetitions of these calculations.

3. OPTIMIZATION OF ALIGHT-EMITTING DIODE

The first application we consider aims at optimigithe light-extraction efficiencyy of GaN light-emitting diodes
(LED). This application is essentially an extensiminthe work presented by Bay et al. in Refs 11 4@d It was
demonstrated in this previous work that the ligktraction efficiency of existing GaN light-emittindiodes can be
improved by considering a periodic texturation lod tsurface. This texturation consisted of the plrioepetition of
structures made of photoresist with a “factory-faggometry.

The main wavelength of the GaN LED is 425 nm. The light-extractionigéncy is defined by

272

n= j jT @ .@.)sin&&dp 3)
00

whereT(0,p,4) is the transmittance of the system for a radiatib wavelengti. coming from the GaN substrate with
(0,p) directional angles. The transmittance was cafedldy using a Rigorous Coupled-Waves Analysis iwithe
transfer-matrix methodology:** The dielectric constant of GaN at the wavelengihsidered is 6.% The dielectric
constant of the current-spreading layer (nickel goldl alloy) was calculated considerigg=-3.7+i 8.1 ancts,=-1.6+i
6.3 The dielectric constamtof the photoresist is 2.763 (manufacturer’s vdtuephotoresist AZ 9245@Y

The parameters that were considered in the woBagfet al. are the peridéland the heightl of factory-roof structures
made of photoresist. By scanning BrandH for values between 1 and 15 um with a step of 1 aumaximum for the
light-extraction efficiencyy was found forP=5 pm andH=6 pm. The value ofi reported in Ref. 12 is 5.7%, which
corresponds to a relative increase of 55% comptarede value achieved without the photoresist 8.7% for the flat
GaN).

We extend this previous work by considering pegosiructures with a more general shape. We alsoerghe
exploration of parameters. The objective is to aehihigher light-extraction efficiencies by an ol choice of
parameters. The heiglhi(x) of the structures considered for the surfacdutation of GaN is given the general
expression
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Hx|1-CP= X7 b 0<xscp
(cP)™

h(x) = (4)

Hx|1- 2P ™ | hen cp<xs<P
(P —c.P)"

whereP andH refer as previously to the period and the heiglhese structures. The parametér [01] determines the

position of the apex of these structures. &3, 0.5 and 1, the apex is respectively on the ilefthe middle and on the
right of the base perioB. The coefficientsye: andayigy determine the concavity of the left and right esiggtraight
edges are achieved whepi=oigi=1. Values ofa; Or arigy higher than 1 will result in concave edges thaers
beyond the reference triangular shape achieved whgwigy=1. Values ofoe O avigre SMaller than 1 will result in
convex edges that keep within the reference triem@hape achieved whepq=aign=1.

The “factory-roof” structures considered in the waf Bay et alt? correspond t@=1, ag=1 andasigy =1. We extend
this study by considering periodic structures vaitperiodP between 1 and 15 um (ste®.1 um), a heightl between 1
and 15 pum (steg 0.1 um), a relative center positiorbetween 0.5 and 1 (step0.01), andue andarigy: coefficients
between 0.2 and 5 (steg0.01). The results achieved by the genetic algoriare summarized in Table 1.

Table 1. Parameters relevant to our model of sarfaxturation for a GaN LED and resulting lightrextion efficiencies.
The four lines correspond to different optimizatoaf these parameters (the parameters optimizeshah study are

underlined).
P (um) H@m)| ¢ Oleft Olright € n Source
5 6 1 1 1 2.763 5.7% Ref. 12
6.98 4.97 0.508 1.074 1.055 2.763 7.1% GA
3.20 2.13 1 1 1 6.325 | 7.3% GA
3.42 2.63 0.603 1.205 0.933 6.340 11.0% GA

The results presented in Table 1 show that it ssiisbe using the genetic algorithm to obtain patensethat increase
substantially the light-extraction efficienay of GaN light-emitting diodes. The solution foung the GA when
consideringP, H, ¢, a« and aiigyy as adjustable parameters enables a light-extractfbiciency n of 7.1%. This
represents a relative increase of 92% comparetig tvalue of 3.7% achieved for a flat GaN. These teswere
achieved by giving the photoresist a dielectricstants of 2.763 (manufacturer’s value for photoresist 9Z45®)*’
We can extend this study and consider the dietectrnstant as an additional adjustable parameter. This shguilde
future experimental work by suggesting materialade for the surface texturation. We consideredHisrstudy values
between 1.2 and 6.35 (step0.01). The results achieved when considefdd ande as adjustable parameters are
presented in the third line of Table 1. We achievéhis case a light-extraction efficiency of 7.3#élative increase of
97% compared to the flat GaN). By considering finé, H, ¢, aie, arign: ande as adjustable parameters, we achieved a
light-extraction efficiency of 11.0% (fourth lind @able 1). This corresponds to a relative incre#sE97% compared to
the flat GaN. The structure associated with thés tasult is represented in Fig. 1. The solutiansél by the GA, whesa

is considered as an adjustable parameter, sudgdshe material used for the surface texturatimukl have essentially
the same dielectric constant as the GaN. It sedsostlzat the optimal shapes are essentially synicnetth respect to
the center of the period.

When searching for optimal values®fH, c, o, arigne @nde, the number of bits required for the representiatibthese
six parameters was 49 (we used the parameter egpation given in Eq. 1 as a strict enforcementhef parameter
granularity was not necessary). This correspondkadength of a DNA. The number of possibilitieseixplore for the
six parameters considered in this optimization thesefore 2°= 562,949,953,421,312. The genetic algorithm mathage
to find the optimum given in the fourth line of Tall after only 1687 evaluations of the fithess.
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Figure 1. Representation of the structure achievieenwsearching for optimal values BfH, ¢, e, arigne ande with the
objective of maximizing the light-extraction effézicy of GaN light-emitting diodes. The parametessoaiated with this
representation are given in the fourth line of Eabl The light-extraction efficiency achieved wiitls structure is 11.0%.
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Figure 2. Best fitness (solid) and mean fitnessHedsin the population when searching for optinalues ofP, H, ¢, o,
arigh ande with the objective of maximizing the light-extramt efficiency of GaN light-emitting diodes.

4. OPTIMIZATION OF A SOLAR THERMAL COLLECTOR

The second application we consider deals with tp#rzation of a solar thermal collector. This &pation is
essentially an extension of the work presented dgugat et al. in Refs 18 and 19. In this previoeskywan aluminium
substrate with NiCrQand anti-reflection (AR) coatings was studied wita objective of developing high-performance
solar thermal collectors. The NiCr@eramic-metal composite (cermet) was chosen becafuds high durability and
attractive absorption/emission selectivityThe applicability of this material to the develogm of solar thermal
collectors was presented with details in Ref. 19.

In order for a solar thermal collector to be effit, one must maximize the solar absorptipnvhile minimizing the
thermal emissivity in the infrared®*° o represents the fraction of the solar spectrumitheffectively absorbed by the
system.e represents the fraction of the spectrum of a liladk heated at 373 K that will escape the systauiyalent
of thermal losses). These quantities are defined by
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a:T[l— R(/])]BS(/])dA/TBS(/])d/] (5
and
£ :T[l— R(/l)]Ba(/l)dA/TBa(/\)d/l (6)

whereBg(4) is the solar irradiance spectrum (Air Mass 18}4) is the irradiance spectrum of a blackbody heate?ir3
K andR(1) is the reflectance of the system for a radiatibwavelength having a normal incidence.

Values ofa=91.2% and:=1.5% were achieved in previous work by considearig-layer stack of NiCrdAR deposited
on a flat Al substrat®’ We seek at improving these results by keepingsttree Al/NiCrQ/AR configuration. The Al
substrate will be shaped like a “waffle” (see F3). This idea was inspired by the work of Shimizu siructured W
substrates for high-temperature solar absoéfge use finally Sn@as material for the anti-reflection coating. The
geometrical parameters that characterize the Astsate are hence the peri®d the heightH of the Al, the ratiof
between the width of the holes on the front sidéhefAl and the period, and finally the ratibetween the width of the
holes on the back side of the Al and that on tlatfiside. Conformal coatings of NiCy@thicknesst;) and SnQ@
(thicknesd,) are then added to this waffle-shaped Al structure

Figure 3. Waffle-shaped Al substrate with conforroahtings of NiCrQ and SnQ@. This structure is considered for the
development of high-performance solar thermal ctdies.

The optical properties of this waffle-shaped AI/NI/SnO, system can be simulated by using again a Rigorous
Coupled-Waves Analysis within the transfer-matrigthodology for the calculation of B(**** The optical properties

of the different materials were taken from theréitare and UV-visible and IR ellipsometric measueata'®?*The
parameters considered for this optimization probemP, H, f, r, t; andt,. There are two objective functions to
maximize:f;=a andf,=1-e. We must therefore use a multi-objective gendgorithm.

The general idea of multi-objective genetic aldoris follows the description of Sec. Il. We workthis case with an
effective fitness that depends on the two compa@fer=indf, of the objective function and on tRareto-classification

of the population with respect to these two comptseT he definition of this effective fitness ivgh with details in the
Appendix. The multi-objective genetic algorithm keén this case at establishing a setPafeto-optimal solutions.
These solutions providé,(f,) values with a distinct advantage compared taise of the population. Amongst this set
of Pareto-optimal solutions, individuals that arettér forf; will be weaker forf, (but no individual in the whole
population is better for both andf,). Making finally a choice amongst this set of simns depends on how we value
the two component§ andf, of the objective function and on their practicapilfor an experimental device. We
implemented elitism and kept records for solutitreg were better for eithdy, f, or f;+f, (solutions that maximizg+f,
are generally those of interest for a solar catigct
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For the optimization of the solar collector, we sioleredP values between 500 and 1500 nm (step of 5 nm)Hand
values between 500 and 2500 nm (step of 5 nm).eThesndaries enabl andH to keep in the same range as the
absorbed wavelengths. We takealues between 0.5 and 0.99 (step of 0.01)ramalues between 0 and 0.99 (step of
0.01) in order to explore the full range of pyraatidhapes. Finallyy andt, are chosen between 50 nm and 100 nm (step
of 5 nm) to be representative of layer thicknesg®sained by physical vapor deposition (PVD). Theresentation of
these parameters relied on Eq. 2 in ordeHpt; andt, to be always multiples of the same unit (5 nm)vdis indeed
easier in this case to achieve good spatial digatein of the system. The number of bits requifed the DNA
representation of these parameters was 38 anduthbar of possibilities to explore was 48,763,608,0he number of
evaluations of the fitness was however as smalB&g for the results presented here.

Solutions providing good values féy;, f, or f;+f, were quickly established by the GA so that a regméation of the
number of Pareto-optimal solutions is actually mifitestrative for the progress achieved by the athm. Fig. 4 shows
that the genetic algorithm progressively buildsampensemble of Pareto-optimal solutions for thdéizat#on of a solar
thermal collector. The solution that provides thaximal value off;+f, is given in the first line of Table 2. The next
three lines provide selected Pareto-optimal sahgtiestablished by the GA.
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Figure 4. Number of Pareto-optimal solutions whearshing forP, H, f, r, t; andt, with the objective of optimizing the
parameters. ande of a solar thermal collector.

Table 2. Parameters relevant to the optimizatiorthef parameters. and ¢ of a solar thermal collector. The first line
corresponds to the solution that maximikg$,, wheref;= a andf,=1- . The next three lines correspond to selected &aret
optimal solutions established by the GA.

P (nm) H (nm) f r 1 (nm) b (nm) o €
1345 1960 0.96 0.45 50 50 97.8% 4.8% 1+ max
1435 1975 0.99 0.31 55 50 98.4% 5.8% P-optimal
795 1590 0.90 0.28 50 50 96.1% 4.1% P-optimal
560 545 0.95 0.28 50 50 95.2% 3.7% P-optimal

The results presented in Table 2 compare very wigl the values 06=91.2% and:=1.5% achieved in previous work
with a flat AI/NiCrQ/AR configuration® and with the record values @£97% and:=5% obtained on a 3-layers statk.
The three Pareto-optimal solutions given in Tablélustrate the fact that solutions with betiervalues have less
attractivee values. These solutions hatieandt, values around 50 nm. The choice of a particuldwntem for the
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realization of a solar thermal collector will degestt this point on how we want to compromise betweandes and on
other practical considerations.

5. CONCLUSION

These applications prove that genetic algorithmssttute a smart approach to global optimizatioobpgms. Genetic
algorithms involve indeed a collective exploratafrthe parameter space. This gives the algorittercHpacity to escape
local optima. The algorithm is also more robustiagjathe possible failure of an individual to eatkithe fitness and it
can easily account for constrains in the paransgtace. The population contributes in this exploratf parameters to a
reservoir of information on the fitness. This datsdy may be used to guide the exploration througdhtiadal heuristics.
Genetic algorithms are finally especially suitegswallel programming techniques. High efficieneysuper-calculators
was indeed achieved by using a multi-agent progrismgymodel in order to parallelize the evaluatiortha fitness. The
applications presented in this work aimed at oping parameters that influence the efficiency oNGaght-emitting
diodes and solar thermal collectors. The solutimsd by the GA turned out to improve the efficiErscachieved in
previous work and to be competitive with recorduesl found in the literature. The multi-objectivesien of the genetic
algorithm actually provides a whole set of solutiomith distinct advantages. Making a choice amonist set of
solutions depends on how we value the different pmments of objective function and on practical ademtions.
Addressing these optimization problems by scannimghe different parameters considered would haen bintractable
because the number of possibilities to considewgrexponentially with the number of parameters jeagluation of
the fitness required up to 50 hours of CPU timetli@r optimization of the LED and up to 30 hourstfug optimization
of the solar collector). The genetic algorithm cbhlowever address these optimization problems &uating in
parallel only a reduced number of possibilities.e3é results prove that genetic algorithms are atgralue for
addressing complex problems in physics.
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APPENDIX: EFFECTIVE FITNESSFOR A MULTI-OBJECTIVE GENETIC ALGORITHM

We define here the effective fithess that was usedhe multi-objective genetic algorithm in Sec.. [Vhis effective
fitness is used to establish a classification efgbpulation. This is indeed required in the s@acstep of the algorithm.
The effective fitness presented here is that ugeditolay in previous work? The idea is due originally to Déb.

Let us consider a population of,, individuals. We refer by to the number of parametersand byf; to the different
components of the objective function.

A solution ¥, is dominatedy the solution, if f,(X,) > f;(%)0j and[]: f;(X,) > f,(X).

Pareto-optimakolutions are solutions that are not dominatedes€hsolutions will receive a ramf 1. Solutions will

receive a rank of 2 if they are not dominated wlisgarding solutions of rank 1. Solutions of ran&rg solutions that
are not dominated if we discard solutions of ranantl 2. We can proceed in this way and attributank to every
individual in the population.
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The effective fitness will be higher for individsathat have lower ranks. The genetic algorithm teitid in this way to
develop solutions that are Pareto-optimal instdablutions that improve a specific combinatiorttod components of
the objective function. We seek also at establighiset of Pareto-optimal solutions that presewgisaal dispersion. This
prevents indeed early convergence of the GA tavargindividual. We proceed therefore in the follogiway to define
the effective fitness.

All individuals of rank 1 receive an effective féss ofny,,,. We then define a sharing function in order toucsy
amongst individuals of the same rank, the effecfitvess of individuals that are too close. Foriviglials of the same
rank, we define a distance matvikose componentk, are defined by

0= [0 o

=1\ X% X

wherex[K] refers to the parameteyof an individuak, X" = kDrHax] X[ K] and x™ = kDr[?in ])g[k] .
Mpop Mpop

The sharing functiometween two individuals is then defined By, =1-(d,, 10y,,.)? if i < osae and O otherwise.
Following Ref. 24-25, we takwmmezo.S/Q/lT). We then define the niche couwf a given individual by

m = Z S, where the sum is restricted to individuals of thme rank. The effective fitness of each individeahen
|

divided by its niche count. We penalize in this waglividuals that are too close to other individualithin the same
rank.

The effective fitness of all individuals of ranki& then initialized with a value of 0.98mn[rank 1], where
ferectmnlf@nk 1] refers to the minimal value of the effeetifitness for the individuals of rank 1. We prodeben by
computing the distance matrik,, the sharing functiol, and finally the niche county for all individuals of rank 2.
The effective fithess of these individuals is tlidvided by their niche count.

We continue in this way until all individuals inehpopulation have been attributed an effectiveefitn Other definitions
are possible for this effective fitness. They maycbnsidered in future work.
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