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Nonsquare transfer-matrix technique applied to the simulation of electronic diffraction
by a three-dimensional circular aperture

A. Mayer* and J.-P. Vigneron
Laboratoire de Physique du Solide, Faculte´s Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium

~Received 11 March 1999; revised manuscript received 21 December 1999!

The transfer-matrix methodology is frequently used to deal with elastic scattering problems that require a
solution of the Schro¨dinger or homogeneous Maxwell equations in the continuous part of their spectra. Until
now, this technique was limited to representations associated with square transfer matrices. This paper extends
the transfer-matrix methodology to enable consideration of general representations associated with nonsquare
matrices. The theory is illustrated by the diffraction of a field-emitted electronic beam by a three-dimensional
circular aperture. The application focuses on the dependence of the long-range angular spread on the aperture
radius, by highlighting the effects of the field-emission tip shape and dimensions.

PACS number~s!: 02.70.2c, 03.65.Fd, 61.14.Dc, 79.701q
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I. INTRODUCTION

Linear systems of differential equations are frequently
countered in theoretical physics. Such equations appear
deed, when dealing with the Schro¨dinger equation in quan
tum mechanics or with the Maxwell equations
electromagnetism. A useful property that appears in th
situations is the additivity of solutions. When an analy
solution is not obtainable, several numerical techniques e
to deal with these equations in the energy or frequency c
tinuum.

The transfer-matrix methodology@1–7# is one of these
techniques. To apply this methodology, the physical sys
considered should be located between two separate bo
aries. Given a set of basis states used for the wave func
expansion, the transfer matrices contain, for each state
dent on one boundary of the system, the amplitudes of
corresponding transmitted and reflected states.

The method depends essentially on the additivity prope
of solutions and proceeds in two steps. In the first step,
termediate solutions associated with particular bound
conditions are constructed. These solutions are combine
the subsequent step to derive those corresponding to th
cidence of a single basis state. Since a matrix inversio
involved in this second step, the number of basis states
until now to be the same at the two boundaries of the sys
so that the matrix to invert is square.

Considering different numbers of basis states at the
boundaries of the system can be useful when a large num
of those states is required at one boundary only or w
propagating all states through the system would make
matrix to invert singular. The extension of the transfe
matrix methodology presented in this paper makes it poss
to consider different numbers of basis states at each bo
ary, by providing a technique to invert nonsquare matri
and enforcing a reflection of the states that cannot be pro
gated through the system.

*Author to whom correspondence should be addressed. Electr
address: alexandre.mayer@fundp.ac.be
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This paper first presents in Sec. II the transfer-mat
technique with the extensions required to proceed with n
square matrices. For reasons of clarity, the theory is de
oped with the particular objective of computing the scatt
ing through a narrow aperture but provides results that ap
to general situations. In Sec. III, the technique is imp
mented to simulate electronic field emission from a conic
elliptical emitter and the subsequent beam diffraction by
three-dimensional circular aperture. The simulations fo
on the dependence of the long-range angular spread on
aperture radius. The variations due to the shape and dim
sions of the emitter are studied. The main features of
results turn out to be explained by Fraunhofer and Fres
diffraction. The occurrence of Fresnel diffraction is strong
dependent on the spherical shape of the electronic b
when incident on the aperture. A high degree of spheric
requires both a reduced field-emission area and radial
rounding electric fields. In the conditions of this paper, t
position of the virtual projection point turns out to b
strongly dependent on this last factor. The stability of t
technique is demonstrated by comparing results obtai
with different representations of the wave function.

II. THE GENERALIZED TRANSFER-MATRIX METHOD

A. Introduction

Let us consider scattering in a physical system made
three adjacent regions and let us assume the interme
region to be the only diffusive part. The scanning tunneli
microscope@8# and the Fresnel projection microscope@9#
provide examples of such situations. Let us refer to the
termediate region as ‘‘region II’’ and the two other regio
as ‘‘region I’’ and ‘‘region III.’’ Let z be a coordinate axis
oriented from region I to region III, so that region II corre
sponds to the interval 0<z<D.

At this point, we should make the choice of simple ba
states to represent the wave function in regions I and III.
us write these statesC j

I,6 in region I andC j
III, 6 in region III.

The sign6 stands for the direction of propagation relative
the z axis.

To motivate the generalization of the transfer-mat
methodology to nonsquare matrices, region III is assume
ic
5953 ©2000 The American Physical Society
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be confined~compared to regions I and II! so that the numbe
of basis states required for the wave function expansion
region III is lower than in the two other regions. This situ
tion is illustrated in Fig. 1, where a metal~region I! supports
a field-emission tip~in region II!. This latter region is fol-
lowed by a circular aperture~region III! and an open spac
~region IV!. The quantization of the basis states in region
and III is enforced by assuming the wave function to
confined in a cylinder with radiusR in regions I and II and
R8,R in region III.

Our objective is to compute the coefficients in the wa
function expansion of the reflected and transmitted sta
C i

I,2 andC i
III, 1 corresponding to a single incident stateC j

I,1

in region I. These coefficients will be stored in the so-cal
transfer matricestI,III

21 andtI,III
11 . In the same way, the transfe

matricestI,III
12 and tI,III

22 will contain the coefficients of the
reflected and transmitted statesC i

III, 1 andC i
I,2 correspond-

ing to a single incident stateC j
III, 2 in region III.

The computation will proceed in three stages. In the fi
stage, propagation through region II will be described
four square transfer matricestI,D

66 , wherez5D is the bound-
ary between regions II and III. A set of intermediate ba
statesC i

D,6 is required for the wave function expansion
the boundaryz5D. Their number has to be identical wit
that relevant to region I. In a second stage, the connec
between these states and the statesC i

III, 6 in region III will be
described by four rectangular transfer matricestD,III

66 . Finally,
the four transfer matricestI,III

66 of interest are obtained by a
appropriate combination of the eight matricestI,D

66 andtD,III
66 .

B. Propagation through the intermediate region II by square
transfer matrices

Scattering in the intermediate region II is described
four transfer matrices that contain the coefficients of the
flected and transmitted parts of the following solutions:

C j
1 5

z<0

C j
I,11(

i
~ t I,D

21! i , jC i
I,2 5

z5D

(
i

~ t I,D
11! i , jC i

D,1 ,

~1!

FIG. 1. Situation considered. A metal~region I! is followed by
region II ~which contains a field-emission tip!, a circular aperture
~region III!, and an open space~region IV!. The number of basis
states needed for the wave function expansion is lower in regio
than in region I and II.
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C j
2 5

z<0

(
i

~ t I,D
22! i , jC i

I,2 5
z5D

C j
D,21(

i
~ t I,D

12! i , jC i
D,1 ,

~2!

where the solutions in the first set are those associated w
single incident stateC j

I,1 in region I, while the solutions in
the second set correspond to a single incident stateC j

D,2 at
z5D.

In order to derive these solutions, one starts by constr
ing two other sets of solutions

C̄ j
1 5

z<0

(
i

Ai , j
1 C i

I,11(
i

Bi , j
1 C i

I,2 5
z5D

C j
D,1 , ~3!

C̄ j
2 5

z<0

C j
I,2 5

z5D

(
i

Ai , j
2 C i

D,21(
i

Bi , j
2 C i

D,1 ~4!

that correspond to a single transmitted stateC j
D,1 at z5D or

C j
I,2 in region I. These solutions are obtained by consider

each transmitted state individually and propagating it~by
using the relevant propagation equation! backward to the
other boundary, where the corresponding solution is writ
as a combination of incident and reflected states.

Since the relevant propagation equation is linear, th
solutions can be combined in order to derive the first two s
of solutions corresponding to a single incident state. T
transfer matrices turn out to be related to the matricesA6

andB6 by

tI,D
115~A1!21, ~5!

tI,D
215~B1!~A1!21, ~6!

tI,D
225~A2!21, ~7!

tI,D
125~B2!~A2!21. ~8!

An efficient technique to control the numerical instabi
ties inherent in the computation of these transfer matrice
presented in Ref.@10#. Reference@11# contains techniques
enabling one to take advantage of any symmetry presen
the system.

C. Matching between the two representations by nonsquare
transfer matrices

The fact that the basis statesC i
D,6 andC i

III, 6 are not in
equal number does not prevent us from constructing s
tions similar to Eqs.~3! and ~4!, namely,

C̄ j
1 5

z5D

(
i

Ai , j
1 C i

D,11(
i

Bi , j
1 C i

D,2 5
z>D

C j
III, 1 , ~9!

C̄ j
2 5

z5D

C j
D,2 5

z>D

(
i

Ai , j
2 C i

III, 21(
i

Bi , j
2 C i

III, 1 . ~10!

II
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The first set of solutions describes the projection of e
stateC j

III, 1 on the statesC i
D,6 at z5D, while the second se

contains the projection of each stateC j
D,2 on the states

C i
III, 6 .
Let us write all these solutions in the compact form

~ . . . ,C̄ j
1 , . . . ! 5

z5D

~ . . . ,C i
D,1 , . . . !A1

1~ . . . ,Csi
D,2 , . . . !B1

5
z>D

~ . . . ,C j
III, 1 , . . . !, ~11!

~ . . . ,C̄ j
2 , . . . ! 5

z5D

~ . . . ,C j
D,2 , . . . !

5
z>D

~ . . . ,C i
III, 2 , . . . !A2

1~ . . . ,C i
III, 1 , . . . !B2. ~12!

Since there are not as many basis states in region III a
z5D, the two matricesA1 and B1 have more rows than
columns and the two matricesA2 andB2 fewer rows than
columns. The relations~5!–~8! need to be generalized to tak
account of this nonsquare shape.

According to the generalized inverse theory@12#, every
matrix A (m3n) of rank r can be written asA5WH , where
W andH are two matrices respectively (m3r ) and (r 3n)
of rank r. The associated generalized inverse is a matrixA#

(n3m) defined byA#5H†(HH†)21(W†W)21W†, where †

stands for the transpose complex conjugate operation.
If the basis statesC j

D,6 and C j
III, 6 are orthonormal, the

rank of the two matricesA6 is the number of states in regio
III and the generalized inverses ofA1 and A2 are in this
situation

~A1!#5@~A1!†~A1!#21~A1!†, ~13!

~A2!#5~A2!†@~A2!~A2!†#21. ~14!

It is easily checked that

~A1!#~A1!5I , ~15!

~A2!~A2!#5I . ~16!

However, we should be aware that in general

~A1!~A1!#ÞI , ~17!

~A2!#~A2!ÞI . ~18!

These inequalities come basically from the fact that an i
coverable projection occurs while applying a transformat
that is represented by a matrix with fewer rows than c
umns. In the situation considered, this irrecoverable pro
tion is encountered with the part of the wave function tha
incident on the side of the circular aperture, since the w
function expansion used in region III is limited to its beha
ior inside the circular aperture. For our technique to be c
sistent, these projected incoming states have to be prop
reflected into their original region.
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To see how to generalize the relations~5!–~8!, let us mul-
tiply to the right the solutions~11! by (A1)# and the solu-
tions ~12! by (A2)#. Considering the relations~15!–~18!,
one finds

~ . . . ,C j
1 , . . . ! 5

z5D

~ . . . ,C i
D,1 , . . . !~A1!~A1!#

1~ . . . ,C i
D,2 , . . . !~B1!~A1!#

5
z>D

~ . . . ,C j
III, 1 , . . . !~A1!#, ~19!

~ . . . ,C j
2 , . . . ! 5

z5D

~ . . . ,C j
D,2 , . . . !~A2!#

5
z>D

~ . . . ,C i
III, 2 , . . . !I

1~ . . . ,C i
III, 1 , . . . !~B2!~A2!#. ~20!

The solutions~19! are not in the appropriate form due t
the factorA1(A1)#, which does not simplify likeI . Consid-
ering previous comments about this inequality, the solut
to this problem consists in enforcing explicitly a reflection
the projected incoming states (. . . ,C i

D,1 , . . . )@ I2(A1)
3(A1)## , i.e., posing the following relations:

~ . . . ,C j
D , . . . ! 5

z5D

~ . . . ,C i
D,1 , . . . !@ I2~A1!~A1!##

1~ . . . ,C i
D,2 , . . . !D21

3@ I2~A1!~A1!##

5
z>D

~ . . . ,C j
III, 1 , . . . !O. ~21!

The matrixD21 ensures the continuity of the wave fun
tion at the reflection pointz5D. It must be chosen so that

~ . . . ,C i
D,1 , . . . !1~ . . . ,C i

D,2 , . . . !D21 5
z5D

0. ~22!

For example, if the statesC i
D,6 are given by C i

D,6

5e6 ikz,i z, D21 is defined byDi , j
2152ei2kz,iDd i , j .

In the same way, we can define the set of solutions

~ . . . ,C j
III , . . . ! 5

z5D

~ . . . ,C j
D,2 , . . . !O

5
z>D

~ . . . ,C i
III, 2 , . . . !@ I2~A2!~A2!##

1~ . . . ,C i
III, 1 , . . . !

3D12@ I2~A2!~A2!##, ~23!

where the matrixD12 is defined by

~ . . . ,C i
III, 2 , . . . !1~ . . . ,C i

III, 1 , . . . !D12 5
z5D

0.
~24!

This set of solutions is trivially verified due to the relatio
~16!.

By adding the solutions~21! to ~19! and~23! to ~20!, one
finds two sets of solutions that are in the appropriate form
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~ . . . ,C j
1 , . . . ! 5

z5D

~ . . . ,C i
D,1 , . . . !I

1~ . . . ,C i
D,2 , . . . !tD,III

21

5
z>D

~ . . . ,C j
III, 1 , . . . !tD,III

11 , ~25!

~ . . . ,C j
2 , . . . ! 5

z5D

~ . . . ,C j
D,2 , . . . !tD,III

22

5
z>D

~ . . . ,C i
III, 2 , . . . !I

1~ . . . ,C i
III, 1 , . . . !tD,III

12 . ~26!

In conclusion, we can write the relations~5!–~8! in the
more general form

tD,III
11 5~A1!#, ~27!

tD,III
21 5~B1!~A1!#1D21@ I2~A1!~A1!##, ~28!

tD,III
22 5~A2!#, ~29!

tD,III
12 5~B2!~A2!#1D12@ I2~A2!~A2!##, ~30!

whereD21 andD12 are two matrices that ensure the wa
function continuity at z5D and the generalized invers
(A6)# of a given matrix (A6) is computed by

~A6!#5@~A6!†~A6!#21~A6!†, ~31!

when (A6) has more rows than columns or

~A6!#5~A6!†@~A6!~A6!†#21 ~32!

in the other case.

D. Final solution by a transfer-matrix combination

In the final step, the four matricestI,D
6,6 have to be com-

bined with the four matricestD,III
6,6 in order to obtain the trans

fer matrices that contain the coefficients of the solutions

C j
1 5

z<0

C j
I,11(

i
~ t I,III

21! i , jC i
I,2 5

z>D

(
i

~ t I,III
11! i , jC i

III, 1 ,

~33!

C j
2 5

z<0

(
i

~ t I,III
22! i , jC i

I,2 5
z>D

C j
III, 21(

i
~ t I,III

12! i , jC i
III, 1

~34!

corresponding to a single incoming state in region I or reg
III. These four transfer matricestI,III

66 are obtained by using
formulas developed by Pendry@13,14# in dynamic low en-
ergy electron diffraction simulations:

tI,III
115tD,III

11 @ I2tI,D
12tD,III

21 #21tI,D
11 , ~35!

tI,III
215tI,D

211tI,D
22tD,III

21 @ I2tI,D
12tD,III

21 #21tI,D
11 , ~36!

tI,III
225tI,D

22@ I2tD,III
21 tI,D

12#21tD,III
22 , ~37!

tI,III
125tD,III

12 1tD,III
11 tI,D

12@ I2tD,III
21 tI,D

12#21tD,III
22 . ~38!
n

III. APPLICATION

A. Preliminaries

In order to illustrate this theory, let us consider electron
field emission from a metallic tip and the diffraction of th
extracted beam by a three-dimensional circular aperture
ing the emitter. The extraction field results from the applic
tion of a potential biasV established between the support
the tip and a conducting grid at a distanceD, which supports
the circular aperture. It is convenient to assume the a
direction z to be ann-fold symmetry axis and to use pola
coordinates in the plane normal to the symmetry axis~i.e., f
for the azimuthal angle andr for the radial distance to the
axis!.

Region I ~i.e., the metallic support of the tip! is assumed
to be a Sommerfeld metal, delimited by the planez50 and
characterized by empirical values ofW ~work function! and
EF ~Fermi energy!. The potential energy in region III (D
<z<D1D8, with D8 the length of the circular aperture! is
set conventionally to 0 inside the aperture (r<R8) and `
outside (r.R8). The potential energy in region IV~i.e., the
open space beyond the conducting gridz.D1D8) takes the
same constant value 0. The value of the potential energ
region I is thenVmet5eV2W2EF . With these assump
tions, region II is the only diffusive part of the problem an
the Schro¨dinger equation being linear, the transfer-mat
methodology can be applied.

B. Wave function expansion in regions I and III

The wave function is expanded along basis functionsc
that contain thef andr dependences. The set of these fun
tions is forced to be enumerable, by specifying that the s
tering electron remains localized inside a cylinder with
diusR @6# in regions I and II. The fact thatR differs fromR8
in region III is responsible for the non-square shape of
transfer matrices.

The basis statesC I,6, CD,6 andC III, 6 introduced in the
previous section to describe the wave function in region
and III then take the specific forms

C (m, j )
I,6 5e6 iA(2m/\2)(E2Vmet)2km, j

2 zc (m, j )~r,f!, ~39!

C (m, j )
D,6 5e6 iA(2m/\2)E2km, j

2 zc (m, j )~r,f!, ~40!

C (m, j )
III, 6 5e6 iA(2m/\2)E2km, j82 zc (m, j )8 ~r,f!, ~41!

with

c (m, j )~r,f!5
Jm~km, jr!eimf

A2pE
0

R

r@Jm~km, jr!#2dr

, ~42!

c (m, j )8 ~r,f!5
Jm~km, j8 r!eimf

A2pE
0

R8
r@Jm~km, j8 r!#2dr

. ~43!
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FIG. 2. Real part of the potential-energy distribution~in eV! in thexz plane. A 40 V bias is applied over the 3.5 nm separation betw
the metal surface and the conducting grid. This grid supports a circular aperture with a radius of 0.5 nm and length of 0.4 nm. T
represented by a conical emitter with a height and base radius of 1 and 0.5 nm~left!, an elliptical emitter whose main axes in thez andr
directions are 1 and 0.5 nm~center!, and an atomic protrusion~right!.
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All functions involved in these expressions have a pair
subscripts (m, j ). The radial wave vectorskm, j in regions I
and II, where the wave function is mainly confined arou
the centralz axis, are solutions ofJm(km, jR)50, while the
radial wave vectorskm, j8 in region III, where the wave func
tion can take significant values atr5R8, are solutions of
Jm8 (km, j8 R8)50.

C. Propagation through regions II and IV

To propagate the solutionsC̄ (m, j )
6 through region II, we

use the following expression:

C̄ (m, j )
6 5(

m, j
F (m, j )~z!c (m, j )~r,f!, ~44!

where thez dependence is contained in the coefficie
F (m, j )(z) of the expansion. The techniques given in Re
@10,15,16# to deal with the stationary three-dimension
Schrödinger equation are used to propagate these coeffici
betweenz50 andz5D.

The propagation to a distant screen in region IV
achieved within the Green’s function formalism~see Ref.
@17#! and the Neumann boundary conditions@18#, which
have as formal consequence the cancelation thez component
of the current density on the aperture border atz5D1D8. A
proper renormalization of the Green’s functions is achiev
to enforce current conservation in region IV.

D. Characterization of the physical system

Let us consider an electric bias of 40 V and a metal-g
distance of 3.5 nm. The bulk of the metal is a jellium ch
acterized by a Fermi energy of 19.1 eV and a work funct
of 4.5 eV~values for tungsten!. The emitter is represented b
a conical or elliptical extension of the supporting jellium
with various dimensions. A representation of the tip by
atomic protrusion is also considered.

In the two first representations, the tip is a conical
elliptical metallic medium characterized by an infinite diele
tric constant and the same Fermi energy and work func
as in the bulk. In the case of a conical emitter, the height
base radius take, respectively, the three following pairs
f

s
.
l
ts

d

d
-
n

n

r
-
n
d
f

values: 0.6 and 0.6 nm, 1 and 0.5 nm, 1.5 and 0.75 nm. In
case of an elliptical emitter, the main axes in thez and r
directions take respectively the same pairs of values.
corresponding potential-energy distributions in region II a
computed by the relaxation techniques given in Ref.@15#.

In the last representation, the atomic protrusion cons
of four atomic layers whose distance is the 0.091 nm se
ration encountered between two adjacent atomic layers in
bulk of the metal in thê 111& direction. The first atomic
layer is made of twelve atoms at 0.013 nm from the meta
surface, the second layer of seven atoms is atz50.104 nm,
the third of three atoms at 0.195 nm and the last atom
moved from its crystallographic position toz50.289 nm
~see Ref.@19#!. Each atom is represented by a dipole. F
lowing references@15,20#, the polarizability of each dipole is
an average, weighted by the number of neighboring ato
of the polarizability of a neutral isolated atom@21#
a0 /(4pe0)57 Å3 and the polarizability in the bulk@22# at
the Fermi frequencyabulk /(4pe0)51.49 Å3. The corre-
sponding potential-energy distribution in region II is com
puted by using techniques given in Ref.@16#. The result is
similar to that obtained with an elliptical tip, whose ma
axes are equal to 0.6 nm.

With a purely real potential, the electrons that fall besi
the circular aperture do not disappear from the simulation
they would disappear from consideration in reality. They a
reflected several times between the aperture border and
metal surface, to be finally reflected by the cylinder boun
ary and come back to the aperture, where they interfere w
the original beam. To cope with this situation, the poten
energy is given a negative imaginary component, in a par
the system that is not met by the incident beam so only
electrons that are reflected by the aperture border are
sorbed. This imaginary component is zero belowr
52.5 nm, grows as a square function betweenr52.5 nm
and 3.5 nm from 0 to21 eV, and keeps this last value fo
larger values ofr.

A vertical section of the real part of the potential-ener
distribution corresponding to the various representations
the tip is given in Fig. 2. The aperture in region III has
radius of 0.5 nm and a length of 0.4 nm.
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E. Angular spread as a function of the aperture radius

The present application aims at studying the angu
spreadDu of the diffracted electronic beam as a function
the aperture radiusR8, for different shapes and dimension
of the emitter. The total current density in region IV resu
from the current densities associated with each solutionC1.
These contributions are weighted according to the co
sponding density of states in the metal~see Ref.@17#!. For a
given total current density distribution, the angular spre
Du is computed according to

Du 5
r→`E0

2p

dfE
0

p/2

duuuuJr~r ,u,f!

E
0

2p

dfE
0

p/2

duJr~r ,u,f!

. ~45!

To first control the stability of the results toward the re
resentation of the wave function, we used four different b
for computating the dependence ofDu on the aperture radiu
R8. The results are gathered in Fig. 3. The tip is describe
these simulations by a cone with a height and base diam
of 1 nm ~see left part of Fig. 2!. The widthD8 of the circular
aperture is 0.4 nm. The simulations are performed by c
sideringm values ranging from23 to 3. The basis states ar
limited by the condition km, j ,km, j8 <A(2m/\2)(E1DE),
where DE is 0 eV in the first representation, 2 eV in th
second, and 4 eV in the third. The confinement radiusR in
regions I and II is 6 nm in these three representations. In
last representation,DE and R are respectively 2 eV and 1
nm.

The four results are in good agreement, except for the
representation~the dotted line! corresponding toDE50.
This is due to the fact that the evanescent states introduce
the circular aperture and in the nearby region by takingDE
.0 keep significant values over distances of the order ofD8
and improve the description of the lateral behavior of
wave function. The~dashed! curve corresponding toDE
54 eV presents some discrepancies compared to those
tained withDE52 eV, due to the instabilities inherent i

FIG. 3. Angular spread of the diffracted electronic beam a
function of the aperture radius. The length of the aperture is 0.4
The basis states are defined byDE50 and R56 nm ~dotted!,
DE52 eV andR56 nm ~full line!, DE54 eV andR56 nm
~dashed!, andDE52 eV andR512 nm ~dot-dashed!.
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the consideration of evanescent states. In the remaining
of this paper, values ofDE52 eV andR56 nm are used.

With this choice of representation, we then compared
results obtained by considering conical or elliptical tips, w
the previously given dimensions, and the atomic structu
These results are gathered in Fig. 4. The full curve co
sponds to a single incident plane wave in the circular ap
ture, propagating in thez direction. The dashed curves co
respond to the conical tips, the dot-dashed curves to
elliptical tips, and the dotted curve to the atomic structu
The three curves associated with either a conical or ellipt
tip correspond~upward! to increasing tip dimensions. Th
curves consist typically of three parts:~i! a first decreasing
part associated with Fraunhofer diffraction;~ii ! a second
growing part associated with Fresnel diffraction~for tips
larger than 1 nm!; ~iii ! a third constant part related to th
finite size of the beam~for all tips!.

As expected for Fraunhofer diffraction, the first part of t
figure decreases with increasing aperture radiusR8. All
curves fit perfectly belowR8 5 0.2 nm~the wavelengthl in
the aperture being equal to 0.206 nm!, since details of the
emitter structure are no longer relevant down to this redu
length scale.

The second part of Fig. 4 is dominated by Fresnel diffra
tion. Fresnel diffraction is encountered when the spher
shape of the incident wave prevails over the dimensions
the diffractive structure. The diffraction pattern is then co
related with the spatial distribution of this structure, whi
explains the increase of the angular spread with the aper
radius.

The transition between Fraunhofer and Fresnel diffract
occurs when the distanced between the virtual projection
point and the sample is given byd5a2/l, wherea52R8 is
the typical dimension of the diffractive structure andl the
relevant electronic wavelength. By considering this transit
to occur for a radiusR8 5 0.55 nm in the case of a 1.5 nm
long tip, we find the virtual projection point to lie atz5
22.3 nm. In the case of a 1 nm long tip, the transition
occurs for a radiusR850.75 nm and the corresponding vi

a
.

FIG. 4. Angular spread of the diffracted electronic beam a
function of the aperture radius. The full curve corresponds t
single incident plane wave, the dashed curves to a conical tip,
dot-dashed curves to an elliptical tip, and the dotted curve to
atomic structure. The height and base radius corresponding to
three curves associated with the conical/elliptical emitter are res
tively 0.6 and 0.6 nm, 1 and 0.5 nm, 1.5 and 0.75 nm~upward!.
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tual projection point lies atz527.4 nm. These results ar
of the same order as experimental values@9# and show how
the position of the virtual projection point is sensitive to t
potential-energy distribution surrounding the emitter.

In the last part of Fig. 4, the aperture dimensions tend
exceed the size of the electronic beam when incident on
extraction grid, so the angular spread tends to the value
would be encountered without any aperture. This value
obtained forR852 nm, which corresponds to the size of th
electronic beam in the planez5D.

The angular spread grows with the height of the tip. T
is consistent with the initial angular spread increasing as
top of the emitter becomes sharper@23#, but is mainly due to
the fact that the distance at which the electrons encount
nonradial electric field~tending to reduce the angular sprea!
decreases as the length of the tip increases.

The results are rather insensitive to the conical or ellip
cal shape of the tip. In these two model situations, the tip
an axial symmetry so the sphericity of the electronic wave
not altered by atomic corrugation. The large values of
virtual projection point distance and the electronic wav
length ~0.28 nm! in the tip, which forces the incident elec
tronic states to be evanescent when encountering the to
the conical tip, explain also why the results obtained w
both tip shapes are comparable.

The result obtained with the four-layer atomic structure
close to those obtained with the conical/elliptical tip with 0
nm length. This is because the surrounding potential-ene
distributions are similar. These results show the necessity~in
a context where the metallic support is limited by a plane! of
improving the description of the atomic structure of the em
ter to account for the occurrence of Fresnel diffraction w
nanotips. This could be achieved by considering more t
four atomic layers or by describing the metallic support b
hemispherical boundary.

Finally, the oscillations of all curves arise approximate
at the same values of the aperture radius. They are relate
the long-range behavior of the wave function atu5p/2.
Their magnitude tends to increase~essentially in Fraunhofe
conditions! and the curves tend to grow~essentially in
Fresnel conditions! with the lengthD8 of the aperture. This
behavior, illustrated in Fig. 5, is related to the wave functi
taking larger values at the border of the aperture~compared
with those taken at the center! as the length of the apertur
increases.

IV. CONCLUSION

An extension of the transfer-matrix methodology that
lows the consideration of nonsquare matrices was presen
This extension is useful in deriving solutions whose rep
h
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sentation in the two regions surrounding the diffusive part
the system requires different numbers of basis states.

For pedagogical reasons, the method was used to com
the angular spread of a field-emitted electronic beam, afte
is diffracted by a three-dimensional circular aperture. T
scattering computation relies on the three-dimensio
Schrödinger equation and requires techniques adapted
nonsquare matrices, since the confinement in the aper
causes the number of basis states in this region to differ f
that used in the preceding regions.

The results are well explained in terms of Fraunhofer a
Fresnel diffraction. The radius where the transition betwe
these two types of diffraction occurs gives the position of
virtual projection point. This position turns out to be ve
sensitive to the tip dimensions and to the orientation of
surrounding electric field. In the conditions of this paper~40
V bias and flat metallic support!, Fresnel diffraction was no
encountered with tips smaller than 1 nm.

Typical future applications of nonsquare transfer matric
will be the study of connections between optical fibers, c
bon nanotubes, or other systems with different sections
physical properties requiring different numbers of ba
states for the expansion of the solution. Non-square tran
matrices are also suited for the study of electronic circu
with several input or output lines.
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FIG. 5. Angular spread of the diffracted electronic beam a
function of the aperture radius. The curves correspond~upward! to
an aperture width of 1, 2, and 4 nm. The height and base radiu
the conical emitter are respectively 1.5 and 0.75 nm.
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