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Transfer matrices combined with Green’s functions for the multiple-scattering simulation
of electronic projection imaging
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Laboratoire de Physique du Solide, Faculte´s Universitaires Notre Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium
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Electronic projection imaging is described in the framework of a multiple-scattering theory, by using a
combination of transfer-matrix and Green’s-function formalisms. The transfer-matrix methodology is used to
compute the wave propagation within the tip and object scattering region, while the Green’s-function formal-
ism is used to describe the electron projection from the scatterers towards a distant imaging screen. This
full-order theory is needed to overcome the limits of the first Born approximation and deal with three-
dimensional effects. In particular, this approach is able to account for sucking-in and standing-wave effects
taking place close to or inside the object. The simulation of the electronic diffraction by a model nanoscopic
carbon rod, eventually containing inhomogeneities, is considered in detail.@S0163-1829~99!11527-3#
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I. INTRODUCTION

Projection microscopes make use of the quasiradial
propagation of field-emitted1–9 electrons or ions projecte
out of small tips. Greatly magnified shadows10 of an object
can be obtained, without any lens, on a distant screen
placing the object at short distances from the tip, inside
electron beam. By using technologies developed for
scanning tunneling microscope, tip-sample distances ca
controlled within one angstrom precision, resulting in ma
nifications of the order of 1052106 for carbon fibers with
diameters between 10 and 20 nm.

In the Fresnel projection microscope~FPM!,11 the elec-
tronic source is a tungsten 2 to 3 nm height pyramidal na
protrusion with single atom sharpness, hereafter ca
nanotip.12–16The object lays on a 3 mm TEMgold grid and
the screen is a 10 cm distant multiple-channel-plate coup
to a fluorescent screen. The field emission voltage, es
lished between the tip holder and the object supporting g
is adjusted in the range of 50–300 V, a bias which is l
enough to avoid all risks of sample destruction. The atom
size of the emission area is responsible for the h
coherence,17 the stability, and the tiny energy dispersion~100
meV at room temperature! of the electronic beam. For sma
tip-sample distances, the incoming wave is essenti
spherical, giving rise to Fresnel diffraction images, s
highly correlated with direct-space representation image
the object.

The diffraction fringes observed in experimental figure11

indicate the relevance of the wave behavior of electrons
the understanding of the image formation. Reasonable ag
ment with experimental results was achieved within
Fresnel-Kirchhoff flat-object formalism,18 which assumes a
point source and reduces the object to a two-dimensio
mask defining an empirical transmission function. While t
method gives good results for homogeneous materials
does not take account of the three-dimensional distribu
of the object scattering strength and is then not suited for
description of heterogeneous materials. Furthermore,
formalism is not aware of the strongly varying electric fie
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distribution around the tip and the sample, mainly resp
sible for the position of the virtual projection point11 and the
focusing effect observed with small transparent carb
fibers.19

In this paper, we propose a method that takes us bey
the Fresnel-Kirchhoff formalism, by bringing into the theo
the detailed three-dimensional electron potential-energy
tribution between the metallic tip holder and the object su
port conducting grid. Furthermore, we remove the assum
empirical point source by enforcing that the spatial curr
density results from realistic traveling electrons provided
the metal tip holder and emitted into the accelerating elec
field defined by the tip and the sample. The sucking-in eff
and all effects due to the three-dimensional distribution
the scattering power in the sample are the main subject
discussion brought to light by this model.

In order to reach these objectives, we had to develo
formalism, which happens to be a combination of state-
the-art transfer-matrix and Green’s-function scattering f
malisms~see Sec. II!. The Green’s-function formalism20–26

is well suited to propagate the wave function from the m
scattering region~i.e., the region between the metallic ti
holder and the conducting grid! to the imaging screen
Within the scatterer, however, the Green’s-function form
ism should not be recommended: since the relevant pote
energy cannot be kept localized in space, the Gree
function scattering computation would therefore require p
hibitively large data storing. In a transfer-matr
method,27–33 the three-dimensional problem is reduced to
discrete set of coupled one-dimensional problems, usin
basis-set expansion to describe the electron lateral beha
and a direct-space analysis in the forward direction. If pro
erly implemented,30 this approach appears to be very we
suited to the description of wave propagation in comp
scattering domains, as it requires only two-dimensio
amounts of storage space, compared to Green’s-func
three-dimensional requirements. The transfer-matrix form
ism is, by contrast, not effective to propagate the wave fu
tion over very large distances. In our description of the p
jection imaging process, we then choose to use b
methods, devoting them to handle that part of the compu
2875 ©1999 The American Physical Society
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2876 PRB 60A. MAYER AND J.-P. VIGNERON
tion for which each of them is the most efficient.
In Sec. III, we explore the image formation when t

object is a long homogeneous or inhomogeneous rod wi
square section a few electron wavelengths wide. We will fi
closely examine a few effects specifically due to thre
dimensional multiple scattering, including the observed el
tron wave focusing by the object, usually described a
‘‘sucking in’’ effect. Thereafter, we focus on the resolutio
power of the electronic projection microscope and inve
gate the question of reaching atomic resolution. For the
ometry at hand, it is shown that atomic scale details are
obviously apparent in the multiple-scattering images, a lim
tation which remains consistent with the predictions o
more simple Fresnel-Kirchhoff theory.

II. THEORY

A. Preliminaries

The virtual instrument considered in the present pape
depicted in Fig. 1. Electrons are provided by a ‘‘Somm
feld’’ metal atz,0 ~region I!, emitted through a very narrow

FIG. 1. Virtual projection microscope. Electrons are emitt
from a small tip, which stands on the flat surface (z50) of a Som-
merfeld metal. After a multiple scattering process below the sam
supporting grid (z5D), the electrons propagate freely to an ima
ing screen (z5L), where a projected image of the sample is o
tained. In the region below the sample support (z<D), the elec-
trons are confined in a cylinder with radiusR.
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tip and scattered by a three-dimensional object in region
which ends atz5D ~typically D510 nm, including the 2 nm
tip!, and finally projected through a zero potential region
to be received by a screen atz5L ~typically L510 cm!. A
typical bias of a few tens or hundreds of volts is appli
between the metallic tip holder and the object support pla

Supporting the field-emission tip, the metal is describ
as a region~region I! of constant potential energyVmet, us-
ing a simple Sommerfeld model characterized by measu
values ofW ~work function! and EF ~Fermi energy!. The
conducting grid is described by the planez5D. In the region
z.D ~region III!, where the potential energy is set conve
tionally to the constant value 0, the electrons escaping fr
the object travel freely without any further scattering.

In the intermediate region 0<z<D ~region II!, which
contains the emission nanotip and the sample, the
tential energy is writtenV(r ). This potential, of electrostatic
origin, can be computed by applying overrelaxati
methods34,36 ~when the object or the tip is described as
continuous medium! or by dipole self-adjustment methods35

~for a discrete atomistic view of the object or tip structure!.

B. Wave-function expansion

The discrete atomic structure of the emitting device of
leads to situations where the relevant part of the system
be described as invariant under finite rotations. In order
take advantage of such situations, the one-electron scatte
problem is formulated in cylindrical coordinates, by usin
thez axis as the axial direction. The polar coordinates in
plane normal to thisn-fold symmetry axis are denotedf
~azimuthal angle! andr ~radial distance to the axis!.

The wave function is then expanded in terms of ba
functions that account for thef andr dependences. Since
continuum of such basis functions would not be easy
handle numerically, their set is forced to be enumerable,
specifying that the scattering electron remains localized
side a cylinder with radiusR ~Ref. 34! in the regions I and II.
The wave function in these two regions then takes the fo

C~r !5(
m

(
j

Fm, j ~z!Cm, j~r,f!. ~1!

In this last expression, the two integer subscriptsm and j
enumerate the basis functionsCm, j (r,f), given by

Cm, j~r,f!5S Jm~km, jr!eimf

A2pE
0

R

r@Jm~km, jr!#2 drD ~2!

characterized by a radial wave vectorkm, j solution of
Jm8 (km, jR)50. The z dependence of the wave function
contained in the coefficientsFm, j (z) of the expansion. The
productsFm, j (z)Cm, j (r,f) will be referred to as ‘‘states’’
of the wave function.

Requiring, as boundary condition, the basis functions
have a vanishing radial derivative atr5R, has some advan
tage over cancelling the function itself. This condition tur
out to be less stringent, since only the current density alonr
is forced to vanish, while cancelling the function would for
all components of the current density to vanish. The r
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PRB 60 2877TRANSFER MATRICES COMBINED WITH GREEN’S . . .
k0,050, corresponding to a wave-function component with
purely axial wave vector, characterizes the main part of
wave function and is skipped by the representation when
cancellation of the basis functions instead of their derivati
is set as a boundary condition.

C. Propagation equations

Let us expand then-fold symmetric potential-energy dis
tribution V(r,f,z) in the form

V~r,f,z!5V0~z!1 (
q52`

1`

V̄q~r,z!eiqnf, ~3!

where the choice ofV0(z) is arbitrary, but should correspon
to the main part of the potential energy since this part en
the propagation equations analytically.
n
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Using expression~1! for the wave function and expressio
~3! for the potential energy in the stationary Schro¨dinger
equation, the wave-function expansion coefficientsFm, j (z)
turn out to verify the exact set of coupled equations:

d2Fm, j~z!

dz2
1F2m

\2
E2km, j

2 2
2m

\2
V0~z!GFm, j~z!

5(
q

(
j 8

Mm, j
q, j 8~z!Fm2qn, j 8~z!, ~4!

whereE is the electron energy and the coupling coefficie

Mm, j
q, j 8(z) are defined by the expression
Mm, j
q, j 8~z!5

2m

\2

E
0

R

rV̄q~r,z!Jm~km, jr!Jm2qn~km2qn, j 8r!dr

AE
0

R

r@Jm~km, jr!#2 drAE
0

R

r@Jm2qn~km2qn, j 8r!#2 dr

. ~5!
th
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The advantage of then-fold symmetry assumption lays i
the fact that coupling between different components of
wave function occurs only when the correspondingm sub-
scripts are separated by a multiple of the symmetry axis
der n. There are thereforen independent groups of couple
components, which can be treated separately. Details on
derivation and use of Eqs.~4! and ~5! are given in Refs. 35
and 36.

D. Local scattering by the transfer-matrix methodology

The current density obtained on the screen is due to
contribution of all incident states in the metal. These sta
are scattered in region II and propagate freely in region II
the screen. The underlying Schro¨dinger equation being lin-
ear, the scattering in region II can be treated in the fram
work of transfer matrices. The propagation to the screen
be achieved in the next section, by using the Green
function formalism. At this stage, we just need an express
of the wave-function corresponding to each incident stat
z5D.

Since the potential energy remains constant in regio
the wave function expansion coefficients take the form

Fm, j
I ~z!5Am, j

I eiA2m/\2(E2Vmet)2km, j
2 z

1Bm, j
I e2 iA2m/\2(E2Vmet)2km, j

2 z. ~6!

Let us take atz5D the following expression:

Fm, j
III ~z!5Am, j

III eiA~2m/\2!E2km, j
2 z

1Bm, j
III e2 iA(2m/\2)E2km, j

2 z. ~7!
e

r-

he

e
s

o

-
ill
-
n
at

I,

In these expressions, the rootsA2m/\2(E2Vmet)2km, j
2 and

A2m/\2E2km, j
2 are positive reals or complex numbers wi

positive imaginary parts.
Due to the linearity of the propagation equations, region

can be described by four transfer matrices that contain
expansion coefficients in Eqs.~6! and ~7! corresponding to
the transmitted and reflected parts of the wave function w
a single incident state with unit amplitude encounters reg
II.

When the incident state~corresponding to a single bas
function with subscriptsm̄ and j̄ ) is coming fromz52`,
the wave function is written as

Cm̄, j̄
1

~r ! 5
z<0

(
m, j

~d (m, j ),(m̄, j̄ )e
iA2m/\2(E2Vmet)2km, j

2 z

1t (m, j ),(m̄, j̄ )
21

e2 iA2m/\2(E2Vmet)2km, j
2 z!Cm, j~r,f!

5
z5D

(
m, j

~ t (m, j ),(m̄, j̄ )
11

eiA2m/\2E2km, j
2 z!Cm, j~r,f! . ~8!

No wave-function component coming backwards fromz5
1` is to be considered.

To compute the two transfer matricest11 and t21, the
peculiar solutions corresponding to a single outgoing s
with unit amplitude atz5D has to be constructed. Since th
wave function at this interface is entirely defined, the wav
function expansion coefficientsFm, j (z) and their derivatives
are known atz5D. By using these boundary values and Eq
~4! and ~5!, the wave-function expansion coefficien
Fm, j (z) can be propagated by appropriate numeri
techniques35,36 to z50 and written in the same form as ex
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2878 PRB 60A. MAYER AND J.-P. VIGNERON
pression~6!. By considering separately all possible outgoi
states atz5D, one obtains the following set of solutions:

C̄m̄, j̄
1

~r ! 5
z<0

(
m, j

~A(m, j ),(m̄, j̄ )e
iA2m/\2(E2Vmet)2km, j

2 z

1B(m, j ),(m̄, j̄ )e
2 iA2m/\2(E2Vmet)2km, j

2 z!Cm, j~r,f!

5
z5D

(
m, j

~d (m, j ),(m̄, j̄ )e
iA(2m/\2)E2km, j

2 z!Cm, j~r,f!.

~9!

Taking into account the linearity of the propagation equ
tions, it is possible to combine the solutions given in Eq.~9!
to obtain solutions in the form~8!. The relevant relations ar

t115A21,

t215BA21. ~10!

The two transfer matricest22 and t12 that contain the
coefficients of the transmitted and reflected parts of the w
functions corresponding to a single incident state with u
amplitude coming fromz51` are obtained in a simila
way. An efficient technique to control the numerical ins
bilities encountered in the computation of the transfer ma
ces is presented in Ref. 27.

E. Propagation to the screen
by the Green’s-function methodology

The requirement that the basis-function set is enumer
leads to the assumption that the electrons are confined in
a cylinder with finite radiusR. This assumption is adequa
as long as the wave function naturally disappears for ra
distancesr smaller thanR. For a field-emission situation
this last condition is fulfilled until the electronic bea
reaches the cylinder boundary. At this stage, a reflection
the beam occurs and makes the resulting wave func
meaningless. This is the reason why a solution canno
obtained on the 10 cm distant screen with the previ
transfer-matrix formalism.

Within the Green’s-function formalism, it is possible
derive the expression of a wave function at an arbitrary
sition of spacer by using its expression on a closed surfa
S surrounding the position considered. The relevant exp
sion, derived in Appendix A, is the following:

E E
S
n•@G~r 8,r ,E!“ r 8C~r 8!

2C~r 8!“ r 8G~r 8,r ,E!#dS852
2m

\2
C~r !,

~11!

wheren is a unit vector normal to the surface and orient
outwards.

Let us consider a pointr on the screen in region III and
take for S a surface that contains the planez5D and is
closed atr5` on the surfacez51`. The wave function on
-

e
it

-
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al
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this surface takes nonzero values only in the circular aper
defined by the intersection between the planez5D and the
cylinder with radiusR, so that the previous expression b
comes

C~r !5
\2

2mE E
circ apert

3S G~r 8,r ,E!
dC~r 8!

dz8
2C~r 8!

dG~r 8,r ,E!

dz8
D dS8.

~12!

Since the potential energy in the region III takes the co
stant valueV50 and the wave function and its derivative
cancel at infinite distances in this region, the Green’s fu
tion G to consider is given by

G~r 8,r ,E!52
m

2p\2

1

ur 82r u
eiA(2mE/\2)ur82r u. ~13!

Due to the large metal-screen distance~compared with the
cylinder radiusR), the factorur 82r u can be expanded as

ur 82r u5ur u2r 0
•r 81

1

2ur u @ ur 8u22~r 0
•r 8!2#1•••, ~14!

wherer 0 is a unit vector with components (1,u,f) in spheri-
cal coordinates that points tor from the origin. The third
term in this expression is of the same order as the second
a critical distance from the grid arounddcrit;ur 8u/2;R/2.
The solution becomes radiative when it becomes less t
1% of the second term, i.e., for a distancedrad550R. For a
screen distance of 10 cm, the third term is less than 1027 of
the second~for a maximal value ofR520 nm!, so it is neg-
ligible.

With this approximation in expression~13!, Eq. ~12! be-
comes

C~r ,u,f!52
1

4pr
eiA2mE/\2[ r 2 cos(u)D]

3E
0

RE
0

2pS dC~r,f8,D !

dz8

1 iC~r,f8,D !A2mE

\2
cos~u!D

3e2 iA2mE/\2[r cos(f82f)sin(u)]r dr df8.
~15!

Within the Kirchhoff approximation,37 we can now use
the wave-function expansion~8! ~i.e., the values of the wave
function and its derivatives! in this last result to derive its
expression on the screen:

Cm̄, j̄
1

~r ,u,f! 5
r @0 eikEr

r (
m, j

t (m, j ),(m̄, j̄ )
11

s~u,m, j ,E!eimf

~16!

with kE5A2mE/\2, and
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s~u,m, j ,E!52
e2 ikE cos(u)D

2
@AkE

22km, j
2 1kE cos~u!#

3 i 12m
eiAkE

2
2km, j

2 D

A2pE
0

2p

@Jm~km, jr!#2r dr

3E
0

R

dr rJm~km, jr!Jm„kE sin~u!r….

~17!

F. Computation of the total current density

Each incoming state in the metallic support gives r
to transmitted states. The only incoming states to c
sider are those associated with a real value
A2m/\2(E2Vmet)2km, j

2 . Considering the expression~16!
and the transfer matrixt11, it is easy to compute the corre
sponding current densityJm, j

1 (r ).
Taking into account the absence of correlation betw

the incoming states in the metal and their contribution to
density of states, the current density corresponding to
incident states with energyE is obtained by the weighted
sum35,36

JE~r !5
m

~R\p!2
(
m

(
j

1

A2m~E2Vmet!

\2
2km, j

2

Jm, j
1 ~r !.

~18!

In this one-electron model, the basis functions are c
structed so that the particle probability density of the ass
ated state, when integrated on a given cylindrical section
the metal, gives all the same result. Each state can be
sidered to be representative of the same numberuAu2 of elec-
trons in a unit volume of the metal. For the description to
appropriate, we can multiply each basis function by the co
mon factorA, determined by the requirement that the parti
probability density, when integrated over all possible sta
and energies in the metal, provides the correct value:

rmet5
1

3p2 S 2mEF

\2 D 3/2

. ~19!

The factorA is given by the relation35,36

rmet5uAu2
2m

~R\p!2
E

0

EF
dE(

j

1

A2mE

\2
2k0,j

2

3S 2pE
0

R

r@J0~k0,jr!#2 dr D 21

. ~20!

These coefficients can be computed analytically by us
Lommel integrals.38

Finally, the total electric current density is obtained
integrating over the energy continuum in the metal:
e
-
f

n
e
ll

-
i-
of
n-

e
-

s

g

j ~r !5eE
Vmet

Vmet1EF
JE~r !dE. ~21!

III. APPLICATION: OBSERVATION OF A CARBON
FIBER BY PROJECTION MICROSCOPY

Under appropriate conditions, electronic projection mic
scopes provide Fresnel diffraction figures strongly correla
with the object diffusion strength distribution under inves
gation. This essential feature can be traced to the sphe
shape and coherence of the electronic waves, when inci
on the object. The necessity to use nanotips with a m
atomic termination in order to obtain well contrasted diffra
tion fringes was already demonstrated.39 The present appli-
cation focuses on the relation between the characteristic
the diffraction figures and the properties of the sample, wh
the conditions enable Fresnel diffraction.

One property that turns out to be important in the ima
formation is the polarization of the matter. The effects of th
polarization are more pronounced for small samples~i.e.,
carbon fibers with a thickness of a few nm! and result in a
‘‘sucking-in’’ effect, which is due to the attraction of th
traveling electrons by the electric field surrounding t
sample.

The images obtained with carbon fibers depict a homo
neous material and do not provide direct information on
underlying atomic structure. The reason comes from the l
ited resolution of the technique, which usually does not
able the observation of structures smaller than 0.5 nm.
expression for the resolution limit due to diffraction in
projection configuration was derived within the Fresn
Kirchhoff flat-object formalism.18 If l is the electronic
wavelength in the sample andd the distance between thi
sample and the point source, the resolution of the projec
image isDd5 1

2 Ald. For Fresnel diffraction to occur, thi
value has to be less than one-half of the sample thickn
When this condition is fulfilled, each point in the projecte
image turns out to be associated approximatively with
spherical region in the sample, whose radius isDd . Each
point in the image gives, therefore, an averaged piece
information on the sample~i.e., a result that depends on th
contents of the associated sphere in the sample!, excluding
the possibility to detect corrugations that are smaller th
this region.

The simulations considered in this section aim at illustr
ing how the electric field surrounding the sample models
aspect of the projected image. They also highlight the un
servability of sample corrugations whose characteristic
mensions are smaller than the resolutionDd . We thus justify
the lack of direct information on the atomic structure of t
sample in the projected images.

To represent the metallic support of the nanotip, we c
sidered a Fermi energy value of 19.1 eV and a work funct
of 4.5 eV~values for tungsten!. The conducting grid is sepa
rated from this support byD53.5 nm and the extraction bia
is 25 V. The electron source is represented by a conica
with 1 nm height. The carbon fiber has a dielectric consta40

of 16.5 and a work function40 of 4.82 eV. It is oriented along
the x axis and infinite in this direction. Its section in they-z
plane is a square with 1 nm thickness. The potential-ene
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2880 PRB 60A. MAYER AND J.-P. VIGNERON
distribution, computed by overrelaxation,35 is illustrated in
Fig. 2.

In order to highlight the effects of sample polarization
the shape of the projected image, we compared the cur
density obtained on the 10 cm distant screen when the fi
is not polarized and when polarization is present. The fi
situation is obtained by characterizing the fiber with a diel
tric constant of 1, while in the second situation~for which
the potential-energy distribution in Fig. 2 is relevant! the
fiber is characterized by a dielectric constant of 16.5. Th
two results, computed by considering a cancellation radiuR
of 3.5 nm andm values ranging from220 until 120, are
presented in Fig. 3.

The results in Fig. 3 show that the polarization of the fib
is responsible for its projected image to appear brighter. T
‘‘sucking-in’’ effect is due to the attraction of the travelin
electrons by the electric field surrounding the fiber when i
polarized. It is interesting to notice that the side of the fib
when projected geometrically from the point source~as-

FIG. 2. Potential-energy distribution~in eV! in the y-z vertical
plane. A 25-V bias is applied over the 3.5 nm separation betw
the metallic tip holder surface and the sample supporting grid. T
grid supports a carbon fiber with 1 nm thickness that is orien
along thex axis.
nt
er
t
-

e

r
is

s
,

sumed here to be the top of the conical emitter!, corresponds
to a dark line~situated aty562.5 cm! in the diffraction
pattern. This can be related to a destructive interference
tween the secondary waves that contribute to the image
mation ~they originate partly from inside and partly from
outside the fiber!.

In order to justify the lack of direct information on th
atomic structure of the fibers in their projected image,
introduced a sinusoidal perturbation in the internal poten
of the previously considered fiber and examined its obse
ability in the projected image as a function of the period
the perturbation.

The fiber considered in these simulatio
has a dielectric constant of 16.5. The intern
potential is changed from24.82 eV to 24.82 eV
12* sin(2px/P)* sin(2py/P)*sin(2*pz/P) eV, where P is
the period of the perturbation in each direction. Due to
peculiar form of this perturbation, the average of the pot
tial energy in the fiber keeps the same value of24.82 eV.
We have illustrated in Fig. 4 the current density computed
the 10 cm distant screen when the periodP is, respectively, 1
nm, 0.5 nm, and 0.25 nm.

We see that the effects of the sinusoidal perturbation
visible for P51 nm. They hardly appear in the second p
of Fig. 4. The third part of this figure is nearly identical
the second part of Fig. 3. The resolution limit due to diffra
tion can be estimated fromDd5 1

2 Ald. By taking l50.24
nm andd52 nm, we findDd50.35 nm. This accounts fo
the fact that a sinusoidal perturbation with a period of 0.5
hardly induces visible effects, while a perturbation with
period of 0.25 nm cannot be detected in the projected ima
These simulations make clear why the potential-energy c
rugations associated with the atomic structure of the fiber
not appear in the projected images.

For the atoms to be detected, the resolution limitDd
should be smaller than 0.1 nm. This requires us to red
either l or d. However, since the local electric field on th
nanotip cannot be significantly larger than 10 V/nm, it is n
possible to reduce bothl and d arbitrarily. By minimizing

n
is
d

ckness
FIG. 3. Current density~in A/cm2) on the 10 cm distant screen corresponding to the observation of a carbon fiber with 1 nm thi
under a bias of 25 V. Left part: the fiber is not polarized (e51). Right part: the fiber is polarized (e516.5).
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FIG. 4. Current density~in A/cm2) on the 10 cm distant screen corresponding to the observation of a polarized carbon fiber with
thickness and modified internal potential under a bias of 25 V. From left to right: the period of the sinusoidal perturbation of the
potential is, respectively, 1 nm, 0.5 nm, and 0.25 nm.
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ve
Dd under the condition (E1W)/d<10 V/nm, a limit of 0.35
nm is found for the resolution of the projection microscop
This limit is not compatible with the direct observation of th
atomic structure of a sample by standard projection micr
copy.

IV. CONCLUSION

An efficient technique for the simulation of electron
projection microscopy was presented. This technique,
relies on both the transfer-matrix and Green’s-function f
malisms, can take advantage of a centraln-fold symmetry
axis.

The technique enables the computation of current de
ties at arbitrary distances. The computation effort for
electronic scattering can be minimized by confining the el
trons, in the part where the scattering occurs, in a cylin
with a radiusR as small as physically admissible. Once t
scattering is computed, the result is straightforwardly pro
gated to the imaging screen by using the Green’s-func
formalism.

This method differs essentially from the Fresn
Kirchhoff theory in the fact that the empirical point sour
and the two-dimensional mask are replaced by an accu
transfer-matrix computation, that takes into account
three-dimensional electric field distribution. Breakin
through the limits of two-dimensional models, this improv
technique enables us to simulate the interaction of the t
eling electrons with the electric field surrounding the samp
It also makes it possible to consider three-dimensional c
rugations in the sample.

These extended capabilities were used to illustrate the
fluence of the electric field surrounding a carbon fiber on
projected image~sucking-in effect!. The simulations also in-
vestigated the observability of corrugations inside the fi
and revealed a critical size for a detection to be possi
These results justify the lack of direct information on t
atomic structure in the images obtained by projection
croscopy.
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APPENDIX: HUYGENS PRINCIPLE
IN THE GREEN FORMALISM

Let us consider the stationary Schro¨dinger equation with
the relation defining the associated Green function:

¹ r8
2 C~r 8!1

2m

\2
@E2V~r 8!#C~r 8!50, ~A1!

¹ r8
2 G~r 8,r ,E!1

2m

\2
@E2V~r 8!#G~r 8,r ,E!5

2m

\2
d~r 82r !.

~A2!

Let us multiply the first equation byG(r 8,r ,E), the sec-
ond by C(r 8), and subtract the two expressions. When
result is integrated over a volumeV that containsr , one finds

E E E
V
@G~r 8,r ,E!¹ r8

2 C~r 8!

2C~r 8!¹ r8
2 G~r 8,r ,E!#dV852

2m

\2
C~r !.

~A3!

By using the Green’s formula, this last result becomes

E E
S
n•@G~r 8,r ,E!“ r8C~r 8!

2C~r 8!“ r8G~r 8,r ,E!#dS852
2m

\2
C~r !,

~A4!

whereS is the limiting surface of the volumeV and n is a
unit vector normal toS and oriented outwards.

This equation makes it possible to compute the wa
function @solution of Eq.~A1!# at a given pointr by using its
expression on a surrounding surfaceS.
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