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We present a model for the calculation of the polarization properties of fullerenes and carbon nanotubes.
This model describes each atom by both a net electric charge and a dipole. Compared to dipole-only models,
the consideration of electric charges enables one to account for the displacement of free electrons in structures
subject to an external field. It also enables one to account for the accumulation of additional charges. By
expressing the electrostatic interactions in terms of normalized propagators, the model achieves a better con-
sistency as well as an improved stability. In its most elementary form, the model depends on a single adjustable
parameter and provides an excellent agreement with other experimental and theoretical data. The technique is
applied to a C720 fullerene and to open and closed �5,5� nanotubes. The simulations demonstrate the improved
stability of our algorithm. In addition, they quantify the role of free charges in the polarization of these
structures. The paper finally investigates the field-enhancement properties of open and closed �5,5� nanotubes.
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I. INTRODUCTION

Carbon nanotubes are characterized by exceptional
mechanical,1,2 thermal,3,4 and electronic5–7 properties, which
make them promising candidates for applications in
nanoelectronics.8,9 Because of their high aspect ratio, these
structures turn out to be excellent field emitters as they pro-
vide high current densities for macroscopic fields of a few
volts per micrometer.10,11 Carbon nanotubes are also likely to
find applications as molecular sensors.12–14 For the develop-
ment of these applications, modeling the response of the
nanotubes to a macroscopic electric field or to the field due
to nearby molecules is therefore an important issue.

First-principles techniques are very useful in this context
as they provide accurate atomic and molecular
polarizabilities.15–20 Semiempirical models rely on the data
computed by these techniques and enable one to consider
larger systems, while reducing the time and computational
resources required to address those systems. Because of
these reduced computational requirements, semiempirical
models are widely used in molecular dynamic simulations,
where electrostatic forces have to be computed for every
time step, or in problems where many configurations have to
be considered.13 Finally, these models address directly quan-
tities that are of interest for experimentalists: charges and
polarization.

A technique traditionally used to describe the polarization
of isolated molecules is to associate with each atom a dipole,
whose value is computed self-consistently considering the
external field and the interactions with the other dipoles.21–26

In recent publications,27–29 we extended this description by
associating also an electric charge to each atom. This
monopole-dipole representation of the electronic densities
comes naturally as the Taylor expansion of the charge distri-
bution associated with each atom. The consideration of net
charges in sp2 carbon materials enables one to address the
fact that the � electrons of these systems move from one
atomic site to the other in response to an external field. It
also enables one to account for the accumulation of addi-

tional charges, which is essential for the modelization of field
emission.28

Expanding a recent publication,30 we present in this paper
a formulation in terms of normalized propagators of this
charge-dipole representation of nanostructures. This formu-
lation has the advantage of making the model more consis-
tent and of describing more accurately the charge-dipole and
the dipole-dipole interactions. It also provides a relation be-
tween the extension of the electric charges and the atomic
polarizabilities, which reduces the number of adjustable pa-
rameters. Compared to our previous formulation,28 this
model is numerically more stable and provides an excellent
agreement with other experimental and theoretical data. The
details of this technique are presented in Sec. II. The param-
etrization of the model is given in Sec. III. In Sec. IV, we
compare results obtained with a C720 fullerene using either
our previous model28 or the current technique. In Sec. V, we
then apply the model to open and closed �5,5� nanotubes.
The technique provides a consistent definition of the local
fields, which enables one to compute the field-enhancement
properties of these structures.

II. THEORY: FORMULATION IN TERMS
OF NORMALIZED PROPAGATORS OF THE

CHARGE-DIPOLE MODEL

We focuss in this paper on sp2 carbon materials and in
particular on fullerenes and carbon nanotubes. Considering
the availability of electronic states in the vicinity of the
Fermi level �for the structures considered31–33� and neglect-
ing quantum-mechanical effects34 that may prevent elec-
tronic charges from moving from one atomic site to the
other, we describe each atom by a net charge qi and a dipole
pi. As explained later, the actual values of the qi and pi will
be those that minimize the total electrochemical energy of
the system.

A. Total electrochemical energy of a system of charges
and dipoles

Let N be the number of atoms in the structure considered.
In a reformulation of our previous work,27–29 the total elec-
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trochemical energy Etot associated with a given distribution
�qi ,pi� of charges and dipoles placed at the atomic positions
ri can be written as

Etot =
1
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qiTq-q
i,j qj −
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where �i stands for the electron affinity of the atom i, Vi
refers to the values of the external potential, and E is the
external field.

The physical grounds of Eq. �1� are explained with details
in Ref. 28. The first term of this equation accounts for the
electrostatic interactions between the charges qi, the second
for the interactions between the dipoles pi, and the third one
for the interactions between the charges and the dipoles �the
factor 1/2 prevents the double counting of some of these
interactions�. The fourth term accounts for the energy re-
quired in order to bring a charge qi to a position character-
ized by an external potential Vi. It also accounts, through the
electron affinity �i, for the interactions between the addi-
tional charge qi and the electrons of the atom that stands at
the position ri. The last term finally accounts for the electro-
static interactions between the dipoles pi and the external
field E.

For a system of point charges, we have T q-q
i,j = �1/4��0�

��1/ri,j�, with ri,j the distance between the atom i and the
atom j. From the elementary definition of a dipole, one can
derive the two other tensors using T p-q

i,j =−�ri
T q-q

i,j

= �1/4��0��ri,j /ri,j
3 � �with ri,j =ri−r j� and T p-p

i,j =−�rj
� �ri

T q-q
i,j = �1/4��0��3ri,j � ri,j −ri,j

2 I� /ri,j
5 �with I the 3�3

identity matrix�. Consistency with basic electrostatics is veri-
fied by the fact that Eqj

=T p-q
i,j qj provides the electric field

due to the charge qj, while Epj
=T p-p

i,j p j provides the electric
field due to the dipole p j �both of them acting on the dipole
pi�. The problem when considering point charges is that the
tensors T q-q

i,j , T p-q
i,j , and Tp-p

i,j diverge as ri,j→0, so that the
term Tp-q

i,i must be removed explicitly while the terms T q-q
i,i

and Tp-p
i,i are replaced by finite expressions associated with

the self-energy of the charges qi and of the dipoles pi, re-
spectively.

B. Description of the charges qi and of the dipoles pi

by Gaussian distributions (the Q+P iso †R‡ model)

In order to solve the difficulties involved with point
charges, we assume that the excess charges qi are described
by Gaussian distributions of the form �i�r�
= �qi /�3/2R3�exp�−�r−ri�2 /R2� �with ri the position of the
atom i and R the width of the distributions�. In our previous
work,28 the atomic distances ri,j were replaced by
ri,j / erf�ri,j / ��2R�	 in order to make T q-q

i,j exact within that
assumption of Gaussian distributions.35 This renormalization
of the distances, however, did not turn Tp-q

i,j and Tp-p
i,j into

expressions rigorously correct in that context. The approach
developed in this paper consists in considering T q-q

i,j

= �1/4��0�erf�ri,j / ��2R�	 /ri,j as starting quantity, the compo-
nents Tp-q

i,j and Tp-p
i,j of the other tensors being determined

from the derivation of that expression. It is therefore the
tensors Tq-q, Tp-q, and Tp-p themselves that are renormalized,
instead of the interatomic distances. Tensors obtained within
that renormalization scheme are also referred to as “renor-
malized propagators” in the literature.12

This idea to introduce a factor erf �ri,j / ��2R�	 in T q-q
i,j is

justified by the fact that T q-q
i,j provides the electrostatic en-

ergy of two Gaussian distributions of charges, in contrast
with that of two point charges for which the expressions of
the previous section are relevant. These distributions of
charges are comparable with the electronic clouds of the car-
bon atoms and the erf function accounts for the reduction of
the electrostatic energy when these clouds interpenetrate.
Provided these charge distributions have the form �i�r�
= �qi /�3/2R3�exp�−�r−ri�2 /R2�, with ri standing for the
atomic positions, this treatment is actually exact. The fact
that our model relies on an approximation that is physically
reasonable �the description of the excess atomic charges by
Gaussian distributions� explains why it provides results in
good agreement with other theoretical and experimental data
�provided the parameters of the model are properly adjusted�.
Quantum-mechanical effects are expected to become signifi-
cant in situations where electronic charges are prevented
from moving from one atomic site to the other and when
considering smaller structures �the quantization of the energy
levels is indeed likely to prevent the use of simple classical
concepts�. For the structures considered in this paper, the
energy levels are, however, so close around the Fermi level
that classical concepts provide a reasonable approximation.

Developing the idea presented at the beginning this sec-
tion, we therefore determine
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In contrast with results obtained by scaling the distances ri,j,
these two expressions are rigorously correct. Tp-q

i,j describes
the electrostatic interactions between a Gaussian distribution
of charges qi and the dipolar moment p j associated with
Gaussian distributions of charges, while Tp-p

i,j describes the
electrostatic interactions between two dipolar moments pi
and p j.

The dipolar moments pi discussed from this point of the
paper can be conceived as two Gaussian distributions of
charges, of absolute value �pi � /�x and of opposite sign,
separated by a distance �x. In order to reach an infinitesimal
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definition of the dipolar moments, one can let �x tend to
zero. The charge density ��r��pi	 associated with a dipole pi

is then given by

��r��pi	 = lim
�x→0

�pi�/�x

�3/2R3�exp
− �r − �ri + u
�x

2
��2

/R2
− exp
− �r − �ri − u

�x

2
��2

/R2�
=

�pi�
�3/2R3u · � exp�− �r − ri�2/R2� = pi · ���r��1	 ,

�4�

where u is a unit vector pointing in the direction of the
dipole pi �from the negative to the positive elementary
charge this dipole is made of� and ��r��1	= �1/�3/2R3�
�exp�−�r−ri�2 /R2� is the charge density associated with a
unit charge on the atom i. From a mathematical point of
view, the dipoles pi appear naturally associated with the dif-
ferential operator �. From a practical point of view, these
dipolar moments pi are in essence identical with those en-
countered in elementary electrostatics, except that the el-
ementary charges pi is made of are distributed according to a
Gaussian function rather than being point particles.

It can be checked that limri,j→0Tp-q
i,j =0, which is the result

expected by symmetry. The second result is that
limri,j→0T q-q

i,j qi
2 /2= 1

4��0
��2/� /R�qi

2 /2, which is the self-
energy of the excess charge qi already used in our previous
work.27–29 A final noticeable result is that
− 1

2 limri,j→0pi ·Tp-p
i,j pi=

1
2pi · ��1/4��0���2/� /3R3�I	pi, where

I is the 3�3 identity matrix. Since, according to our previ-
ous work, this must also be equal to the self-energy
1
2pi ·�i

−1pi of the dipole pi, we find that formulating consis-
tently the interactions within a system of charges and dipoles
results in an isotropic atomic polarizability given by

�iso

4��0
= 3��

2
R3, �5�

where R is the width of the charge distributions.
The model is therefore consistent in the sense that the

terms Tp-q
i,i cancel naturally while the terms T q-q

i,i and Tp-p
i,i

provide the self-energy of the charges and of the dipoles,
respectively. The relation �5� constitutes a significant meth-
odological progress. It relates indeed the width of the charge
distributions to the atomic polarizabilities, these quantities
having been considered as independent in the past. The de-
velopment also implies that the charges and the dipoles are
described by the same extension parameter R, which consti-
tutes the single adjustable parameter of this model �given the
positions ri, the tensors Tq-q, Tp-q, and Tp-p depend on R
only�. We will refer hereafter to this most elementary form of
our model by the notation Q+P iso �R	. The Q and P sym-
bols invoke the presence of charges and dipoles in the model.
Iso refers to the use of isotropic atomic polarizabilities. The
braces contain the adjustable parameters of the model �in this
case R, the width of the charge distributions�.

C. A first relaxation of the model enabling the charges and the
dipoles to be described by different extension parameters

(the Q+P iso †R ,�iso‡ model)

As demonstrated later, the model developed so far pro-
vides already an excellent agreement with experimental or
other theoretical data. To include, however, additional de-
grees of freedom in the model, we will relax the Q+P iso �R	
model by assuming that the charges qi and the dipoles pi are
described by different extension parameters �referred to by
Rq and Rp, respectively�. The tensors that determine the total
electrochemical energy Etot are then updated according to

T q-q
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where Rq-q=�2Rq, Rq-p=�Rq
2+Rp

2, and Rp-p=�2Rp are the ef-
fective radii relevant to these electrostatic interactions.

In the same way as previously, one can relate the exten-
sion Rp of the dipoles to an isotropic atomic polarizability
given by

�iso

4��0
= 3��

2
Rp

3. �9�

Taking this relation into account, this second version of our
model depends actually on two parameters: the extension R
=Rq of the charge distributions and the isotropic polarizabil-
ity �iso. We will refer to this model by the notation Q+P iso
�R ,�iso	. The braces contain the two adjustable parameters of
this model. Without the relation �9�, �iso and Rp would have
been considered as two independently adjustable parameters.

D. A second relaxation of the model enabling the consideration
of anisotropic polarizabilities (the Q+P aniso

†R ,�par,�perp‡ model)

The model developed so far is intrinsically associated
with isotropic atomic polarizabilities. Introducing anisotropic
polarizabilities rigorously would require considering from
the beginning an anisotropic distribution function for the
charges qi, so that the terms − 1

2pi ·Tp-p
i,i pi reduce to

1
2pi ·�i

−1pi, with �i anisotropic. We take a simplified ap-
proach by just redefining the diagonal elements Tp-p

i,i by
Tp-p

i,i =−�i
−1, with �i an anisotropic atomic polarizability ten-

sor arbitrarily associated with the atom i. The tensors Tq-q,
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Tp-q, and the remaining components of Tp-p are formally the
same as in the previous model.

In order for the relation − 1
2pi ·Tp-p

i,i pi=
1
2pi · ��1/4��0�

���2/� /3Rp
3�I	pi to hold on average �for different orienta-

tions of the dipole pi�, we enforce that �moy/4��0
=3�� /2Rp

3, with the average atomic polarizability �moy re-
lated to the main components ��par ,�par ,�perp� of �i by
�moy=3/ �2/�par+1/�perp�. These conditions come to enforc-
ing that the trace of ��1/4��0���2/� /3Rp

3�I	 be equal to that
of �i

−1, so that we achieve the best possible consistency be-
tween the intrinsic properties of our model and the atomic
polarizability effectively chosen. For the sp2 carbon materi-
als studied in this paper, �par refers to the components of the
atomic polarizability tensor in the plane defined by the three
neighbors of a given atom. �perp refers to the component
corresponding to the direction perpendicular to that plane.
Because of the relation imposed between the extension Rp of
the dipoles and the components �par and �perp of the polariz-
ability tensor, this last version of our model depends actually
on three adjustable parameters: R=Rq �the width of the
charge densities�, �par, and �perp. This model will be referred
to by the notation Q+P aniso �R ,�par ,�perp	. Aniso refers to
the use of anisotropic atomic polarizabilities. The braces
contain the three adjustable parameters of this model.

E. Determination of the actual values of the qi and pi

and calculation of the electric potential
at an arbitrary position

Given the tensors Tq-q, Tp-q, and Tp-p, the total electro-
chemical energy Etot of the system is entirely determined.
The actual values of the charges qi and of the dipoles pi are
then obtained by solving the equations dEtot /dqi=0,
dEtot /dpx,i=0, dEtot /dpy,i=0, and dEtot /dpz,i=0, which mini-
mizes Etot. As explained in Ref. 28, one can enforce that the
structure considered carries a net electric charge of Qtot
�Qtot=0 will enforce charge neutrality�. The actual values of
qi and pi are then obtained by minimizing f =Etot+	��i=1

N qi

−Qtot� instead of Etot. One can also account for the presence
of a metallic surface, which introduces image interactions
within this system of charges and dipoles. The way these
interactions must be treated is similar to that presented in
Ref. 28.

Finally, once the actual values of the qi and pi are deter-
mined, the electric potential V�r� relevant to an electron in-
troduced as test charge at the position r must be calculated
considering the interactions between the gaussian distribu-
tions of our model and a point charge. The expression to use
for V�r� is then given by

V�r� = Vext�r� +
1

4��0
�
i=1

N � erf��r − ri�/Rq�
�r − ri�

qi

+
�r − ri� · pi

�r − ri�3

erf� �r − ri�

Rp
�

−
2

��

�r − ri�
Rp

e−��r − ri�/Rp�2� , �10�

where the extensions Rq and Rp of the charge and dipole

distributions are used as effective radii for these interactions.
Vext�r� refers to the external potential, which already defined
the values Vi at the atomic positions �Vi=Vext�ri�	. The elec-
tric field E�r� associated with V�r� is calculated according to
the same prescriptions. This expression is more accurate than
that proposed in Ref. 28. It is free of divergence. For the
modelization of field emission or transport in carbon nano-
tubes, this expression should be completed by the pseudopo-
tential presented in Ref. 36.

III. PARAMETRIZATION OF THE Q+P ISO †R‡, OF THE
Q+P ISO †R ,�iso‡, AND OF THE Q+P ANISO

†R ,�par,�perp‡ MODELS

From the comparison with other experimental or
theoretical data, the parameter R of the Q+P iso �R	 model
was adjusted to a value of 0.686 203 99 Å, which corre-
sponds to �iso /4��0=1.214 900 1 Å3. Letting R and �iso be
considered as independent parameters, we move to the Q
+P iso �R ,�iso	 model whose adjusted parameters are R
=0.672 001 49 Å and �iso /4��0=1.251 710 5 Å3. It can be
noted that, despite the additional degree of freedom intro-
duced in the methodology, the parameters of the Q+P iso
�R,�iso	 model stay close to those of the previous one. Fi-
nally, considering anisotropic polarizabilities, we refer to the
Q+P aniso �R,�par ,�perp	 model whose adjusted parameters
are R=0.663 294 37 Å, �par /4��0=0.544 966 47 Å3, and
�perp /4��0=1.449 999 7 Å3.

Table I compares the results achieved using these three
models with other experimental and theoretical data.20,22,37–40

The agreement achieved with the Q+P iso �R	 model is very
satisfactory, considering the fact it depends on a single ad-
justable parameter. The two other models improve slightly
the agreement with the reference data. The improvement
achieved by each model �compared to the preceding models�
is indicated by an asterisk in Table I. When weighting the
absolute deviations between the reference data and the re-
sults provided by each model, the Q+P iso �R	 model turns
out to provide a global error of 5.976, the Q+P iso �R ,�iso	
model a global error of 5.305, and the Q+P aniso
�R ,�par ,�perp	 model a global error of 4.561. For the calcu-
lation of these errors, the deviations from the reference data
were weighted according to the reliability or the importance
we estimated appropriate to associate with each data. The
error values presented here were obtained by weighting the
deviations from the mean polarizability of C60, C70, and C84
by 1/1.5, 1/3, and 1/6, respectively, the deviations from the
transverse polarizability of the �5,5�, �6,6�, and �9,0� nano-
tubes by 1, and the deviations from the ratio between the
internal and external fields in C60 and in the �5,5�, �6,6�, and
�9,0� nanotubes by 1/0.025. Deviations related to the �5,5�,
�6,6�, and �9,0� nanotubes were averaged and it is that aver-
age that was considered for the calculation of the error func-
tion. The values of R, �iso, �par, and �perp provided for each
model are those that minimize this error. The fact that the
results provided by the three models are only slightly con-
trasted is due to the domination of the polarization process
by the free charges, while the modifications introduced in the
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different models deal essentially with the dipoles. The fact
that it is the Q+P aniso �R ,�par ,�perp	 model that provides
the best results confirms the interest of describing the carbon
atoms in nanotubes and fullerenes by anisotropic polarizabil-
ities.

In Fig. 1, we represented the axial polarization of a �5,5�
nanotube as a function of its length. The results achieved by
the three models are perfectly smooth and in excellent agree-
ment with each other. They are also close to the result ob-
tained analytically when representing the nanotube by a me-

tallic cylinder �with a radius 1.2 Å larger than the actual
one�.41 This confirms the ability of our model to describe
metallic structures �results obtained considering dipoles only
are included for comparison�. These results also prove the
stability of our technique. Compared to our previous work,28

the current technique is indeed more robust when changing
the parameters of the models or the length of the C-C bonds.
It has therefore a better ability to deal with structures pre-
senting defects or not built according to purely geometrical
considerations. It can thus be applied to the study of large
structures, some of them including many defects, in a wide
variety of configurations.

IV. APPLICATION TO THE POLARIZATION OF A C720

FULLERENE

In order to demonstrate the improvement achieved in the
numerical stability of our technique, we compared in Fig. 2
the results obtained with a C720 fullerene using both the
previous28 and the current formulation of our model. The
C720 fullerene is subject to an external field of 1 V/nm ap-
plied horizontally to the left of the figure. The two results are
achieved using the Q+P aniso version of each model. The
figure actually represents the electric charges as well as the
dipoles induced by this external field.

Using the current technique, the molecular polarizability
of the C720 fullerene is found to be 2135 Å3. The electric
charges contribute to a value of 1999 Å3 and the dipoles to a
value of 136 Å3. Electric charges provide therefore the main
contribution to this polarizability. It can be shown that this
contribution grows with the cube of the fullerene radius,
while the contribution of dipoles only grows with the square
of that radius. The consideration of electric charges is there-

TABLE I. Comparison between experimental and theoretical data and results obtained using the Q+P iso �R	, the Q+P iso �R ,�iso	, and
the Q+ P aniso �R ,�par ,�perp	 models. Data used as target values for the fit are underlined. Improvements provided by each model �compared
with the previous models� are indicated with an asterisk. By �� /L, we mean the lateral polarizability per unit length �infinite nanotubes are
considered�. By Ein /Eout, we mean the ratio of internal to external transverse electric fields. The values that serve as reference in these rows
were obtained using models where the C60 is described by a spherical shell and the nanotubes by cylinders �Ref. 22�.

Q+P iso Q+P iso Q+P aniso Experimental and theoretical data

Parameters adjusted for the fit �R	 �R ,�iso	 �R ,�par ,�perp	

Mean polarizability of C60 �Å3� 75.1 75.1 74.5 75.1 �Ref. 20�, 76.5±8 �Ref. 37�
Mean polarizability of C70 �Å3� 91.5 91.5 90.9* 89.8 �Ref. 20�, 102±14 �Ref. 38�, 96.8 �Ref. 39�, 107.2

�Ref. 40�
Mean polarizability of C84�Å3� 116.0 115.9* 115.3* 109.4 �Ref. 20�
�� /L of �5,5� nanotubes �Å2� 8.3 8.3 8.0 8.3 �Ref. 22�
�� /L of �6,6� nanotubes �Å2� 11.3 11.3 11.2* 11.0 �Ref. 22�
�� /L of �9,0� nanotubes �Å2� 8.9 8.9 8.8 8.9 �Ref. 22�
�� /L of �12,0� nanotubes �Å2� 14.5 14.5 14.4* 13.9 �Ref. 22�
�� /Lof �15,0� nanotubes �Å2� 21.5 21.5 21.4* 20.1 �Ref. 22�
�� /L of �18,0� nanotubes �Å2� 29.9 29.9 29.8* 27.4 �Ref. 22�
Ein /Eout for C60 0.23 0.25 0.25 0.24 �Ref. 20 and 22�
Ein /Eout for �5,5� nanotubes 0.14 0.15* 0 .22* 0.22 �Ref. 22�
Ein /Eout for �6,6� nanotubes 0.11 0.11 0.12* 0.22 �Ref. 22�
Ein /Eout for �9,0� nanotubes 0.13 0.14* 0 .14* 0.22 �Ref. 22�

FIG. 1. �Color online� Axial polarizability of a �5,5� nanotube,
as obtained analytically with a cylinder �solid� or using the Q
P iso
�R	 �dashed�, the Q
P iso �R ,�iso	 �dot-dashed�, and the Q
P
aniso �R ,�par, �perp	 �dotted� models. The lower curve �dashed�
stands for results obtained using an anisotropic dipole-only model.
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fore essential for the study of these structures. Using our
previous formulation of this model,28 the molecular polariz-
ability is given by 2162 Å3, the charges and the dipoles con-
tributing 1951 Å3 and 211 Å3, respectively.

Although the two formulations provide similar values for
the molecular polarizability, the details at the atomic scale
are quite different. Figure 2 reveals indeed that the dipoles
calculated with the current technique are essentially perpen-
dicular to the surface of the fullerene, with increased values
at the corners. This picture is fully consistent with the pres-
ence of free electrons, whose equilibrium requires the local
fields to be perpendicular to the surface of the fullerene �in
this case the dipoles and the local fields point essentially in
the same direction�. The increased values at the corners of

the structure are consistent with the magnification of the lo-
cal fields at these places. The result also reveals that the
distribution of induced charges changes progressively from
positive values on the left part of the figure to negative val-
ues on the right part. In contrast, the result achieved using
the model of Ref. 28 exhibits significant discrepancies with
both the charges and the dipoles. These discrepancies are due
to the approximations introduced in the charge-dipole and in
the dipole-dipole interactions. These interactions are treated
more accurately by the current model.

The current model is also less sensitive to the particular
geometry of the structure considered. This is illustrated in
Fig. 3 where we represented the polarizability of a C720
fullerene, whose dimensions are artificially magnified by a
factor ranging from 0.9 to 1.1 �compared to the original
structure�. The result achieved using the model of this paper
in perfectly regular, while the result achieved using the pre-

FIG. 2. �Color online� Electric charges and dipoles of a C720

fullerene, as induced by a uniform external field of 1 V/nm applied
horizontally to the left of the figure. The atoms are represented with
a brightness that is proportional to the amplitude of their charge.
Positive charges �in red� characterize the left part of the figure,
while negative charges �in blue� characterize the right part. Top: the
Q
P aniso model of Ref. 28 is used. The minimal and maximal
values of the atomic charges are −9.51�10−3e and 9.50�10−3e,
respectively �with e the absolute value of the electronic charge�.
Bottom: the Q
P aniso �R ,�par, �perp	 model of this paper is used.
The minimal and maximal values of the atomic charges are −7.75
�10−3e and 7.73�10−3e, respectively.

FIG. 3. Polarizability of a C720 fullerene, as a function of the
dilatation of this molecule �measured by the factor by which the
interatomic distances are multiplied�. Top: the Q
P aniso model of
Ref. 28 is used; Bottom: the Q
P aniso �R ,�par, �perp	 model of
this paper is used. The solid curve indicates the contribution of
charges and the dashed one the contribution of dipoles.
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vious version of our model exhibits erratic variations. This
proves the better ability of our model, in the form presented
in this paper, to deal with a wider variety of structures that
are not built according to purely geometrical considerations.

V. APPLICATION TO THE POLARIZATION OF (5,5)
CARBON NANOTUBES

The model applies also to carbon nanotubes and gives for
these structures the charges and the dipoles that are induced
by external fields. It also provides a clear definition of the
local fields, which is a useful quantity in field emission.
From the polarizability �i and the dipole pi of a given atom,
the local fields can indeed be calculated using

Eloc,i = �i
−1 · pi. �11�

The effects of the atomic charges are actually contained in
the numerical values of the dipoles pi. To prove the validity
of this approach, let us examine the contents of the equation
dEtot /dpi=0. If we take account of the fact that Tp-p

i,i =−�i
−1

and Tp-q
i,i =0, one can write

dEtot

dpi
= �i

−1pi − �
j�i

Tp-p
i,j p j − �

j�i

Tp-q
i,j qj − E = 0, �12�

which can be put in the form

pi = �iEloc,i, �13�

where Eloc,i=� j�iTp-p
i,j p j +� j�iTp-q

i,j qj +E is an effective local
electric field that accounts for the charges qj, for the dipoles
p j, and for the external field E. This definition of the local
fields has the merit to provide well-defined values. In con-
trast, the direct calculation of the field due to a collection of
point charges or dipoles diverge at the atomic positions. The
usual procedure is then to calculate the electric field at a
given distance from the emitter. The position at which this
field should be calculated is however arbitrary. In our ap-
proach, once the charges qi and the dipoles pi have been
calculated and independently of the fact charges turn out to
dominate the polarization process, the local fields are ob-
tained directly from Eq. �11�. It can be noted that the values
obtained from the gradient of Eq. �10� are consistent with
those provided by Eq. �11�. This latter equation is however
more concise and easier to implement.

We illustrated this ability of our model to deal with car-
bon nanotubes by considering a closed �5,5� nanotube stand-
ing vertically on a metallic substrate. The cylindrical body of
the nanotube consists of 4000 atoms �200 elementary units�
and the tube is closed by a half-C60 molecule. The tube is
subject to a uniform 0.1 V/nm external field applied down-
wards.

The potential energy, as calculated using Eq. �10�, is rep-
resented in Fig. 4. For simulations of transport or field emis-
sion, this result should be completed by the pseudopotential
developed in Ref. 36. The equipotentials represented in Fig.
4 tend to bypass the nanotube, leaving this structure at a
nearly constant potential. This is of course the result ex-
pected for a metallic structure. The calculation also predicts
that the nanotube carries a net electric charge of −10.8�5�e,

with e the elementary electric charge. The maximal charge
carried by a given atom is as small as −1.77�10−2e. As
illustrated in Fig. 5, the maximal values of the atomic
charges are achieved at the apex of the nanotube. Net atomic
charges are, however, present on the whole body of the nano-
tube.

Besides the charge qi and the dipole pi of the carbon
atoms, another quantity of interest is the local field that acts
on these atoms. This quantity is illustrated in Fig. 6, where
we represented the local fields at the apex of the closed �5,5�
nanotube. The result shows that these local fields keep point-

FIG. 4. Potential energy of a closed �5,5� carbon nanotube sub-
ject to a uniform 0.1 V/nm external field applied downward. The
nanotube consists of 4030 atoms and stands vertically on a metallic
substrate. The potential energy is calculated using Eq. �10� in the
text.

FIG. 5. Net electric charge qi characterizing the atoms of a
closed �5,5� nanotube placed vertically on a metallic substrate and
subject to a uniform external field of 0.1 V/nm applied downward.
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ing perpendicularly to the surface of the molecule, both in
the body and in the cap of the nanotube. The absolute value
of the local fields, for the 4030 atoms of the closed �5,5�
nanotube, is represented in Fig. 7. As expected for an elon-
gated structure, the magnitude of the local fields is higher at
the apex of the nanotube, where the induced charges were
also observed to be higher. Again, the field that acts on the
atoms decreases but keeps significant values on the whole
body of the nanotube. This is in apparent contradiction with
the fact the potential energy in the central axis of the nano-
tube keeps essentially constant. These local fields are, how-
ever, those that act on individual carbon atoms, ensuring that
they get polarized in a way that minimizes the total electro-
static energy of the nanotube. These fields are different from
those that act on an external electron situated well outside of
the atomic charge distributions. This electron is indeed sub-
ject to the field exerted by all atoms and it was calculated
that the field in the center of the nanotube is −1.2
�10−3 V/nm, which is much smaller than the values repre-
sented in Fig. 7 and is consistent with a potential energy

keeping essentially constant on the central axis of the nano-
tube.

The local field at the apex of this closed �5,5� nanotube is
1.30 V/nm, which corresponds to a “field-enhancement fac-
tor” �=Eloc,max/ �E� of 13.0 �Eloc,max=maxi �Eloc,i� and E is the
external macroscopic field�. This value is especially impor-
tant in field-emission theories, because it determines the abil-
ity of the structure to emit electrons because of the external
field.42,43 The two other important factors are the emission
surface and the work function of the emitter, which can be
influenced by adsorbed species thus leading to significant
modifications of the emission. The field-enhancement factor
is strongly geometry dependent and can thus be controlled by
the growing process.

We represented in Fig. 8 the field-enhancement factor � of
open and closed �5,5� nanotubes as a function of their length
�expressed by the number of elementary units in the cylin-
drical body of the nanotube�. The results show that the field-
enhancement factor of closed �5,5� nanotubes is smaller than
that of open ones. Open tubes can therefore be expected to be
better field emitters, which agrees with conclusions pub-
lished previously44,45 �but not with results published by
Bonard et al.46�. The results presented in Fig. 8 can be ad-
justed by the following two expressions:

�open �5,5� = 4.302 + 0.1713 l/r + exp�−
l/r

53.30
�

��− 3.409 + 7.061 � 10−3 l/r� , �14�

�closed �5,5� = 2.004 + 7.596 � 10−2 l/r + exp�−
l/r

53.76
�

��− 1.422 + 2.444 � 10−3 l/r� , �15�

where l=n�0.245 95 nm refers to the length of the cylindri-
cal body of the �5,5� nanotube �n is the number of elemen-
tary units� and r=0.339 nm to its radius.

FIG. 6. �Color online� Electric charges and local fields of a
closed �5,5� nanotube, as induced by a uniform external field of
0.1 V/nm applied downward. The nanotube stands vertically on a
metallic substrate. The atoms are represented with a brightness that
is proportional to the amplitude of their charge. The minimal and
maximal values of the atomic charges are −0.177e and −1.25
�10−4e, respectively �with e the absolute value of the electronic
charge�. This maximal value is not represented on this figure.

FIG. 7. Local fields characterizing the atoms of a closed �5,5�
nanotube placed vertically on a metallic substrate and subject to a
uniform external field of 0.1 V/nm applied downward.
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These two expressions reproduce the results of Fig. 8 with
a mean absolute error of 0.02 �the fits are included in the
figure�. Furthermore, they agree with long-range expecta-
tions �i.e., ��L /r�.47–50 The proportionality coefficients
0.1713 and 7.596�10−2 are, however, smaller than the val-
ues of 1,47 0.72,48 or 0.73,49 found elsewhere. This may come
from the small radius of the particular nanotube taken into
consideration in this paper �r=0.339 nm�. Another difference
from classical calculations is that the present one is based on
an atomistic representation of the nanotube, which does not
assume it to be perfectly metallic. The fact that our propor-
tionality coefficient is smaller than values obtained by clas-
sical electrostatics is actually in agreement with results pub-
lished by Peng et al., who performed quantum-mechanical
calculations and obtained a proportionality coefficient of 0.2
for closed �5,5� nanotubes.50 For l=1 �m, our formula pre-

dicts a field-enhancement factor of 509.6 for open �5,5�
nanotubes, which is a realistic value. Finally, compared to
previous work, Eqs. �14� and �15� have the advantage of
providing also the field-enhancement values corresponding
to smaller nanotubes.

VI. CONCLUSION

The applications presented in this paper thus prove the
ability of our model to provide results related to the polar-
ization properties of fullerenes and carbon nanotubes with a
good accuracy and with reasonable computational resources.
Besides improving the calculation of molecular polarization
properties �compared to other classical calculations�, the
technique also gives access to the atomic charges, the atomic
dipoles, and the local fields. These quantities turn out to be
enhanced at the defects or asperities of these structures,
which is likely to influence the dynamics of nearby mol-
ecules. The applications also provided an analytical expres-
sion for the field-enhancement properties of open and closed
nanotubes, which is an important parameter in field emis-
sion. Compared to our previous formulation,28 the model
presented in this paper achieves a better consistency as well
as a better numerical stability. It provides an excellent agree-
ment with other experimental and theoretical data. Future
developments of this model will address the frequency de-
pendence of the parameters as well as nonlinear polarizabil-
ities. In its current form, it constitutes an efficient tool for the
systematic study of polarization properties and should help
in developing future technologies.

ACKNOWLEDGMENTS

This work was supported by the National Fund for Scien-
tific Research �FNRS� of Belgium. The author acknowledges
the use of the Inter-university Scientific Computing Facility
�ISCF� and the Belgian State Interuniversity Research Pro-
gram on “Quantum Size Effects in Nanostructured Materi-
als” �Project No. PAI/IUP P5/01�. The author acknowledges
M. Devel, R. Langlet, Ph. Lambin, N. M. Miskovsky, and P.
H. Cutler for useful discussions.

*Electronic mail: alexandre.mayer@fundp.ac.be
1 J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Carbon

44, 1624 �2006�.
2 J. P. Salvetat, S. Bhattacharyya, and R. B. Pipes, J. Nanosci.

Nanotechnol. 6, 1857 �2006�.
3 H. Rafii-Tabar, Phys. Rep. 390, 235 �2004�.
4 K. T. Lau, C. Gu, and D. Hui, Composites, Part B 37, 425 �2006�.
5 M. P. Anantram and F. Leonard, Rep. Prog. Phys. 69, 507 �2006�.
6 M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, and E. Hernan-

dez, Philos. Trans. R. Soc. London, Ser. A 362, 2065 �2004�.
7 M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Annu. Rev.

Mater. Res. 34, 247 �2004�.
8 R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science

297, 787 �2002�.

9 M. Zhang, S. L. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C.
D. Williams, K. R. Atkinson, and R. H. Baughman, Science
309, 1215 �2005�.

10 L. Nilsson, O. Gröning, C. Emmenegger, O. Küttel, E. Schaller,
L. Schlapbach, H. Kind, J.-M. Bonard, and K. Kern, Appl. Phys.
Lett. 76, 2071 �2000�.

11 V. Filip, D. Nicolaescu, M. Tanemura, and F. Okuyama, Ultrami-
croscopy 79, 39 �2001�.

12 R. Langlet, M. Arab, F. Picaud, M. Devel, and C. Girardet, J.
Chem. Phys. 121, 9655 �2004�.

13 M. Arab, F. H. Picaud, M. J-P. Devel, C. Ramseyer, and C. Gi-
rardet, Phys. Rev. B 69, 165401 �2004�.

14 F. Moulin, M. Devel, and S. Picaud, Phys. Rev. B 71, 165401
�2005�.

FIG. 8. Field-enhancement factor of open �solid� and closed
�dotted� �5,5� carbon nanotubes. These tubes are placed vertically
on a metallic substrate. The elementary unit of each nanotube con-
sists of 20 atoms and has a length of 0.245 95 nm. The analytical
expressions given by Eqs. �14� and �15� are included as well �they
are hardly distinguishable from the numerical results�.

FORMULATION IN TERMS OF NORMALIZED… PHYSICAL REVIEW B 75, 045407 �2007�

045407-9



15 S. Han and J. Ihm, Phys. Rev. B 61, 9986 �2000�.
16 C. Kim, B. Kim, S. M. Lee, C. Jo, and Y. H. Lee, Phys. Rev. B

65, 165418 �2002�.
17 S. Han and J. Ihm, Phys. Rev. B 66, 241402�R� �2002�.
18 C. Kim, K. Seo, B. Kim, N. Park, Y. S. Choi, K. A. Park, and Y.

H. Lee, Phys. Rev. B 68, 115403 �2003�.
19 X. Zheng, G. H. Chen, Z. Li, S. Deng, and N. Xu, Phys. Rev.

Lett. 92, 106803 �2004�.
20 D. Jonsson, P. Norman, K. Ruud, H. Ågren, and T. Helgaker, J.

Chem. Phys. 109, 572 �1998�.
21 Ch. Girard, Ph. Lambin, A. Dereux, and A. A. Lucas, Phys. Rev.

B 49, 11425 �1994�.
22 L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B 52,

8541 �1995�.
23 P. A. Gravil, Ph. Lambin, G. Gensterblum, L. Henrard, P. Senet,

and A. A. Lucas, Surf. Sci. 329, 199 �1995�.
24 P. A. Gravil, M. Devel, Ph. Lambin, X. Bouju, Ch. Girard, and A.

A. Lucas, Phys. Rev. B 53, 1622 �1996�.
25 M. Devel, Ch. Girard, and Ch. Joachim, Phys. Rev. B 53, 13159

�1996�.
26 A. Mayer and J.-P. Vigneron, Phys. Rev. B 56, 12599 �1997�.
27 A. Mayer, Appl. Phys. Lett. 86, 153110 �2005�.
28 A. Mayer, Phys. Rev. B 71, 235333 �2005�.
29 A. Mayer and Ph. Lambin, Nanotechnology 16, 2685 �2005�.
30 A. Mayer, Ph. Lambin, and R. Langlet, Appl. Phys. Lett. 89,

063117 �2006�.
31 R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl.

Phys. Lett. 60, 2204 �1992�.
32 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys.

73, 494 �1993�.
33 J.-C. Charlier and Ph. Lambin, Phys. Rev. B 57, R15037 �1998�.
34 X. Zhou, H. Chen, and O.-Y. Zhong-can, J. Phys.: Condens. Mat-

ter 13, L635 �2001�.

35 L. Jensen, P.-O. Åstrand, A. Osted, J. Kongsted, and K. V.
Mikkelsen, J. Chem. Phys. 116, 4001 �2002�.

36 A. Mayer, Carbon 42, 2057 �2004�.
37 R. Antoine, Ph. Dugourd, D. Rayane, E. Benichou, F. Broyer, M.

Chandezon, and C. Guet, J. Phys. Chem. 110, 9771 �1999�.
38 I. Compagnon, R. Antoine, M. Broyer, P. Dugourd, J. Lermé, and

D. Rayane, Phys. Rev. A 64, 025201 �2001�.
39 S. L. Ren, K. A. Wang, P. Zhou, Y. Wang, A. M. Rao, M. S.

Meier, J. P. Selegue, and P. C. Eklund, Appl. Phys. Lett. 61, 124
�1992�.

40 A. F. Hebard, R. C. Haddon, R. M. Fleming, and A. R. Kortan,
Appl. Phys. Lett. 59, 2109 �1991�.

41 L. D. Landau, E. M. Lifshitz, and L. P. Pitaesvkii, Electrodynam-
ics of Continuous Media �Pergamon, Oxford, 1981�.

42 R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119,
173 �1928�.

43 R. H. Good and E. Müller, Field Emission Handbüch der Physik
Vol. 21 �Springer-Verlag, Berlin, 1956�, pp. 176–231.

44 A. G. Rinzler, J. H. Hafner, P. Nicolaev, L. Lou, S. G. Kim, D.
Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Sci-
ence 269, 1550 �1995�.

45 A. Mayer, N. M. Miskovsky, P. H. Cutler, and Ph. Lambin, Phys.
Rev. B 68, 235401 �2003�.

46 J. M. Bonard, J. P. Salvetat, T. Stockli, L. Forro, and A. Chatelain,
Appl. Phys. A: Mater. Sci. Process. 69, 245 �1999�.

47 R. V. Latham, High Voltage Vacuum Insulation: The Physical
Basis �Academic, London, 1981�.

48 C. J. Edgcombe and U. Valdre, Solid-State Electron. 45, 857
�2001�.

49 G. C. Kokkorakis, A. Modinos, and J. P. Xanthakis, J. Appl. Phys.
91, 4580 �2002�.

50 J. Peng, Z. Li, C. He, S. Deng, N. Xu, X. Zheng, and G. Chen,
Phys. Rev. B 72, 235106 �2005�.

A. MAYER PHYSICAL REVIEW B 75, 045407 �2007�

045407-10


