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Nonsquare transfer-matrix technique applied to the simulation of electronic diffraction
by a three-dimensional circular aperture
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The transfer-matrix methodology is frequently used to deal with elastic scattering problems that require a
solution of the Schrdinger or homogeneous Maxwell equations in the continuous part of their spectra. Until
now, this technique was limited to representations associated with square transfer matrices. This paper extends
the transfer-matrix methodology to enable consideration of general representations associated with nonsquare
matrices. The theory is illustrated by the diffraction of a field-emitted electronic beam by a three-dimensional
circular aperture. The application focuses on the dependence of the long-range angular spread on the aperture
radius, by highlighting the effects of the field-emission tip shape and dimensions.

PACS numbse(s): 02.70-c, 03.65.Fd, 61.14.Dc, 79.7Q)

I. INTRODUCTION This paper first presents in Sec. Il the transfer-matrix

technigue with the extensions required to proceed with non-

Linear systems of differential equations are frequently ensquare matrices. For reasons of clarity, the theory is devel-
countered in theoretical physics. Such equations appear, i®ped with the particular objective of computing the scatter-
deed, when dealing with the Schiinger equation in quan- ing through a narrow aperture but provides results that apply
tum mechanics or with the Maxwell equations in O general situations. In Sec. lll, the technique is imple-
electromagnetism. A useful property that appears in thes@e_znt_ed to s@mulate electronic field emission fr_om a_conical/
situations is the additivity of solutions. When an analytic €lliptical emitter and the subsequent beam diffraction by a

solution is not obtainable, several numerical techniques exidfré€-dimensional circular aperture. The simulations focus

to deal with these equations in the energy or frequency con2" the depepdence of the .Iong-range angular spread on the
tinuum aperture radius. The variations due to the shape and dimen-
The.transfer-matrix methodologii—7] is one of these sions of the emitter are studied. The main features of the

results turn out to be explained by Fraunhofer and Fresnel

techr_ltquuez. Tho alr(’jpg/ ﬂl"s ntweéht())dflogy, :he phy5|catl SigSter%iffraction. The occurrence of Fresnel diffraction is strongly
considered should be located between two separale boun ependent on the spherical shape of the electronic beam

aries. Q|ven a set of basis sFates used_ for the wave fungtuwhen incident on the aperture. A high degree of sphericity
expansion, the transfer matrices contain, for ea_ch state iNClaquires both a reduced field-emission area and radial sur-
dent on one boundary of the system, the amplitudes of thgsnding electric fields. In the conditions of this paper, the
corresponding transmitted and reflected states. position of the virtual projection point turns out to be
The method depends essentially on the additivity propertgtrongly dependent on this last factor. The stability of the
of solutions and proceeds in two steps. In the first step, intechnique is demonstrated by comparing results obtained
termediate solutions associated with particular boundarwith different representations of the wave function.
conditions are constructed. These solutions are combined in
the subsequent step to derive those corresponding to the inH. THE GENERALIZED TRANSFER-MATRIX METHOD
cidence of a single basis state. Since a matrix inversion is
involved in this second step, the number of basis states had
until now to be the same at the two boundaries of the system Let us consider scattering in a physical system made of
so that the matrix to invert is square. three adjacent regions and let us assume the intermediate
Considering different numbers of basis states at the twaoegion to be the only diffusive part. The scanning tunneling
boundaries of the system can be useful when a large numbericroscope[8] and the Fresnel projection microscof]
of those states is required at one boundary only or wheprovide examples of such situations. Let us refer to the in-
propagating all states through the system would make thtermediate region as “region II” and the two other regions
matrix to invert singular. The extension of the transfer-as “region I” and “region Ill.” Let z be a coordinate axis
matrix methodology presented in this paper makes it possibleriented from region | to region lll, so that region Il corre-
to consider different numbers of basis states at each boundponds to the interval€z=<D.
ary, by providing a technique to invert nonsquare matrices At this point, we should make the choice of simple basis
and enforcing a reflection of the states that cannot be propatates to represent the wave function in regions | and Ill. Let

A. Introduction

gated through the system. us write these statek; = in region | and¥;" = in region IIl.
The sign= stands for the direction of propagation relative to
the z axis.
* Author to whom correspondence should be addressed. Electronic To motivate the generalization of the transfer-matrix
address: alexandre.mayer@fundp.ac.be methodology to nonsquare matrices, region Il is assumed to
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z<0 z=D

v W= 2 ()W = WP () T

Z=D4Ir @)

111
- L z=D where the solutions in the first set are those associated with a
I E single incident stateif}'+ in region |, while the solutions in
the second set correspond to a single incident 31’4’[6 at
z=D.

In order to derive these solutions, one starts by construct-
ing two other sets of solutions

z=0

z<0 z=D
© R V= AV Y BT = WP, (3)
FIG. 1. Situation considered. A metakgion ) is followed by ! '
region Il (which contains a field-emission jipa circular aperture
(region lIl), and an open spadeegion V). The number of basis _ z=0 z=D
states needed for the wave function expansion is lower in region 11l v = \If}** = 2 Ai"j\PP'fﬂLZ Bifj\I'P'Jr (4)
than in region | and Il. ! !

be confinedcompared to regions | and)l$o that the number th?t_gorrespond to a single transmitted 5@&“ atz=Dor

of basis states required for the wave function expansion if¥'j inregion I. These solutions are obtained by considering
region Il is lower than in the two other regions. This situa- €ach transmitted state individually and propagatingbi

tion is illustrated in Fig. 1, where a metakgion ) supports ~ using the relevant propagation equajidreckward to the

a field-emission tip(in region 1l). This latter region is fol- Other boundary, where the corresponding solution is written
lowed by a circular apertureegion |||) and an open space as a combination of incident and reflected states.

(region 1V). The quantization of the basis states in regions | Since the relevant propagation equation is linear, these
and Il is enforced by assuming the wave function to besolutions can be combined in order to derive the first two sets

confined in a cylinder with radiuR in regions | and Il and ©f solutions corresponding to a single incident state. The
R’<R in region IlI. transfer matrices turn out to be related to the matries

Our objective is to compute the coefficients in the waveandB= by
function expansion of the reflected and transmitted states

Wi~ and¥{" * corresponding to a single incident staite tio =(A")71 (5)
in region |. These coefficients will be stored in the so-called

; —+ + +
transfer matrice,;” andt, . In the same way, the transfer tio =(B")(AT)L, (6)

matricest,,, andt,,, will contain the coefficients of the
reflected and transmitted stat#s" * andW}'~ correspond-

-~ _ (a1

ing to a single incident stat&!" ~ in region III. Lo =(A7)7 @)
The computation will proceed in three stages. In the first

stage, propagation through region Il will be described by t'o =(B7)(A7)" % (8)

four square transfer matricés; , wherez=D is the bound-

ary between regions Il and Ill. A set of intermediate basis An efficient technique to control the numerical instabili-
s’[ates\lf})'i is required for the wave function expansion at ties inherent in the computation of these transfer matrices is
the boundaryz=D. Their number has to be identical with presented in Refl10]. Referencd11] contains techniques
that relevant to region I. In a second stage, the connectioanabling one to take advantage of any symmetry present in
between these states and the stdtés™ in region Ill willbe  the system.

described by four rectangular transfer matrit@ﬁ . Finally,

the four transfer matricet,f,,,i of interest are obtained by an C. Matching between the two representations by nonsquare
appropriate combination of the eight matri¢gg andtg 7y . transfer matrices

The fact that the basis statdg™* andW|"* are not in
equal number does not prevent us from constructing solu-
tions similar to Eqs(3) and(4), namely,

Scattering in the intermediate region Il is described by
four transfer matrices that contain the coefficients of the re- —.7
flected and transmitted parts of the following solutions: vy

B. Propagation through the intermediate region Il by square
transfer matrices

D z=D
2 AP BT = v (9)
i i

D
E (tr[;r)i,j‘l’p'+, __ z=D z=D
i ' ! W \[rj_ = \I’}D‘_ = zl Ai_,jq,im’_""Z Bi_,jqull'+- (10)

z<0 z

v = w}'++2 (tr )i Vi
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The first set of solutions describes the projection of each To see how to generalize the relatiqh$—(8), let us mul-
state¥|" * on the state® " atz=D, while the second set tiply to the right the solution$11) by (A*)* and the solu-
contains the projection of each sta¥e]"~ on the states tions (12) by (A7)". Considering the relationél5)—(18),
pll = one finds

Let us write all these solutions in the compact form

z=D
B . (W) =T (AT (AT
(oW ) =P AT (WP (BT (A
D,— + z=D
ZZDH""\PS‘ B = (LAY, (19)
= (.. ), (11
z=D
— z=D - — D, - —\#
T TR T S (...,wJ,...)ZzD(...,«P, (A
=D = (...

=(....w" L )HA o )
W )BTL (12 (T LU O(BY)ADR (20
The solutiong19) are not in the appropriate form due to
Since there are not as many basis states in region Ill as @e factorA* (A*)*, which does not simplify like. Consid-
z=D, the two matricesA” andB" have more rows than ering previous comments about this inequality, the solution
columns and the two matrices™ andB™ fewer rows than  tg this problem consists in enforcing explicitly a reflection of

columns. The relationt)—(8) need to be generalized to take the projected incoming states. (., W2 ", .. )[I1—(A*)
account of this nonsquare shape. x(A*)*] , i.e., posing the following relations:
According to the generalized inverse thedd?], every
matrix A (mXn) of rankr can be written a&\=WH, where z=D
W andH are two matrices respectivelynxr) and { xn) (WP, ) = LT = (AT (A
of rankr. The associated generalized inverse is a makfix o B
(nxm) defined byA*=HT(HHT) ~(WW) W', where +(. PP, D
stands for the transpose complex conjugate operation. X[1—(A")(AT)¥]
If the basis state®* and ¥"* are orthonormal, the D

rank of the two matriceé ™ is the number of states in region
Il and the generalized inverses &f" and A~ are in this
situation The matrixD~ " ensures the continuity of the wave func-
tion at the reflection point=D. It must be chosen so that

(...w"", ..)0. (21)

(AHF=[(ADT AT HADT, (13
z=D
(A7) =(A)T(A )AL (14) (.. )+ P, L DT = 0. (22
It is easily checked that For example, if the statesP P~ are given by PP
o =e* 22, D" is defined byD; ;" = —e'?2iPs; ;.
(AT)(AT)=I, (15 In the same way, we can define the set of solutions
(A7) (AD)*=I. (16) z=D
(..o )=, )0
However, we should be aware that in general z=D
= (. wh = (AT (AT
(AT) (AT #1, 7
(et )
— # —
(ADAAD 2L (18 XD [1- (A7) (A7), (23
These inequa!itie§ come basica}lly from 'the fact that an ir.rei/vhere the matriXD* ~ is defined by
coverable projection occurs while applying a transformation
that is represented by a matrix with fewer rows than col- =D
umns. In the situation considered, this irrecoverable projec- (. e+t DT = 0.
tion is encountered with the part of the wave function that is (24)

incident on the side of the circular aperture, since the wave

function expansion used in region lll is limited to its behav- This set of solutions is trivially verified due to the relation
ior inside the circular aperture. For our technique to be con¢16).

sistent, these projected incoming states have to be properly By adding the solution§21) to (19) and(23) to (20), one
reflected into their original region. finds two sets of solutions that are in the appropriate form:
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(...05, )= P 0
B N | ot

= (T o, (29

(0P ot

DI
+O T O (26

I
ii
T

In conclusion, we can write the relatios)—(8) in the
more general form

tD =A% (27)
to n=(BHAH D [I-(AT) (AN, (29
tom=(A")%, (29)

to =B A +D T [I-(A")(A)*], (30

I1l. APPLICATION
A. Preliminaries

In order to illustrate this theory, let us consider electronic
field emission from a metallic tip and the diffraction of the
extracted beam by a three-dimensional circular aperture fac-
ing the emitter. The extraction field results from the applica-
tion of a potential biay/ established between the support of
the tip and a conducting grid at a distari@ewhich supports
the circular aperture. It is convenient to assume the axial
directionz to be ann-fold symmetry axis and to use polar
coordinates in the plane normal to the symmetry és, ¢
for the azimuthal angle ang for the radial distance to the
axis).

Region I(i.e., the metallic support of the fips assumed
to be a Sommerfeld metal, delimited by the plarve0 and
characterized by empirical values \f (work function and
Er (Fermi energy. The potential energy in region I
<z=<D+D’', with D' the length of the circular apertyres
set conventionally to O inside the aperture{R") and«
outside p>R"). The potential energy in region I\.e., the
open space beyond the conducting grielD +D ") takes the
same constant value 0. The value of the potential energy in
region | is thenV,.=eV—W-Er. With these assump-

whereD~ " andD™ ~ are two matrices that ensure the wave tions, region Il is the only diffusive part of the problem and,
function continuity atz=D and the generalized inverse the Schrdinger equation being linear, the transfer-matrix

(A*)* of a given matrix A™) is computed by

(AN =[(AT)T(AH)] YA, (31
when (A™) has more rows than columns or

(A5 =(A) (A" (AT (32
in the other case.

D. Final solution by a transfer-matrix combination

In the final step, the four matricegy” have to be com-
bined with the four matrices;;; in order to obtain the trans-
fer matrices that contain the coefficients of the solutions

2<0 2=D
\I,jJr = ‘1’}'++§i: (tﬂlr)i,jqu’i = Z (t.TnT)i,j‘I’i'”'*,
(33
7=0 2=D
E (tyw) u\I’il'i = ‘1'}“'7"‘2 ('ﬁjlf)i,j‘l’im'Jr
(34)

methodology can be applied.

B. Wave function expansion in regions | and IlI

The wave function is expanded along basis functigns
that contain thep andp dependences. The set of these func-
tions is forced to be enumerable, by specifying that the scat-
tering electron remains localized inside a cylinder with ra-
diusR[6] in regions | and Il. The fact tha differs fromR’
in region 1l is responsible for the non-square shape of the
transfer matrices.

The basis state¥" =, ¥~ and¥"" = introduced in the
previous section to describe the wave function in regions I,
and Ill then take the specific forms

“i Y 7
\I,(mj)_ i\ (2m/A2)(E~Vime) gy (pd), (39
<y e 12
\P‘(mj)_ I (Zm/h )E km'JZw(m’j)(p,(ﬁ), (40)

+ + 2
III e i\(2mAa9)E— kmJ (p(mj)(p ¢) (41)

(mJ

corresponding to a single incoming state in region | or regiorvith

lll. These four transfer matricets,; are obtained by using
formulas developed by Pendfi3,14 in dynamic low en-
ergy electron diffraction simulations:

o =to 1 —t'o tol o (35
tun =tio ttip ol —tio to ] Mo (36)
tun =to [ —tomtio 1 Mo (37)
thw =tomttomtio [I—toutio 1 Mtow. (39

Jm(km,jp)eimqS

Pmjy(p, )= . (42

R
Zﬂfo p[Im(Km jp)1%dp

(ki jp)e™
Wi (Prb) = (43)

\/ 2m f PLIn(Kp ,p)]zdp
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FIG. 2. Real part of the potential-energy distributi@meV) in the xz plane. A 40 V bias is applied over the 3.5 nm separation between
the metal surface and the conducting grid. This grid supports a circular aperture with a radius of 0.5 nm and length of 0.4 nm. The tip is
represented by a conical emitter with a height and base radius of 1 and Ql&ffjiman elliptical emitter whose main axes in thandp
directions are 1 and 0.5 nfeentej, and an atomic protrusiofright).

All functions involved in these expressions have a pair ofvalues: 0.6 and 0.6 nm, 1 and 0.5 nm, 1.5 and 0.75 nm. In the
subscripts n,j). The radial wave vectork,,; in regions |  case of an elliptical emitter, the main axes in thand p

and Il, where the wave function is mainly confined arounddirections take respectively the same pairs of values. The
the centralz axis, are solutions od,(ky, ;R)=0, while the  corresponding potential-energy distributions in region Il are

radial wave vector&, ; in region I, where the wave func- computed by the relaxation techniques given in R&%].

tion can take significant values at=R’, are solutions of In the last representation, the atomic protrusion consists
In(km jR")=0. of four atomic layers whose distance is the 0.091 nm sepa-
ration encountered between two adjacent atomic layers in the

C. Propagation through regions Il and IV bulk of the metal in the{111) direction. The first atomic

layer is made of twelve atoms at 0.013 nm from the metallic
surface, the second layer of seven atoms z=a0.104 nm,
the third of three atoms at 0.195 nm and the last atom is
_ moved from its crystallographic position =0.289 nm
\If(im'j)zz D) (D P(m,j)(p, D), (44)  (see Ref[19]). Each atom is represented by a dipole. Fol-
m.J lowing reference$15,20), the polarizability of each dipole is
where thez dependence is contained in the coefficients?! &Verage, v_velgh_ted by the number_of neighboring atoms,
®(mj)(2) of the expansion. The techniques given in Refs.Of the polarlzagmty of a ne.utraln |splated atorf]
[10,15,1 to deal with the stationary three-dimensional ®o/(47€0)=7 A® and the polarizability in the bulke2] at
Schralinger equation are used to propagate these coefficient§® Fermi frequencyay /(4 mep) =1.49 A®. The corre-
betweenz=0 andz=D. sponding potential-energy distribution in region Il is com-
The propagation to a distant screen in region IV isPuted by using techniques given in RgL6]. The result is
achieved within the Green’s function formalisteee Ref. similar to that obtained with an elliptical tip, whose main
[17]) and the Neumann boundary conditiofs8], which ~ axes are equal to 0.6 nm.
have as formal consequence the cancelatiorz twmponent With a purely real potential, the electrons that fall beside
of the current density on the aperture bordezaD+D’. A the circular aperture do not disappear from the simulation, as
proper renormalization of the Green’s functions is achievedhey would disappear from consideration in reality. They are

To propagate the solutiong(im’j) through region II, we
use the following expression:

to enforce current conservation in region IV. reflected several times between the aperture border and the
metal surface, to be finally reflected by the cylinder bound-
D. Characterization of the physical system ary and come back to the aperture, where they interfere with

Let us consider an electric bias of 40 V and a metal—gridthe orig_inal_ beam. To cope With. this situation, the_ potential
distance of 3.5 nm. The bulk of the metal is a jellium char-EN€"9Y IS given a negative imaginary component, in a part of
acterized by a Fermi energy of 19.1 eV and a work functiorth€ system that is not met by the incident beam so only the
of 4.5 eV(values for tungsten The emitter is represented by €lectrons that are reflected by the aperture border are ab-
a conical or elliptical extension of the supporting jellium, Sorbed. This imaginary component is zero belgw
with various dimensions. A representation of the tip by an=2.5 nm, grows as a square function betwgen2.5 nm
atomic protrusion is also considered. and 3.5 nm from 0 to-1 eV, and keeps this last value for

In the two first representations, the tip is a conical orlarger values op.
elliptical metallic medium characterized by an infinite dielec- A vertical section of the real part of the potential-energy
tric constant and the same Fermi energy and work functiomlistribution corresponding to the various representations of
as in the bulk. In the case of a conical emitter, the height anthe tip is given in Fig. 2. The aperture in region Ill has a
base radius take, respectively, the three following pairs ofadius of 0.5 nm and a length of 0.4 nm.
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Angular spread [ degree ]
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FIG. 3. Angular spread of the diffracted electronic beam as a FIG. 4. Angular spread of the diffracted electronic beam as a
function of the aperture radius. The length of the aperture is 0.4 nmfunction of the aperture radius. The full curve corresponds to a

The basis states are defined AEF=0 and R=6 nm (dotted, single incident plane wave, the dashed curves to a conical tip, the
AE=2 eV andR=6 nm (full line), AE=4 eV andR=6 nm dot-dashed curves to an elliptical tip, and the dotted curve to an
(dashed, andAE=2 eV andR=12 nm(dot-dashed atomic structure. The height and base radius corresponding to the
three curves associated with the conical/elliptical emitter are respec-

E. Angular spread as a function of the aperture radius tively 0.6 and 0.6 nm, 1 and 0.5 nm, 1.5 and 0.75 (upward.

The present application aims at studying the angula{
spreadA ¢ of the diffracted electronic beam as a function of
the aperture radiuR’, for different shapes and dimensions
for];::ethequrerrén-[%i:\23{3?2222;?25'%;; ergg;? r;c:l\t/}ﬂrgﬁults results obtained by considering conical or elliptical tips, with
These contributions are weighted according to the corret-he previously given dimensions, and the atomic structure.
sponding density of states in the metsée Ref[17]). For a These results are gathered in Fig. 4. The full curve corre-

given total current density distribution, the angular sprea ponds to a S'.”g"? '”C'def“ plgne wave in the circular aper-
A8 is computed according to ure, propagating in the direction. The dashed curves cor-

respond to the conical tips, the dot-dashed curves to the

he consideration of evanescent states. In the remaining part
of this paper, values dAE=2 eV andR=6 nm are used.
With this choice of representation, we then compared the

27 wl2 elliptical tips, and the dotted curve to the atomic structure.
HecJ' do d6|6]3.(r,0,) The three curves associated with either a conical or elliptical
AG = 0 0 _ (45 tip correspond(upward to increasing tip dimensions. The
fzwd f”’zd 03.(r.8 curves consist typically of three part§) a first decreasing
0 ¢ 0 (1.0.4) part associated with Fraunhofer diffractiofii) a second

growing part associated with Fresnel diffracti¢for tips

larger than 1 nm (iii) a third constant part related to the
To first control the stability of the results toward the rep-finite size of the bean(for all tips).

resentation of the wave function, we used four different base As expected for Fraunhofer diffraction, the first part of the
for computating the dependence®d on the aperture radius figure decreases with increasing aperture radis All

R’. The results are gathered in Fig. 3. The tip is described iurves fit perfectly belovR’ = 0.2 nm(the wavelength in
these simulations by a cone with a height and base diametgfie aperture being equal to 0.206 nraince details of the

of 1 nm(see left part of Fig. R The widthD’ of the circular  emitter structure are no longer relevant down to this reduced
aperture is 0.4 nm. The simulations are performed by contength scale.

sideringm values ranging from-3 to 3. The basis states are  The second part of Fig. 4 is dominated by Fresnel diffrac-
limited by the conditionkpy, ; ,kr’T1,j<\/(2m/h2)(E+AE), tion. Fresnel diffraction is encountered when the spherical
where AE is 0 eV in the first representation, 2 eV in the shape of the incident wave prevails over the dimensions of
second, and 4 eV in the third. The confinement radRus  the diffractive structure. The diffraction pattern is then cor-
regions | and Il is 6 nm in these three representations. In theelated with the spatial distribution of this structure, which
last representation\E andR are respectively 2 eV and 12 explains the increase of the angular spread with the aperture
nm. radius.

The four results are in good agreement, except for the first The transition between Fraunhofer and Fresnel diffraction
representation(the dotted ling corresponding toAE=0.  occurs when the distanad between the virtual projection
This is due to the fact that the evanescent states introduced point and the sample is given la=a/\, wherea=2R’ is
the circular aperture and in the nearby region by taklitfy  the typical dimension of the diffractive structure andhe
>0 keep significant values over distances of the orddd of relevant electronic wavelength. By considering this transition
and improve the description of the lateral behavior of theto occur for a radiu®k’ = 0.55 nm in the case of a 1.5 nm
wave function. The(dashedl curve corresponding t&dE  long tip, we find the virtual projection point to lie a=
=4 eV presents some discrepancies compared to those 0b-2.3 nm. In the casefoa 1 nm long tip, the transition
tained withAE=2 eV, due to the instabilities inherent in occurs for a radiu®’ =0.75 nm and the corresponding vir-
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tual projection point lies at=—7.4 nm. These results are
of the same order as experimental vali@sand show how
the position of the virtual projection point is sensitive to the
potential-energy distribution surrounding the emitter.

In the last part of Fig. 4, the aperture dimensions tend to
exceed the size of the electronic beam when incident on the
extraction grid, so the angular spread tends to the value that
would be encountered without any aperture. This value is
obtained forlR'=2 nm, which corresponds to the size of the
electronic beam in the plare=D.

The angular spread grows with the height of the tip. This

Angular spread [ degree ]

is consistent with the initial angular spread increasing as the — P —
top of the emitter becomes sharp@s], but is mainly due to
the fact that the distance at which the electrons encounter a

Aperture radius [ nm ]

nonradial electric fieldtending to reduce the angular spread  FiG. 5. Angular spread of the diffracted electronic beam as a
decreases as the length of the tip increases. function of the aperture radius. The curves correspamvard to

The results are rather insensitive to the conical or ellipti-an aperture width of 1, 2, and 4 nm. The height and base radius of
cal shape of the tip. In these two model situations, the tip haghe conical emitter are respectively 1.5 and 0.75 nm.

an axial symmetry so the sphericity of the electronic wave is

not altered by atomic corrugation. The large values of thes€ntation in the two regions surrounding the diffusive part of
the system requires different numbers of basis states.

virtual projection point distance and the electronic wave- For pedagogical reasons, the method was used to compute
{omiC States 10 b evanescent when encountering the top (€ 2NGUIar spread of a feld-emitied elecironic bea, aftr
the conical tip, explain also why the results obtained with. d|ffr§1cted by a th(ee-d|m¢n5|onal circular aperture. .The
. P, EXp y scattering computation relies on the three-dimensional

both tip shapes are com_parable. . . Schralinger equation and requires techniques adapted to
The result obtained with the four-layer atomic structure IShonsquare matrices, since the confinement in the aperture

close to those_obtained with the conical/e_lliptical tip_with 0.6 causes the number of basis states in this region to differ from
nm length. This is because the surrounding potential-energy\at ysed in the preceding regions.

distributions are similar. These results show the neceéﬂity The results are well exp|ained in terms of Fraunhofer and
a context where the metallic support is limited by a p)asfe  Fresnel diffraction. The radius where the transition between
improving the description of the atomic structure of the emit-these two types of diffraction occurs gives the position of the
ter to account for the occurrence of Fresnel diffraction withvirtual projection point. This position turns out to be very
nanotips. This could be achieved by considering more thasensitive to the tip dimensions and to the orientation of the
four atomic layers or by describing the metallic support by asurrounding electric field. In the conditions of this papéd
hemispherical boundary. V bias and flat metallic supp9rtFresnel diffraction was not
Finally, the oscillations of all curves arise approximately encountered with tips smaller than 1 nm.
at the same values of the aperture radius. They are related to Typical future applications of nonsquare transfer matrices
the long-range behavior of the wave function @& 7/2.  Will be the study of connections between optical fibers, car-
Their magnitude tends to increagessentially in Fraunhofer bon nanotubes, or other systems with different sections or
conditions and the curves tend to groessentially in Physical properties requiring different numbers of basis
Fresnel conditionswith the lengthD’ of the aperture. This States for the expansion of the solution. Non-square transfer
behavior, illustrated in Fig. 5, is related to the wave functionMatrices are_also suited for.the study of electronic circuits
taking larger values at the border of the apertigempared With several input or output lines.
with those taken at the cenieais the length of the aperture
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IV. CONCLUSION
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