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We study the rectification properties of geometrically asymmetric metal-vacuum-metal junctions treated as
an oscillating barrier. In particular, we focus on systems in which an oscillating bias is established between a
cathode characterized by a hemispherical protrusion and a flat anode. We propose a quantum-mechanical
approach of this problem by using a transfer-matrix methodology, with developments that enable the time
dependence of the external bias to be accounted for explicitly. This study extends the quasistatic analysis
presented in our previous work. In particular, we study how the rectification properties of these junctions
depend on the frequency and the amplitude of the oscillating barrier. We also determine the power this device
could provide to an external load and the efficiency, with which the energy of an incident radiation can be
converted into a useful dc. It is demonstrated that rectification of optical frequencies is possible by using the
nanoscale device discussed in this paper.
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I. INTRODUCTION

Point-contact diodes were originally designed as metal-
oxide-metal systems, in which one of the metals is essen-
tially flat while the other has an extended sharp tip.1 These
diodes have been used for detection, rectification, and the
frequency mixing of infrared radiation.2–4 Fundamental ap-
plications have included the determination of the speed of
light5,6 and attempts to measure tunneling times.7–11 Point-
contact diodes have also enabled accurate measurements of
infrared frequencies.12–14 These devices are nowadays essen-
tially used for the selective detection and mixing of infrared
radiations, and current efforts aim at reducing their charac-
teristic response times and at improving their sensitivity.15–17

An explanation of the rectification properties of these de-
vices in terms of their geometrical asymmetry was proposed
by Lucas et al.18 in 1977.10,19 The fact that an ac bias applied
to these systems can induce currents with a strong dc com-
ponent comes from the difference in the potential barrier
seen by electrons traveling in the forward versus the back-
ward directions. A cutoff of this rectification is expected
when the frequency is so high that the bias reverses before
the electron has been able to transit through the device.9,10

Since tunneling times are typically of the order of
10−15 s,9–11 this cutoff may appear at frequencies as high as
1015 Hz if the cathode-anode spacing is sufficiently small.
These devices could therefore be used for the rectification of
optical frequencies.10,20 The efficiency of a rectification in
the visible range has however still to be determined.

Previous theoretical work on these junctions has usually
relied on approximations in the shape of the barrier and in
the tunneling probabilities, which were typically based
on a one-dimensional picture of the problem.21 Modern com-
putational facilities make it possible to address this

problem using quantum-mechanical techniques that do not
depend on these approximations but rather treat these aspects
exactly by taking account of three-dimensional aspects of the
problem. In a previous publication,20 we presented a transfer-
matrix analysis of this problem, which confirmed the conclu-
sions achieved by Lucas et al.18,19 and explored the depen-
dence of the rectification properties of these systems on their
physical and geometrical parameters. This analysis still re-
lied on a quasistatic approximation, in which it is assumed
that one can compare currents obtained for static values of
the external bias. This approximation is valid in far infrared
�frequency �→0� but must be replaced by a more exact
approach in order to treat situations, in which the time that
electrons take to cross the junction is comparable with the
period of the oscillating barrier.

This paper extends our previous work by taking into ac-
count the time dependence of the external bias explicitly. As
in our previous work, we focus on a system that consists of a
cathode with an hemispherical protrusion and a flat anode.
The transfer-matrix methodology that we use for the elec-
tronic scattering calculations was adapted in order to account
for the time dependence of the external bias. These method-
ological developments are presented in Sec. II. In Sec. III,
we discuss numerical aspects of this methodology by consid-
ering first the case in which the junction is symmetric. We
then address in Sec. IV the geometrically asymmetric junc-
tion already considered in our quasistatic analysis. We show
that the results obtained in that previous analysis agree with
those achieved in this oscillating-barrier analysis in the limit
when �→0. Extending our previous work, we then study in
Sec. V the dependence of the rectification properties of this
junction on the frequency and amplitude of the oscillating
barrier. We also determine the power this device could pro-
vide to an external load and the efficiency with which the
energy of an incident radiation could be converted into a
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useful dc. The results presented in this paper demonstrate
that the rectification of optical frequencies is possible using
nanoscale devices of the type discussed here.

II. METHODOLOGY: TRANSFER-MATRIX THEORY FOR
THE CALCULATION OF ELECTRONIC SCATTERING

IN A JUNCTION SUBJECTED TO AN OSCILLATING
POTENTIAL

The typical situation we consider is that where two tung-
sten metals, delimited by flat parallel surfaces, are separated
by a distance D. The surface of these two metals are referred
to by z=0 and D, where z is a vertical axis that is perpen-
dicular to these surfaces. The intermediate region contains
the potential-energy distributions that are responsible for the
electronic scattering, which is in particular the hemispherical
protrusion on the lower metal. We assume that the lower
metal �region I� and the upper metal �region III� are perfect
metals characterized by a Fermi energy EF and a work func-
tion W �for tungsten, we take EF=19.1 eV and W=4.5 eV�.
The intermediate region 0�z�D is also referred to as re-
gion II.

We assume that the junction is subjected to an oscillating
bias of the form Vext�t�=Vext cos��t�, so that the potential
energy takes the form22

V�r,t� = Vstat�r� + Vosc�r�cos��t� . �1�

In this expression, Vstat�r� contains the image potential
Eimage�r� that expresses the interaction of the tunneling elec-
trons with the metallic elements23 as well as the −�EF+W�
potential wells that are representative of these metallic ele-
ments. Vosc�r� describes the oscillating part of the potential
energy and is only related to the external bias Vext�t�. It is
assumed by convention that Vstat�r�=VI/III=−�EF+W� in re-
gions I and III, while Vosc�r�=0 in region I and Vosc�r�
=Vosc=−eVext in region III, with e as the absolute value of
the electronic charge. The values of Vstat�r� and Vosc�r� in the

intermediate region II are calculated using the finite-
difference techniques presented in Ref. 20 and 24. Figures 1
and 6 illustrate Vstat�r� and Vosc�r� in the intermediate region
II for the geometrically symmetric and asymmetric junctions
considered hereafter.

Using the transfer-matrix methodology developed in Refs.
25–30, one can then compute the currents that flow between
the two metals. The idea consists in expressing the wave
function ��r , t� that represents the electrons is provided by
the bottom and the top metals by

��r,t� = �
k=−N

N

�k�r�e−i�E+k���t/�, �2�

where N is a cutoff parameter for the number of quanta ��
the electrons represented by ��r , t� can absorb or emit be-
cause of their interaction with the oscillating barrier.29–31

�k�r� are actually the components of the wave function as-
sociated with the energy E+k��. By injecting the expres-
sions �1� and �2� in the time-dependent Schrödinger equation
�− �2

2m�+V�r , t����r , t�= i� �
�t��r , t�, one obtains a system of

coupled equations of the form

�−
�2

2m
� + Vstat�r���k�r� +

1

2
Vosc�r���k−1�r� + �k+1�r��

= �E + k����k�r� , �3�

in which the amplitude Vosc�r� of the oscillating part of the
potential energy turns out to be responsible for the coupling
between the components �k�r� of the wave function.29

In order to introduce a quantification of the electronic
states, we work in cylindrical coordinates and assume that
the electrons are confined in a cylinder with radius R �we
take as in our previous work R=2 nm�. The boundary states
in regions I and III are then given by29

�m,j,k
I,� �r,t� =

RJm�km,j��exp�im	�

�2	
0

R

d���Jm�km,j���2

e�i��2m/�2��E+k��−VI�−km,j
2 ze−i�E+k���t/�, �4�

�m,j,k
III,��r,t� =

RJm�km,j��exp�im	�

�2	
0

R

d���Jm�km,j���2

e�i��2m/�2��E+
k−VIII�−km,j
2 z �

k�=−N

N

Vk�,ke
−i�E+k����t/�, �5�

where Jm refer to Bessel functions and km,j to the radial com-
ponent of the wave vector. km,j are defined by the conditions
Jm� �km,jR�=0, where Jm� refer to the derivative of the Bessel

functions and
�2km,j

2

2m �Ecutoff, with Ecutoff as a cutoff parameter
used to limit the boundary states. Convergence is achieved

by taking Ecutoff=E+N��+ 
Vosc
−Vstat
min+�E, where Vstat

min

=minr Vstat�r� is the smallest value of the static part of the
potential energy �as found on the grids that describe the
whole system� and �E=2 eV. The � signs refer to the
propagation direction relative to the z axis. 
k and Vk�,k refer,
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respectively, to the eigenvalues and components of the eigenvectors of the matrix

M =�
N�� − Vosc/2

− Vosc/2 �N − 1��� − Vosc/2
� � �

− Vosc/2 − �N − 1��� − Vosc/2
− Vosc/2 − N��

� . �6�

Since Vosc�r�=0 in region I, the boundary states �m,j,k
I,� �r , t�

in the bottom metal turn out to have an energy given by
E�t�=E+k��. In region III, Vosc�r�=Vosc is nonzero in gen-
eral and the boundary states �m,j,k

III,��r , t� contain different en-
ergy components. In the limit when N→�, the energy of
these states is actually given by E�t�=E+k��
+Vosc cos��t�, so that the boundary states �m,j,k

I,� and �m,j,k
III,�

can both be interpreted as resulting from the absorption or
emission of k quanta of energy ��. In addition, the energy of
the boundary states �m,j,k

III,� turns out to follow the oscillations
of the reference potential in that region. We demonstrate in
Appendix A some important properties of the boundary
states �m,j,k

III,� in the anode region III.
Since the boundary states �m,j,k

I,� and �m,j,k
III,� have a well-

defined physical meaning, one can use the techniques pre-
sented in Ref. 29 and build scattering solutions of the form

�m,j,0
+ =

r�region I

�m,j,0
I,+ + �

m�,j�,k�

S�m�,j�,k��,�m,j,0�
−+

�m�,j�,k�
I,−

=
r�region III

�
m�,j�,k�

S�m�,j�,k��,�m,j,0�
++

�m�,j�,k�
III,+ , �7�

�m,j,0
− =

r�region I

�
m�,j�,k�

S�m�,j�,k��,�m,j,0�
−−

�m�,j�,k�
I,−

=
r�region III

�m,j,0
III,− + �

m�,j�,k�

S�m�,j�,k��,�m,j,0�
+−

�m�,j�,k�
III,+ ,

�8�

which correspond to single-incident states �m,j,0
I,+ and �m,j,0

III,−

in the bottom and top metals for a given value of the energy
E. The S�m�,j�,k��,�m,j,0�

++ and S�m�,j�,k��,�m,j,0�
−+ factors provide, re-

spectively, the coefficients of the transmitted and reflected
states for each incident state �m,j,0

I,+ in the bottom metal.

Similarly, the S�m�,j�,k��,�m,j,0�
−− and S�m�,j�,k��,�m,j,0�

+− factors pro-
vide, respectively, the coefficients of the transmitted and re-
flected states for each incident state �m,j,0

III,− in the top metal.
The S�� matrices that contain these coefficients satisfy uni-
tary properties �when the potential energy is real valued and
when the group velocities discussed hereafter are included in
the normalization of the boundary states�.32–35 These proper-
ties express essentially the principle of charge conservation
and the linear independence of the scattering solutions. The
calculation of the S�� matrices is actually more efficient

when the techniques presented in Ref. 26–28 are used. The
conductance of the system described by these matrices
comes from the contribution of every channel associated
with a couple of propagative states in both the regions of
incidence and transmission. The conductance of each chan-
nel is merely proportional to the squared amplitude of the
corresponding element in the S++ matrix for the upward cur-
rent or in the S−− matrix for the downward current. The
properties of the metal-vacuum-metal junctions considered
in this paper could therefore be analyzed in terms of those of
the scattering matrices.35 We rather focused our discussion
on the currents that cross the junction.

The currents that flow between the two metals hence re-
sult from the contribution of every solution associated with a
propagative state in the region of incidence. The mean cur-
rent that flows from the cathode region I to the anode region
III is actually given by

I+� =
2e

h
	

VI

+�

�
m,j

�
m�,j�,k�

f I�E��1 − f III�Ēm,j,0
III ��

�
vIII,�m�,j�,k��

vI,�m,j,0�

S�m�,j�,k��,�m,j,0�

++ 
2dE , �9�

while the mean current that flows from the anode region III
to the cathode region I is given by

I−� =
2e

h
	

VIII

+�

�
m,j

�
m�,j�,k�

f III�E��1 − f I�Ēm,j,0
I ��

�
vI,�m�,j�,k��

vIII,�m,j,0�

S�m�,j�,k��,�m,j,0�

−− 
2dE , �10�

where we take the convention to give to both the upward
and downward currents positive values. It is of course under-
stood that the physical currents associated with I+�
and I−� flow in opposite directions. In these expres-

sions, vI,�m,j,k�=
�

m
�2m

�2 �E+k��−VI�−km,j
2 and vIII,�m,j,k�

= �

m
�2m

�2 �E+
k−VIII�−km,j
2 refer to the group velocity in the

bottom and top metals. f I�E�=1 / �exp��E−I� /kBT�+1� and
f III�E�=1 / �exp��E−III� /kBT�+1� are the Fermi factors in
either the top or the bottom metal, with I/III=−W as the
chemical potential and T=300 K as the temperature of the

two metals. kB is the Boltzmann constant. Ēm,j,0
III and Ēm,j,0

I

refer to the mean energy of the transmitted part of the wave
functions. They are defined, respectively, by
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Ēm,j,0
III =

�
m�,j�,k�


S�m�,j�,k��,�m,j,0�
++ 
2�E + k����

�
m�,j�,k�


S�m�,j�,k��,�m,j,0�
++ 
2

, �11�

Ēm,j,0
I =

�
m�,j�,k�


S�m�,j�,k��,�m,j,0�
−− 
2�E + k����

�
m�,j�,k�


S�m�,j�,k��,�m,j,0�
−− 
2

. �12�

The sums in expressions �9�–�12� must actually be restricted
to propagative states.33 The mean value of the net current
that flows from the cathode region I to the anode region III is
then given by I�= I+�− I−�. Since the external bias Vext�t�
=Vext cos��t� is oscillating in time, the currents that flow
between the two metals will actually also depend on time.
We provide in Appendix B analytical expressions for the
Fourier components Ik

+ and Ik
− of the upward and downward

currents, which enable the time dependence I+�t�
=�k=−2N

2N Ik
+eik�t and I−�t�=�k=−2N

2N Ik
−eik�t of these currents to

be calculated explicitly.
Another quantity of interest is the power gained by the

electrons that cross the junction from the source of the oscil-
lating barrier. With I�t�=�k=−2N

2N Ike
ik�t the net current that

flows through the junction �Ik= Ik
+− Ik

−� and with Vext�t�

=Vext
ei�t+e−i�t

2 the bias applied to the junction, a classical way
to compute the power gained from the source of the external
bias would be

Pclassic� =
1

T
	

0

T

Vext�t�I�t�dt = �VextI0 if � = 0

Vext
I1 + I−1

2
if � � 0 � ,

�13�

where T= 2�
� is the period of the external bias. This definition

makes sense only in conditions where the time taken by elec-
trons to cross the device is much smaller than the period T of
the external bias ��→0�. This is usually the case with fre-
quencies in infrared.

In conditions where the time taken by electrons to cross
the junction is comparable with the period of the external
bias, one must actually compute the power gained from the
source of the external bias by using the following quantum-
mechanical expression:

Pquantum� = �
k=−N

N

k��Ik� . �14�

The factor Ik� refers to the part of the mean current I� that
is due to the component �k�r� of the wave functions,

Ik� =
2e

h
	

VI

+�

�
m,j

�
m�,j�

f I�E��1 − f III�Ēm,j,0
III ��

vIII,�m�,j�,k�

vI,�m,j,0�

S�m�,j�,k�,�m,j,0�

++ 
2dE

−
2e

h
	

VIII

+�

�
m,j

�
m�,j�

f III�E��1 − f I�Ēm,j,0
I ��

vI,�m�,j�,k�

vIII,�m,j,0�

S�m�,j�,k�,�m,j,0�

−− 
2dE . �15�

We will observe that Pclassic� and Pquantum� provide similar
values when � is small �typically in infrared�, while only
Pquantum� continues providing meaningful values when we
get closer to the visible spectrum.

III. APPLICATION: ANALYSIS OF THE PROPERTIES OF
A SYMMETRIC BARRIER SUBJECTED TO AN

OSCILLATING POTENTIAL

In order to demonstrate the validity of this methodology
and address some important numerical issues, we will first
consider the case in which the barrier is symmetric. We ex-
pect of course the upward and downward currents to be sym-
metric except for a time shift corresponding to one half of
the period of the external bias. We take the same conditions
as in our quasistatic analysis,20 i.e., a spacing D of 2 nm
between the cathode and the anode and an amplitude Vext of
the external bias of 1 V. For these simulations, we give � the
value that corresponds to a quantum of energy �� of 0.5 eV.

This corresponds to a radiation wavelength of 2480 nm in
infrared. The static and oscillating parts of the potential bar-
rier that correspond to this situation are depicted in Fig. 1.

The time dependence of the upward and downward cur-
rents I+�t� and I−�t� are represented in Fig. 2. It appears im-
mediately that these currents are identical except for a time
shift corresponding to one half of the period T=2� /� of the
oscillating barrier. The current emitted by the bottom metal is
indeed expected to be maximal when the barrier is “down”
�t= i2� /� with i as an integer�, while the current emitted by
the top metal is expected to be maximal when the barrier is
“up” �t=� /�+ i2� /� with i as an integer�. Because of the
time that electrons take to cross this junction, there is actu-
ally a time shift �t of 0.022�2� /�� between the peak inten-
sities of the oscillating barrier and those of the diode cur-
rents. The relative time shift �t /T turns out to increase with
the frequency of the oscillating barrier. This can be under-
stood if we consider that the time that electrons take to cross
the junction contains a part that is intrinsic to the dynamics
of these electrons, in particular to the tunneling process that
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takes place in the classically forbidden part of the potential
barrier. A detailed analysis of these time shifts may thus lead
to an estimation of this tunneling time.10 This analysis was
however left for future work. The results obtained in Sec. IV
actually show that these time shifts are higher for a flat sur-
face than for a tip. This may be due to the fact the distance
the electrons have to cross in the junction is larger when the
two electrodes are flat.

The Fourier components Ik
+ of the upward current I+�t�

=�k=−2N
2N Ik

+eik�t are represented in Fig. 3. The Fourier coeffi-
cients of the downward current are identical except for a
phase factor due to the � /� time shift between the upward
and downward currents �Ik

−= �−1�kIk
+�. The main quantity of

interest in this figure is I0
+, as it provides the mean value

I+�= 1
T�0

TI+�t�dt of the upward current. We have in this case
I+�= I−�=3.227�10−19 A. Another quantity of interest is
Re�I1

+� because this quantity is related to the classical expres-
sion of the power Pclassic

+ �= 1
T�0

TVext�t�I+�t�dt gained by the
upward current from the source of the oscillating barrier. We

have indeed Pclassic
+ �=Vext

I1
++I−1

+

2 =Vext
I1
++I1

+�

2 =Vext Re�I1
+�. For a

symmetric barrier, the power gained from the downward cur-
rent from the source of the oscillating barrier is given by

Pclassic
− �= Pclassic

+ �. The net power gained from the source of
the oscillating barrier is therefore given by Pclassic�
=2Pclassic

+ �=2Vext Re�I1
+�=5.309�10−19 W. For compari-

son, the quantum-mechanical expression of this same quan-
tity is given by Pquantum�=�k=−N

N k��Ik�=7.311�10−19 W,
where Ik� is defined in Eq. �15�. The classical expression
Pclassic�= 1

T�0
TVext�t�I�t�dt therefore underestimate by 27%

the power gained from the source of the oscillating barrier.
This discrepancy is due to the fact the external bias Vext�t�
changes by a non-negligible amount during the time that
electrons take to cross the junction. We will compare
Pclassic� and Pquantum� more systematically with the geo-
metrically asymmetric barrier considered in Sec. IV. The
other Fourier components Ik

+ finally provide information on
the capacity of this junction to generate harmonics of the
frequency of the external bias.

The results presented in Figs. 2 and 3 were achieved by
considering basis states �m,j,k

I,� and �m,j,k
III,� that correspond to


m
�mmax=10 and k�N=12. To check that these cutoff pa-
rameters are appropriate, it is useful to represent the contri-
bution of each value of m or k to the mean upward current
I+�. These contributions are defined by

(b)(a)

FIG. 1. Static part Vstat�r� �left� and oscillating part Vosc�r� �right� of the potential energy V�r , t�=Vstat�r�+Vosc�r�cos��t�. Vstat�r�
includes the image potential and the potential wells that characterize the metallic elements. Vosc�r� describes the effects of the Vext�t�
=Vext cos��t� external bias, whose amplitude Vext is 1 V.

FIG. 2. �Color online� Time dependence of the upward �solid
line� and downward �dashed line� currents as obtained for a sym-
metric barrier. The external bias Vext�t�=Vext cos��t� is character-
ized by an amplitude Vext of 1 V and a pulsation � that corresponds
to a quantum of energy �� of 0.5 eV.

FIG. 3. �Color online� Fourier components of the upward cur-
rent. The solid line stands for the real part and the dashed line for
the imaginary part. The barrier is symmetric. The external bias
Vext�t�=Vext cos��t� is characterized by an amplitude Vext of 1 V
and a pulsation � that corresponds to a quantum of energy �� of
0.5 eV.
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Im̄
+ � =

2e

h
	

VI

+�

�
m,j

�
j�,k�

f I�E��1 − f III�Ēm,j,0
III ��

�
vIII,�m̄,j�,k��

vI,�m,j,0�

S�m̄,j�,k��,�m,j,0�

++ 
2dE , �16�

I
k̄

+� =
2e

h
	

VI

+�

�
m,j

�
m�,j�

f I�E��1 − f III�Ēm,j,0
III ��

�
vIII,�m�,j�,k̄�

vI,�m,j,0�

S�m�,j�,k̄�,�m,j,0�

++ 
2dE , �17�

and represented in Figs. 4 and 5.

Figure 4 confirms that it is necessary to take mmax=10 in
order to compute the upward and downward currents when
the barrier is symmetric. In Sec. IV, we will extend the cath-
ode by an hemispherical protrusion. For this same photon
energy of 0.5 eV, the cutoff parameter mmax could be reduced
to a value of 3. The tip has indeed a filtering effect, which
gives the basis states associated with small values for m a
higher probability to cross the surface barrier �the Bessel
functions Jm that define these basis states have indeed more
pronounced values around the central z axis when m is
small�. The calculations presented in this paper were how-
ever achieved by letting m go as high as necessary in order to
reach convergence.

Figure 5 shows that the cutoff parameter N must be at
least as large as 8 as Ik

+� takes significant values up to k=8.
According to the material presented in Appendix A, the cut-
off parameter N must actually be still larger in order for the
representation of the boundary states in region III to be ap-
propriate. The calculations presented in this section were ac-
tually achieved by taking N=12 and this parameter was
adapted automatically in the remaining part of this paper
according to the convergence criteria presented in Appendix
A. Besides these convergence aspects, Fig. 5 also shows that
the main contribution to the upward current is provided by
electrons that have absorbed two quanta of energy ��. This
can be understood by the fact that these quanta have an en-
ergy of 0.5 eV, while the amplitude of the oscillating barrier
is 1 eV. The current emitted by the bottom metal is indeed
maximal when the barrier is down �electric field oriented to
the bottom metal�. Since Vosc=−1 eV, the Fermi level of the
bottom metal is then 1 eV above that of the anode metal.
Physically, one can therefore expect the electrons emitted
from the cathode metal to enter the anode metal with an
energy higher by 1 eV than the Fermi level of the anode
metal. In our formulation of this scattering problem, this is
only possible if the electrons have absorbed two quanta ��.
In conditions in which 
Vosc
���, one can expect the main
contribution to the upward current to come from states with
k=0. The contribution from states associated with k=1 will
be smaller and proportional to the power-flux density of the
incident radiation, while multiphoton-absorption processes
will in general be negligible.

IV. APPLICATION: RECTIFICATION PROPERTIES OF A
GEOMETRICALLY ASYMMETRIC JUNCTION

SUBJECTED TO AN OSCILLATING POTENTIAL

Section III aimed at validating the methodology and at
setting some important numerical issues. We consider now
that the cathode metal supports a hemispherical protrusion
with a height of 1 nm and a radius of 0.5 nm. We consider as
in Sec. III that the amplitude Vext of the external bias is 1 V.
The conditions are therefore the same as in our quasistatic
analysis20 except for the fact the external bias is oscillating
as Vext cos��t� instead of keeping either the +Vext or −Vext
static value. We actually expect the conclusions obtained in
our quasistatic analysis to reach those corresponding to this
oscillating-barrier analysis in the limit when �→0.

We consider as in Sec. III that the external bias Vext�t�
=Vext cos��t� is oscillating with a pulsation � that corre-

FIG. 4. �Color online� Contribution Im
+ � of each value of m to

the mean value of the upward current. The barrier is symmetric. The
external bias Vext�t�=Vext cos��t� is characterized by an amplitude
Vext of 1 V and a pulsation � that corresponds to a quantum of
energy �� of 0.5 eV.

FIG. 5. �Color online� Contribution Ik
+� of each value of k to the

mean value of the upward current. The barrier is symmetric. The
external bias Vext�t�=Vext cos��t� is characterized by an amplitude
Vext of 1 V and a pulsation � that corresponds to a quantum of
energy �� of 0.5 eV.
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sponds to an energy quantum �� of 0.5 eV �radiation wave-
length of 2480 nm in infrared�. The static and oscillating
parts of the potential energy are represented in Fig. 6. The
image potential that applies to the electrons that cross the
junction and the −�EF+W� potential wells that represent the
metallic elements are included in the static part Vstat�r� of the
potential energy. The oscillating part Vosc�r� of this potential
energy accounts for the external bias.

The time dependence of the upward and downward cur-
rents is represented in Fig. 7. It appears very clearly that the
magnitude of the upward current is larger than that of the
downward current, which confirms dramatically the rectifi-
cation properties of this junction. This rectification is solely
due to the geometric asymmetry of the junction. The ampli-
tude of the upward current is 2.567�10−12 A while that of
the downward current is 1.174�10−12 A. These values are
very close to the values of 2.476�10−12 and 1.421
�10−12 A established in our quasistatic analysis.20

In order to compare these results with those obtained in
Sec. III, we represented in Fig. 8 the Fourier components of
the upward current. The distribution is actually sharper than
for the symmetric barrier. One can establish that the mean

values of the upward and downward currents are given, re-
spectively, by I+�=8.501�10−13 A and I−�=5.176
�10−13 A. The mean value of the net current that flows
through the junction is hence given by I+�− I−�=3.324
�10−13 A. If we define the rectification ratio of the junction
by R= I+� / I−�, we get a value of 1.642, which is again very
close to the value of 1.742 established in our quasistatic
analysis.20

We hence obtain results that match reasonably well con-
clusions achieved in our quasistatic analysis of this problem.
Differences are attributed to the fact the external bias oscil-
lates as Vext�t�=Vext cos��t� in this analysis, while in our
quasistatic analysis it was assumed implicitly that the exter-
nal potential Vext�t� varies as a step function between +Vext
and −Vext. In this oscillating-barrier analysis, we take also
into account of the fact that the electrons can absorb quanta
of energy ��. This increases their probability to cross the
surface barrier. These photon-absorption processes were not
taken into account in the quasistatic analysis. These calcula-
tions provide therefore a further confirmation for the validity
of this methodology and one can proceed with the analysis of
this device.

(b)(a)

FIG. 6. Static part Vstat�r� �left� and oscillating part Vosc�r� �right� of the potential energy V�r , t�=Vstat�r�+Vosc�r�cos��t�. Vstat�r�
includes the image potential and the potential wells that characterize the metallic elements. Vosc�r� describes the effects of the Vext�t�
=Vext cos��t� external bias, whose amplitude Vext is 1 V.

FIG. 7. �Color online� Time dependence of the upward �solid
line� and downward �dashed line� currents as obtained for a geo-
metrically asymmetric junction. The external bias Vext�t�
=Vext cos��t� is characterized by an amplitude Vext of 1 V and a
pulsation � that corresponds to a quantum of energy �� of 0.5 eV.

FIG. 8. �Color online� Fourier components of the upward cur-
rent as obtained for a geometrically asymmetric junction. The solid
line stands for the real part and the dashed line for the imaginary
part. The external bias Vext�t�=Vext cos��t� is characterized by an
amplitude Vext of 1 V and a pulsation � that corresponds to a
quantum of energy �� of 0.5 eV.
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For instance, the power P� gained by the electrons that
cross the junction from the source of the external bias is
given by Pclassic�=7.678�10−13 W if one uses the classical
expression given in Eq. �13�. The quantum-mechanical
evaluation of this same quantity provides a value of
Pquantum�=8.707�10−13 W. The classical expression
Pclassic�= 1

T�0
TVext�t�I�t�dt therefore underestimates by 11.8%

the power gained by the electrons that cross the junction.
This discrepancy is smaller than for the symmetric barrier.
This may come from the fact that electrons take less time to
cross the junction �the distance these electrons have to cross
is indeed shorter and the fields at the apex of the protrusion
are stronger�. This reduction in the time that electrons take to
cross the junction improves the applicability of the classical
formula.

In a practical device, the oscillating barrier would result
from a radiation incident on the junction �in this model we
assume that an external battery is responsible for the polar-
ization of the junction�. In this context, we would define the
input power on the tip as the power-flux density of the radia-
tion times the area intercepted by the tip. In the conditions of
this model and assuming that the field of the incident radia-
tion can be estimated by −Vext /D, the input power is given
by Pin�=

�0c
2 �

Vext

D �2�
�htiprtip

2 =2.6�10−4 W �rtip and htip stand
for the radius and height of the tip, respectively�. The prob-
lem of calculating the coupling between an incident radiation
and a junction whose characteristic size should be microme-
ters rather than nanometers goes beyond the scope of this
paper and is left for future work. The nanometric dimensions
of these simulations are dictated by the computational re-
quirements of our methodology. An analysis of the coupling
of an incident radiation with a microscopic tip can be found
in the paper by Sullivan et al.36

V. SYSTEMATIC STUDY OF THE RECTIFICATION
PROPERTIES OF GEOMETRICALLY ASYMMETRIC

JUNCTIONS SUBJECTED TO AN OSCILLATING
POTENTIAL

We keep the geometrically asymmetric junction of Sec.
IV but consider now variations in either the amplitude or the
frequency of the external bias Vext�t�=Vext cos��t�. We keep
for the moment an amplitude Vext of 1 V and consider differ-
ent values for the pulsation �, in particular the values that
correspond to quanta of energy �� ranging between 0.2 �ra-
diation wavelength of 6200 nm in infrared� and 5 eV �radia-
tion wavelength of 248 nm in ultraviolet�.

The mean values I+� and I−� that one obtains for the
upward and downward currents, when �� ranges between
0.2 and 5 eV, are represented in Fig. 9. The mean upward
current turns out to be always higher than the mean down-
ward current, which proves that the geometrically asymmet-
ric junction depicted in Fig. 6 acts as a rectifier over this
whole range of frequencies. The vertical lines indicate the
height of the surface barrier when Vext�t� takes the values of
1, 0, and −1 V. This height is measured from the Fermi level
of the metal that emits, i.e., the cathode when Vext�t��0 and
the anode when Vext�t��0. These values indicate which
quantum of energy �� an electron at the Fermi level of

either the bottom or the top metal has to absorb in order to
cross the surface barrier by ballistic motion �in contrast to an
emission by tunneling�. Since the barrier is changing by the
time that electrons cross the barrier, these values only serve
as references. They explain however why I+� and I−� in-
crease more significantly when ���3.65 eV �the height of
the surface barrier when Vext�t�=0�.

The rectification ratio R= I+� / I−� that one obtains by tak-
ing the ratio between the mean values of the upward and
downward currents is represented in Fig. 10. The values ob-
tained at low frequency ��→0� agree with those obtained in
our quasistatic analysis.20 Because of the photon-absorption
processes, the rectification ratio R first increases with � be-
fore decreasing at higher frequencies. The intermediate re-
gion proves that the rectification of optical frequencies can
be achieved by the device depicted in Fig. 6, which agrees
with early conclusions reached by Sullivan et al.10 In our
quasistatic analysis, we predicted a cutoff of the rectification
for a photon energy �� around 4 eV �radiation wavelength
of 300 nm in ultraviolet� because it was estimated that the
field would then reverse before the electrons can cross the
junction. This oscillating-barrier analysis shows indeed a sig-
nificant decrease in the rectification at that frequency.

We finally present in Fig. 11 the power gained by the
electrons that cross the junction from the source of the oscil-
lating barrier. These values are calculated from the quantum-
mechanical expression provided in Eq. �14�. These Pquantum�
values are compared with the classical expression Pclassic�
= 1

T�0
TVext�t�I�t�dt, at least as long as this classical expression

continues providing meaningful values. This already stops
being the case for ��=1.5 eV, as Pclassic� provides then
negative values. The quantum-mechanical expression
Pquantum� on the other hand provides meaningful values on
the full range of frequencies. These values follow essentially
the variations in the mean upward current.

FIG. 9. �Color online� Mean value of the upward �solid line� and
downward �dashed line� currents as obtained for a geometrically
asymmetric junction subject to an external bias Vext�t�
=Vext cos��t� with Vext=1 V and �� ranging between 0.2 and 5
eV. The vertical lines indicate the height of the surface barrier �as
measured from the Fermi level of the emitting metal� when
Vext�t�=1 V �dashed line, left�, Vext�t�=−1 V �dashed line, right�,
and Vext�t�=0 V �solid line�.

MAYER et al. PHYSICAL REVIEW B 78, 205404 �2008�

205404-8



This study of the rectification properties of geometrically
asymmetric metal-vacuum-metal junctions focused on the
frequency dependence of the currents that cross the junction.
In order to distinguish between the effects that are due to the
dynamics of the electrons and those that are due to the re-
sponse of the material, we assumed that the cathode and the
anode were perfect metals characterized by a given set of

parameters, so that their answer to the oscillating field would
be identical on the whole range of frequencies. In this study,
photon-absorption processes turned out to have an important
role for explaining the frequency dependence of the upward
and downward currents. Since the efficiency of this photon-
absorption process is proportional to the square of the oscil-
lating field �i.e., 
Vext /D
2�, other factors become important
when smaller values of Vext are considered �in particular the
time that electrons take to cross the junction�. To illustrate
the effects of a reduction in Vext, we included in Figs. 10 and
11 the results that correspond to Vext=0.1 and 0.01 V. The
results actually show that P� is essentially proportional to
�

Vext

D �2 when Vext�0.01 V, while nonlinear effects associated
with multiphoton-absorption processes play a significant role
for higher values of Vext. The objective of this paper was
essentially to validate the methodology and extend the re-
sults of our quasistatic analysis. Future work will focus on
physical parameters that were not included in this analysis.

VI. CONCLUSION

This paper proposed a quantum-mechanical approach to
the rectification properties of geometrically asymmetric
metal-vacuum-metal junctions treated as an oscillating bar-
rier. This work is actually a generalization of our previous
analysis, which was based on a quasistatic approximation.
The methodology used to address this problem is the
transfer-matrix technique, which enables the calculation of
electronic scattering in metal-vacuum-metal junctions by
taking into account three-dimensional aspects of the
potential-energy distributions. This methodology was gener-
alized in order to address the case in which the external bias
is oscillating rather than just being constant. We proposed a
detailed justification of this methodology and developed the
main issues that arise in a numerical implementation. The
validity of this methodology was demonstrated by consider-
ing first the case in which the junction is symmetric. We then
addressed the geometrically asymmetric junction already
considered in our quasistatic analysis. The results obtained at
low frequency agree with those obtained in this previous
work, which provides a further confirmation for the validity
of this methodology. Extending our previous work, we then
addressed the frequency dependence of the rectification
properties of these junctions. In particular, we demonstrated
the ability of nanometer-sized metal-vacuum-metal junctions
to rectify optical frequencies. This extended analysis takes
into account the photon-absorption processes that occur in
the junction. It was demonstrated that these photon-
absorption processes as well as the time that electrons take to
cross the junction are important issues for the understanding
of this device.
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FIG. 10. �Color online� Rectification ratio as obtained for a geo-
metrically asymmetric junction subject to an external bias Vext�t�
=Vext cos��t� with Vext=1 �solid line�, 0.1 �dashed�, and 0.01 V
�dot-dashed line�. The quantum of energy �� ranges between 0.2
and 5 eV. The vertical lines indicate the height of the surface barrier
�as measured from the Fermi level of the emitting metal� when
Vext�t�=1 �dashed line, left�, −1 �dashed line, right�, and 0 V �solid
line�.

FIG. 11. �Color online� Power gained by the electrons that cross
the junction from the source of the oscillating barrier as calculated
from the quantum-mechanical expression Pquantum�. The dots indi-
cate values calculated from the classical expression Pclassic�. The
junction is geometrically asymmetric and subjected to an external
bias Vext�t�=Vext cos��t� with Vext=1 �solid line�, 0.1 �dashed line�,
and 0.01 V �dot-dashed line�. The quantum of energy �� ranges
between 0.2 and 5 eV. The vertical lines indicate the height of the
surface barrier �as measured from the Fermi level of the emitting
metal� when Vext�t�=1 �dashed line, left�, −1 �dashed line, right�,
and 0 V �solid line�.
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APPENDIX A: PROPERTIES OF THE EIGENSTATES OF
SCHRÖDINGER’S EQUATION IN A REGION IN

WHICH THE REFERENCE POTENTIAL IS OSCILLATING

We focus in this appendix on some fundamental proper-
ties of the eigenstates of Schrödinger’s equation in a region
in which the reference potential is oscillating in time �with
otherwise a constant amplitude in space�. This is the case of
the anode region III, in which the reference potential oscil-
lates as V�r , t�=Vstat+Vosc cos��t� with Vstat=VIII standing
for the steady part of the potential energy and Vosc for the

amplitude of the oscillating part. Physically, one expects the
term Vosc cos��t� to also appear in the energy of the eigen-
states of this region and we will show that it is indeed the
case.

The wave function can be expanded as ��r , t�
=�k=−N

N �k�r�e−i�E+k���t/�, where N is a cutoff parameter dis-
cussed hereafter. We work in cylindrical coordinates and as-
sume that the electrons are confined in a cylinder with radius
R centered around the z axis. According to our previous
work29 and to Sec. II of this paper, the eigenstates
of the time-dependent Schrödinger’s equation �− �2

2m�
+V�r , t����r , t�= i� �

�t��r , t� are given by

�m,j,k
III,��r,t� =

RJm�km,j��exp�im	�

�2	
0

R

d���Jm�km,j���2

e�i��2m/�2��E+
k−Vstat�−km,j
2 z �

k�=−N

N

Vk�,ke
−i�E+k����t/� �A1�

with Jm as the Bessel functions, km,j as the radial component of the wave vector, and 
k and Vk�,k as the eigenvalues and
components of the eigenvectors of the matrix

M =�
N�� − Vosc/2

− Vosc/2 �N − 1��� − Vosc/2
� � �

− Vosc/2 − �N − 1��� − Vosc/2
− Vosc/2 − N��

� . �A2�

In the limit when N→�, the eigenstates �m,j,k
III,��r , t� take actually the form

�m,j,k
III,��r,t� =

N→� RJm�km,j��exp�im	�

�2	
0

R

d���Jm�km,j���2

e�i��2m/�2��E+k��−Vstat�−km,j
2 ze−i�E+k���t/�e−i�Vosc/���sin��t�. �A3�

The proof is obtained by defining Wk�t�=�k�=−�
� Vk�,ke

−ik��t.
From the eigenvalue equation for 
k, we have k���Vk�,k

−
Vosc

2 �Vk�−1,k+Vk�+1,k�=
kVk�,k and one can show that Wk�t�
satisfy the relation i�

dWk�t�
dt = �
k+Vosc cos��t��Wk�t�. It fol-

lows that Wk�t�=e�−i/���t�
k+Vosc cos��t���dt�
=e�−i/���
kt+Vosc�sin��t�/���. Periodicity in time enforces 
k

=k�� and it is then easy to show that the energy of the

eigenstates �m,j,k
III,��r , t� is given by E�t� =

N→�

E+k��
+Vosc cos��t�. This confirms that the eigenstates �m,j,k

III,��r , t�
can be interpreted as resulting from the absorption of k
quanta of energy �� and that their energy follows the oscil-
lations of the reference potential. From the relation Wk�t�
=�k�=�

� Vk�,ke
−ik��t=e−i�k�t+�Vosc/���sin��t��, one can also show

that Vk�,k =
N→�

�

2��0
2�/�ei�k�−k��te−i�Vosc/���sin��t�dt. It follows

from this relation that �k�=−�
� Vk�+i,k

� Vk�,k=�i,0, which will be
useful for the following.

In any numeric calculation, N takes a finite value and it is
essential to check that the boundary states �m,j,k

III,��r , t� still
provide a good approximation of the exact solutions. One
can check that these states are orthonormalized and that their
mean energy is given by

�m,j,k
III,�
H
�m,j,k

III,��
�m,j,k

III,�
�m,j,k
III,��

=
�

2�
	

0

2�/�

�
k�=−N

N

Vk�,k
� ei�E+k����t/�

� �
k�=−N

N

Vk�,k�E + k����e−i�E+k����t/�dt

= �
k�=−N

N

�E + k����
Vk�,k
2. �A4�

The time dependence of their energy can actually be calcu-
lated by

MAYER et al. PHYSICAL REVIEW B 78, 205404 �2008�

205404-10



E�t� =
1

�R2	
0

R

d��	
0

2�

d	 �m,j,k
III,��r,t��

��−
�2

2m
� + Vstat + Vosc

ei�t + e−i�t

2
��m,j,k

III,��r,t�

= �E + 
k� �
k�,k�

Vk�,k
� Vk�,ke

i�k�−k���t

+
Vosc

2 �
k�,k�

Vk�,k
� Vk�,k�ei�k�−k�+1��t + ei�k�−k�−1��t�

= E0 + 2 �
i=1

2N+1

Ei cos�i�t� , �A5�

where

Ei = �E + 
k� �
k�,k�

Vk�,k
� Vk�,k�k�,k�+i

+
Vosc

2 �
k�,k�

Vk�,k
� Vk�,k��k�,k�+i−1 + �k�,k�+i+1� . �A6�

In the limit where N→�, we have 
k→k��. The relation
�k�=−�

� Vk�+i,k
� Vk�,k=�i,0 also shows that E0→E+k��, E1

→Vosc /2, and Ei→0 for i�2. We thus have E�t�=E+k��
+Vosc cos��t� as energy for the eigenstates �m,j,k

III,��r , t�,
which is in agreement with our previous result. When N
takes a finite value, one has to check how close the Ei get to
the ideal values of E0=E+k��, E1=Vosc /2, and Ei=0 for i
�2.

In the applications provided in the paper, we consider for
example a photon energy �� of 0.5 eV, an amplitude Vosc of
−1 eV for the oscillating barrier, and a cutoff parameter N of
12. We show in Table I how the values of 
k and
�k�=−N

N k���
Vk�,k
2 compare with the limit of k�� that one
obtains when N→�. The eigenstates �m,j,k

III,��r , t� in the anode
region III turn out to have a better representation for k=0,
while deviations in the eigenvalues 
k and in the mean ener-
gies �k�=−N

N k���
Vk�,k
2 appear as 
k
 increases. These devia-
tions can be kept under control by taking N sufficiently large.
For given values of Vosc and ��, the cutoff parameter N can
actually be determined by taking the first value, for which Ei
that characterize the eigenstates �m,j,k

III,��r , t� deviate by less
than 10−13 eV from the ideal values of E0=E+k��, E1
=Vosc /2, and Ei=0 for i�2. This condition must be fulfilled
for the states with k=0 and 1. When Vosc���, this condi-
tion must be extended to the states with k�

Vosc

�� .

APPENDIX B: EXPLICIT FORMULAS FOR THE TIME
DEPENDENCE OF THE UPWARD AND DOWNWARD

CURRENTS

By using the transfer-matrix methodology presented in
Sec. II, one can derive solutions in the anode region III that
have the following analytical expression:

�m,j,0
+ = �

m�,j�,k�

S�m�,j�,k��,�m,j,0�
++

�m�,j�,k�
III,+ �B1�

with

�m�,j�,k�
III,+ =

RJm��km�,j���exp�im�	�

�2	
0

R

d���Jm��km�,j����2

ei��2m/�2��E+
k�−VIII�−k
m�,j�
2

z �
k�=−N

N

Vk�,k�e
−i�E+k����t/� �B2�

TABLE I. Numerical values of the eigenvalues 
k and of the mean energies �k�=−N
N k���
Vk�,k
2 as

obtained in a simulation with Vosc=−1 eV, ��=0.5 eV, and N=12. These values are compared with the
limit k�� that one obtains when N→�.

k 
k �k�=−N
N k���
Vk�,k
2 k��

−5 −2.500 000 001 904 06 −2.499 999 972 424 76 −2.5

−4 −2.000 000 000 027 24 −1.999 999 999 549 29 −2.0

−3 −1.500 000 000 000 31 −1.499 999 999 994 24 −1.5

−2 −1.000 000 000 000 00 −0.999 999 999 999 943 −1.0

−1 −0.500 000 000 000 000 −0.499 999 999 999 998 −0.5

0 −2.256 362 437 690 874�10−16 −1.202 993 726 273 960�10−15 0.0

1 0.500 000 000 000 000 0.499 999 999 999 999 0.5

2 1.000 000 000 000 00 0.999 999 999 999 943 1.0

3 1.500 000 000 000 31 1.499 999 999 994 24 1.5

4 2.000 000 000 027 24 1.999 999 999 549 29 2.0

5 2.500 000 001 904 07 2.499 999 972 424 76 2.5
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as the eigenstates in the anode region III �these states are
discussed in Appendix A�.

The z component of the current density associated with
the wave function �m,j,0

+ is given by Jz;m,j,0
+

=Re��m,j,0
+ � �

im
d
dz�m,j,0

+ �. The upward current Im,j,0
+ provided

by the state �m,j,0
+ can then be calculated by

Im,j,0
+ = e	

0

R

d��	
0

2�

d	 Jz;m,j,0
+

=
e��R2

m
Re� �

m�,j�,k1�,k2�

�2m

�2 �E + 
k2
� − VIII� − km�,j�

2

�S�m�,j�,k1��,�m,j,0�
++ �S�m�,j�,k2��,�m,j,0�

++
ei�kz;m�,j�,k1�,k2�

z

� �
k1�,k2�

Vk1�,k1�
� Vk2�,k2�

ei�k1�−k2���t� �B3�

with e as the absolute value of the electronic charge and

�kz;m�,j�,k1�,k2�
=�2m

�2 �E + 
k2�
− VIII� − km�,j�

2

−�2m

�2 �E + 
k1�
− VIII� − km�,j�

2 . �B4�

The density of states Dm,j,0�E� that correspond to �m,j,0
+ is

given by25

Dm,j,0�E� =
m

�2�2R2

1

�2m
�2 �E − VI� − km,j

2
, �B5�

so that the upward current that corresponds to the full set of
possible incident states in the cathode region I is given by

I+ = 	
VI

�

�
m,j

f I�E��1 − f III�Ēm,j,0
III ��Dm,j,0�E�Im,j,0

+ dE ,

�B6�

where f I and f III are the Fermi factors in regions I and III and

Ēm,j,0
III is the mean energy of the transmitted part of the state

�m,j,0
+ �see Eq. �11��.
Replacing Dm,j,0�E� and Im,j,0

+ by their respective expres-
sions, we finally obtain

I+ =
2e

h
	

VI

�

�
m,j

f I�E��1 − f III�Ēm,j,0
III ��Im,j,0

+ dE , �B7�

with

Im,j,0
+ = Re� �

m�,j�,k1�,k2�

�2m
�2 �E + 
k2�

− VIII� − km�,j�
2

�2m
�2 �E − VI� − km,j

2

�S�m�,j�,k1��,�m,j,0�
++ �S�m�,j�,k2��,�m,j,0�

++
ei�kz;m�,j�,k1�,k2�

z

� �
k1�,k2�

Vk1�,k1�
� Vk2�,k2�

ei�k1�−k2���t� . �B8�

The term ei�k1�−k2���t in Eq. �B8� is ultimately responsible
for the time dependence of the upward current I+. Since k1�
and k2� both range from −N to N, the factor �k1�−k2�� will
range from 2N to 2N so that the Fourier expansion of I+ will
actually have the form

I+ = �
k=−2N

2N

Ik
+eik�t, �B9�

where the Ik
+ are the Fourier coefficients of I+.

One can obtain the Ik
+ by identifying the terms in Eqs.

�B7� and �B8� that exhibit a eik�t dependence. For example,
the term I0 corresponds to k1�=k2�. We can then use the fact
that �k1�

Vk1�,k1�
� Vk1�,k2�

=�k1�,k2�
and we finally obtain

I0
+ =

2e

h
	

VI

�

�
m,j

f I�E��1 − f III�Ēm,j,0
III ��

� �
m�,j�,k�

�2m
�2 �E + 
k� − VIII� − km�,j�

2

�2m
�2 �E − VI� − km,j

2

S�m�,j�,k��,�m,j,0�

++ 
2dE ,

�B10�

which is equivalent to Eq. �9�.
In the general case, we have

Ik
+ =

2e

h
	

VI

�

�
m,j

f I�E��1 − f III�Ēm,j,0
III ��Im,j,0;k

+ dE , �B11�

with

Im,j,0;k
+ = �

m�,j�,k1�,k2�

1

2

�2m
�2 �E + 
k2�

− VIII� − km�,j�
2

�2m
�2 �E − VI� − km,j

2 �S�m�,j�,k1��,�m,j,0�
++ �S�m�,j�,k2��,�m,j,0�

++
e+i�kz;m�,j�,k1�,k2�

z �
k1�,k2�

Vk1�,k1�
� Vk2�,k2�

�k1�−k2�,k

+ S�m�,j�,k1��,�m,j,0�
++

S�m�,j�,k2��,�m,j,0�
++ �e−i�kz;m�,j�,k1�,k2�

z �
k1�,k2�

Vk1�,k1�
Vk2�,k2�

�
�k2�−k1�,k� . �B12�
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The relations �B4�, �B11�, and �B12� lead to an important
property Ik

+�= I−k
+ , which guarantees that the current I+ is real

valued. The summations in all the formulas presented in this
appendix must only include propagative states.33

The time dependence of the downward current can be
obtained in a similar way. The main difference is that the

cathode region I is the transmission region and that the anode
region III is the region of incidence. We therefore use S−−

instead of S++ and exchange VIII with VI in the preceding
formulas. Since Vosc�r�=0 in region I, we have also 
k
=k�� and Vk�,k=�k�,k, which reduces the complexity of the
expressions relevant to the downward current I−.
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