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Transfer matrices combined with Green’s functions for the multiple-scattering simulation
of electronic projection imaging
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Electronic projection imaging is described in the framework of a multiple-scattering theory, by using a
combination of transfer-matrix and Green’s-function formalisms. The transfer-matrix methodology is used to
compute the wave propagation within the tip and object scattering region, while the Green’s-function formal-
ism is used to describe the electron projection from the scatterers towards a distant imaging screen. This
full-order theory is needed to overcome the limits of the first Born approximation and deal with three-
dimensional effects. In particular, this approach is able to account for sucking-in and standing-wave effects
taking place close to or inside the object. The simulation of the electronic diffraction by a model nanoscopic
carbon rod, eventually containing inhomogeneities, is considered in d&ail63-182009)11527-3

[. INTRODUCTION distribution around the tip and the sample, mainly respon-
sible for the position of the virtual projection pothiand the
Projection microscopes make use of the quasiradial fafocusing effect observed with small transparent carbon
propagation of field-emitted=? electrons or ions projected fibers'®
out of small tips. Greatly magnified shadd®sf an object In this paper, we propose a method that takes us beyond
can be obtained, without any lens, on a distant screen b{je Fresnel-Kirchhoff formalism, by bringing into the theory
placing the object at short distances from the tip, inside thdhe detailed three-dimensional electron potential-energy dis-
electron beam. By using technologies developed for thdribution betvyeen t_he metallic tip holder and the object sup-
scanning tunneling microscope, tip-sample distances can Pt conducting grid. Furthermore, we remove the assumed
controlled within one angstrom precision, resulting in mag-emp'.rICaI point source b_y gnforcm_g that the spatial _current
nifications of the order of T0-10° for carbon fibers with density results from reallstlc_: trav_ellng electrons pr_owded b_y
diameters between 10 and 20 nm. the metgl tip holder z_;md emitted into the accelera_tmg_ electric
In the Fresnel projection microscogEPM).1: the elec- field defined by the tip and the sample. The suc!«ng—m.effect
. : L . and all effects due to the three-dimensional distribution of
tronic source 1s a tyngsten 2 to 3 nm height pyramidal nano e scattering power in the sample are the main subjects of
protrusion with single atom sharpness, hereafter Ca”e%;scussion brought to light by this model.
nanotip:? 1§The object lays o a 3 mm TEMgold grid and In order to reach these objectives, we had to develop a
the screen is a 10 cm distant multiple-channel-plate COUpleﬂ)rmaIism, which happens to be a combination of state-of-
to a fluorescent screen. The field emission voltage, estane-art transfer-matrix and Green’s-function scattering for-
lished between the tip holder and the object supporting gridmalisms(see Sec. )l The Green’s-function formalistfi2®
is adjusted in the range of 50—300 V, a bias which is lowjs well suited to propagate the wave function from the main
enough to avoid all risks of sample destruction. The atomigscattering regior(i.e., the region between the metallic tip
size of the emission area is responsible for the higholder and the conducting gidto the imaging screen.
coherencé! the stability, and the tiny energy dispersidi®0  Within the scatterer, however, the Green’s-function formal-
meV at room temperaturef the electronic beam. For small ism should not be recommended: since the relevant potential
tip-sample distances, the incoming wave is essentiallenergy cannot be kept localized in space, the Green's-
spherical, giving rise to Fresnel diffraction images, still function scattering computation would therefore require pro-
highly correlated with direct-space representation images dfibitively large data storing. In a transfer-matrix
the object. method?’~*3the three-dimensional problem is reduced to a
The diffraction fringes observed in experimental figdtes discrete set of coupled one-dimensional problems, using a
indicate the relevance of the wave behavior of electrons fobasis-set expansion to describe the electron lateral behavior
the understanding of the image formation. Reasonable agreand a direct-space analysis in the forward direction. If prop-
ment with experimental results was achieved within theerly implemented® this approach appears to be very well
Fresnel-Kirchhoff flat-object formalisif, which assumes a suited to the description of wave propagation in complex
point source and reduces the object to a two-dimensionacattering domains, as it requires only two-dimensional
mask defining an empirical transmission function. While thisamounts of storage space, compared to Green’s-function
method gives good results for homogeneous materials, three-dimensional requirements. The transfer-matrix formal-
does not take account of the three-dimensional distributioiism is, by contrast, not effective to propagate the wave func-
of the object scattering strength and is then not suited for théon over very large distances. In our description of the pro-
description of heterogeneous materials. Furthermore, thigction imaging process, we then choose to use both
formalism is not aware of the strongly varying electric field methods, devoting them to handle that part of the computa-
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tip and scattered by a three-dimensional object in region II,

which ends az=D (typically D =10 nm, including the 2 nm
z=L tip), and finally projected through a zero potential region IlI
to be received by a screenat L (typically L=10 cm. A
typical bias of a few tens or hundreds of volts is applied
between the metallic tip holder and the object support plane.

Supporting the field-emission tip, the metal is described
as a regiorn(region ) of constant potential energ¥et, US-
ing a simple Sommerfeld model characterized by measured
values of W (work function and Eg (Fermi energy. The
conducting grid is described by the plane D. In the region
z>D (region lll), where the potential energy is set conven-
tionally to the constant value 0, the electrons escaping from
the object travel freely without any further scattering.

In the intermediate region €z<D (region 1), which
contains the emission nanotip and the sample, the po-
tential energy is writtefvV(r). This potential, of electrostatic
origin, can be computed by applying overrelaxation
methods*3® (when the object or the tip is described as a
continuous mediuinor by dipole self-adjustment methods
(for a discrete atomistic view of the object or tip structures

B. Wave-function expansion

The discrete atomic structure of the emitting device often
leads to situations where the relevant part of the system can
be described as invariant under finite rotations. In order to
take advantage of such situations, the one-electron scattering
problem is formulated in cylindrical coordinates, by using
the z axis as the axial direction. The polar coordinates in the
plane normal to thisn-fold symmetry axis are denoted
P=R (azimuthal angleandp (radial distance to the axis

FIG. 1. Virtual projection microscope. Electrons are emitted The wave function is then expanded in terms (?f basis
from a small tip, which stands on the flat surfaee=Q) of a Som- func_tlons that account fqr the andp dependences. Since a
merfeld metal. After a multiple scattering process below the sampl€ontinuum of such basis functions would not be easy to
supporting grid ¢=D), the electrons propagate freely to an imag- Nandle numerically, their set is forced to be enumerable, by
ing screen ¢=L), where a projected image of the sample is ob- SPecifying that the scattering electron remains localized in-
tained. In the region below the sample supparD), the elec- side a Cylinder with radiuR (Ref 34) in the regions land Il.

trons are confined in a cylinder with radifs The wave function in these two regions then takes the form
tion for which each of them is the most efﬂmgnt. ‘I’(r)ZE 2 D (2D i(p, ). 1)
In Sec. Ill, we explore the image formation when the m ]

object is a long homogeneous or inhomogeneous rod with . . : . .
square section a few electron wavelengths wide. We will firs h this last expression, th_e two integer _subscnptsand]
closely examine a few effects specifically due to threeSnumerate the basis functiois, (p. ¢). given by
dimensional multiple scattering, including the observed elec- Ik ima
tron wave focusing by the object, usually described as a V. (pd)= m(Km,jp)€ ©)
“sucking in” effect. Thereafter, we focus on the resolution m.j P R

power of the electronic projection microscope and investi- \/wa p[\]m(km’jp)]z dp

gate the question of reaching atomic resolution. For the ge- 0

ometry at hand, it is shown that atomic scale details are nqtj,5racterized by a radial wave vecté,; solution of

obviously apparent in the multiple-scattering images, a Iim"Jm(kij)=0. The z dependence of the wave function is

tation \{vhlch remains consistent with the predictions of acontained in the coefficient®, (z) of the expansion. The
more simple Fresnel-Kirchhoff theory. ’

products®, (2) ¥ j(p,¢) will be referred to as “states”

of the wave function.

Il. THEORY Requiring, as boundary condition, the basis functions to

have a vanishing radial derivative @& R, has some advan-

tage over cancelling the function itself. This condition turns
The virtual instrument considered in the present paper isut to be less stringent, since only the current density aiong

depicted in Fig. 1. Electrons are provided by a “Sommer-is forced to vanish, while cancelling the function would force

feld” metal atz<<0 (region l), emitted through a very narrow all components of the current density to vanish. The root

A. Preliminaries
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Koo=0, corresponding to a wave-function component with a  Using expressiofil) for the wave function and expression
purely axial wave vector, characterizes the main part of thé3) for the potential energy in the stationary Satirmer
wave function and is skipped by the representation when thequation, the wave-function expansion coefficiedg ;(z)
cancellation of the basis functions instead of their derivativesurn out to verify the exact set of coupled equatlons

is set as a boundary condition.

C. Propagation equations dzq)mj( ) om , om
Let us expand the-fold symmetric potential-energy dis- 47 h2 7 Ekn, ﬁVO(Z) P, (2)
tribution V(p, ¢,2) in the form
o _ —2 E M (2@ gnjr(2), 4
Vip.dD=Vo(d)+ 2 V(p2)e™ (3

where the choice d¥,(z) is arbitrary, but should correspond
to the main part of the potential energy since this part enters
the propagation equations analytically. (Z) are defined by the expression

hereE is the electron energy and the coupling coefficients

f PV (p, Z)Jm(kaP)Jm qn(km qn]’P)dP
M) (Z)— 5

ﬁZ
\/f plIm( mjp)] dp\/f plIm- qn(km qn]’p)] dp

The advantage of the-fold symmetry assumption lays in | these expressions, the roonm/hz(E Ve — k2 : and
the fact that coupling between different components of the o/ 2E — k2 ii | | b ith
wave function occurs only when the correspondmmgub- ositive ima ma?re Z?tssl IVe reals or compiex numbers wi
scripts are separated by a multiple of the symmetry axis or? - thglme;rﬁ of the propagation equations, region I
dern. There are therefora independent groups of coupled Y propag q 9

components, which can be treated separately. Details on ely be described by four transfer matrices that contain the
derivation and use of Eq¢4) and (5) are given in Refs. 35 expansion coefficients in Eq#6) and (7) corresponding to
and 36. the transmitted and reflected parts of the wave function when

a single incident state with unit amplitude encounters region

Il.
When the incident stat(a:orrespondlng to a single basis
The current density obtained on the screen is due to thgnction with subscriptsn and ) is coming fromz= —co,

contribution of all incident states in the metal. These stateghe wave function is written as

are scattered in region Il and propagate freely in region Ill to

the screen. The underlying Schlinger equation being lin- 7<0 ' 5 .

ear, the scattering in region Il can be treated in the frame-¥— mi(r) = > (8, mye VEWAEVmed ~ky j2
work of transfer matrices. The propagation to the screen will m.J

D. Local scattering by the transfer-matrix methodology

be achieved in the next section, by using the Green’s- + i\ 2MAE V) K2 2

function formalism. At this stage, we just need an expression +t(mj) m® me? = Emi )W (. B)
of the wave-function corresponding to each incident state at .

z=D. —

; (mj) mn€ e 2miA“E= kmlz)q’m](p #). (8

Since the potential energy remains constant in region |,

the wave function expansion coefficients take the form .
No wave-function component coming backwards fram

d):n,j(z):A:n,jei /2m/ﬁ2(E—Vmer)—k,2n,,- , +c0 is to be considered.

To compute the two transfer matrices™ andt™*, the
imz p(_eculia_r soluti_ons corresponding to a single outgc_)ing state
mets Tmj % 6 with unit amplitude az=D has to be constructed. Since the
wave function at this interface is entirely defined, the wave-
function expansion coefficient,, ;(z) and their derivatives

+By, e

Let us take az=D the following expression:

O ()= All g [emin2)e—k2 2 are known az=D. By using these boundary values and Egs.
mj(2)=An € ™ (4) and (5), the wave-function expansion coefficients
" 7.m ®,i(z) can be propagated by appropriate numerical

+Bp e | VEMIOE kn2, (") technique®*to z=0 and written in the same form as ex-
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pression(6). By considering separately all possible outgoingthis surface takes nonzero values only in the circular aperture
states az=D, one obtains the following set of solutions:  defined by the intersection between the plareD and the
cylinder with radiusR, so that the previous expression be-

o z<0 ) comes

hl - I \PARE V) K
Vi) = ;1 (A, (m )€ N2 E Vmed 2

i 2 2 ’\I}(r f J
—i\2m/% (E_Vm"")_kmyiz)\l’m'j(p,(ﬁ) circ apert

+B(m,j).m.je

dw(r’) dG(r',r,E)
G(r',r,E) —U(r') ds'.
dz' dz'

- _ —
= ; (8(mj),mpe VEWAIE kY (p, ).

(12

©) Since the potential energy in the region Il takes the con-
Taking into account the linearity of the propagation equa- stant valueV=0 and the wave function and its derivatives
tions, it is possible to combine the solutions given in . cancel at infinite distances in this region, the Green’s func-
to obtain solutions in the forrt8). The relevant relations are fion G to consider is given by
+_p-1
=A"", G(r',r,E)=— m ;ei\/(ZmEhz)\r’—r\. (13)
2ah? |1 —r|

t~"=BAL (10

Due to the large metal-screen distaicempared with the

The two transfer matrices ~ andt™ ~ that contain the ; ; ,
coefficients of the transmitted and reflected parts of the wavfa:yIInder radiusR), the factor|r’—r| can be expanded as

functions corresponding to a single incident state with unit
amplitude coming fromz=+o are obtained in a similar Ir'—r|=|r|=r0r +m[|r 2= (r% 1)+, (14
way. An efficient technique to control the numerical insta-
bilities encountered in the computation of the transfer matriwherer® is a unit vector with components @ ¢) in spheri-

ces is presented in Ref. 27. cal coordinates that points to from the origin. The third
term in this expression is of the same order as the second for

E. Propagation to the screen a critical distance from the grid arourd;~|r'|/2~R/2.
by the Green’s-function methodology The solution becomes radiative when it becomes less than

The requirement that the basis-function set is enumerabq%ﬁ) of the second term, i.e., for a distarig;= 50R. For a

. . . creen distance of 10 cm, the third term is less than’ 1
leads to the assumption that the electrons are confined insi Ba secondfor a maximal value oR=20 nm, so it is neg-
a cylinder with finite radiusk. This assumption is adequate 9

igible.
as long as the wave function naturally disappears for rad|a' With this approximation in expressiaii3), Eq. (12) be-
distancesp smaller thanR. For a field-emission situation, comes

this last condition is fulfilled until the electronic beam

reaches the cylinder boundary. At this stage, a reflection of 1 —

the beam occurs and makes the resulting wave functiof\{f(r,ﬁ,gb)=—me”zmgﬁ [r= cos(?)D]

meaningless. This is the reason why a solution cannot be

obtained on the 10 cm distant screen with the previous

transfer-matrix formalism. f fz" d\I'(P ¢ D)
Within the Green’s-function formalism, it is possible to

derive the expression of a wave function at an arbitrary po-

sition of space by using its expression on a closed surface 2mE )

S surrounding the position considered. The relevant expres- +iW(p,¢’,D)
sion, derived in Appendix A, is the following:

X @~ 1 V2mE/A?[p cos(g’ ~Dsin0)]  dp dep’.
J’ an-[G(r JLE)V W (r') (15)
om Within the Kirchhoff approximatiori! we can now use
~W(r")V,G(r',r,E)]dS =~ —¥(r), the wave-function expansig@) (i.e., the values of the wave

function and its derivativgsin this last result to derive its
(11) expression on the screen:

wheren is a unit vector normal to the surface and oriented r=0 eIkEr

outwards. v miir0.9) = E t(m,) mpote.mj,Eyemn?
Let us consider a point on the screen in region IIl and (16)

take for S a surface that contains the plame=D and is

closed aip=c on the surface= +. The wave function on  with ke=2mE/%?, and
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e—ikE cos(®)D

Vet EF
U(ﬁ,m,j,E)=—T[\/kEz—kzm’j-l-kECOSH)] j(r)=ef Je(r)dE. (21

met
iVki-k2 D
itom e e m, lll. APPLICATION: OBSERVATION OF A CARBON
o FIBER BY PROJECTION MICROSCOPY
2 | Tonkn )P0 do

Under appropriate conditions, electronic projection micro-
R scopes provide Fresnel diffraction figures strongly correlated
Xf dp pIm(Km,jp) Im(Ke SiN(6)p). with the object diffusion strength distribution under investi-
0 ’ gation. This essential feature can be traced to the spherical
(17 shape and coherence of the electronic waves, when incident
on the object. The necessity to use nanotips with a mon-
F. Computation of the total current density atomic termination in order to obtain well contrasted diffrac-
. . . . . .__tion fringes was already demonstrafédrhe present appli-
Each incoming state in the metallic support gives rise

. - . cation focuses on the relation between the characteristics of
to transmitted states. The only incoming states to con:

sider are those associated with a real value Ofthe diffraction figures and the properties of the sample, when

the conditions enable Fresnel diffraction.
2 — — i . . .
V2m/AH(E =V me) km,J; +C(_)n_3|der|ng the expressiof16) One property that turns out to be important in the image
and the transfer matrik” ™, it is easy to compute the corre-

. ) formation is the polarization of the matter. The effects of this
sponding current densityy, ;(r).

Y L _ polarization are more pronounced for small sampies.,
Taking into account the absence of correlation betweergarhon fibers with a thickness of a few hand result in a
the incoming states in the metal and their contribution to the:gcking-in” effect, which is due to the attraction of the

density of states, the current density corresponding to allraveling electrons by the electric field surrounding the
incident states with energ is obtained by the weighted sample.
sunt®% The images obtained with carbon fibers depict a homoge-
neous material and do not provide direct information on the
2 1 I () _underlying atomic structure: The reason comes from the lim-
(Rhim)2 m ] 2m(E—V, o) m it/ ited resolution of 'ghe technique, which usually does not en-
\/ mev 2 able the observation of structures smaller than 0.5 nm. An
52 mJ expression for the resolution limit due to diffraction in a
(18) projection configuration was derived within the Fresnel-
Kirchhoff flat-object formalism® If A is the electronic
In this one-electron model, the basis functions are conwavelength in the sample ardithe distance between this
structed so that the particle probability density of the associsample and the point source, the resolution of the projected
ated state, when integrated on a given cylindrical section ofmage isA4=%+\d. For Fresnel diffraction to occur, this
the metal, gives all the same result. Each state can be comalue has to be less than one-half of the sample thickness.
sidered to be representative of the same nurdgrof elec-  When this condition is fulfilled, each point in the projected
trons in a unit volume of the metal. For the description to beimage turns out to be associated approximatively with a
appropriate, we can multiply each basis function by the comspherical region in the sample, whose radiusjs. Each
mon factorA, determined by the requirement that the particlepoint in the image gives, therefore, an averaged piece of
probability density, when integrated over all possible statesnformation on the samplé.e., a result that depends on the

Je(r)=

and energies in the metal, provides the correct value: contents of the associated sphere in the sampbeluding

32 the possibility to detect corrugations that are smaller than
_ 1 [2mEe this region.

pmet—ﬁ 72 ' (19 The simulations considered in this section aim at illustrat-
ing how the electric field surrounding the sample models the
The factorA is given by the relatiofr° aspect of the projected image. They also highlight the unob-
servability of sample corrugations whose characteristic di-

Er 1 mensions are smaller than the resolutign We thus justify
Pmet= A 2j0 dE2, —— the lack of direct information on the atomic structure of the

(Rhvm) J 2mE sample in the projected images.

To represent the metallic support of the nanotip, we con-
sidered a Fermi energy value of 19.1 eV and a work function
R ) -1 of 4.5 eV (values for tungsten The conducting grid is sepa-
Zﬁf plIo(kojp)] dp) : (200 rated from this support b = 3.5 nm and the extraction bias
0 is 25 V. The electron source is represented by a conical tip
These coefficients can be computed analytically by usingvith 1 nm height. The carbon fiber has a dielectric con§tant
Lommel integrals® of 16.5 and a work functidfi of 4.82 eV. It is oriented along
Finally, the total electric current density is obtained bythex axis and infinite in this direction. Its section in tlyez
integrating over the energy continuum in the metal: plane is a square with 1 nm thickness. The potential-energy

X
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Potential—energy distribution [ eV ] sumed here to be the top of the conical emijtteorresponds
to a dark line(situated aty==*2.5 cm in the diffraction
pattern. This can be related to a destructive interference be-
tween the secondary waves that contribute to the image for-
mation (they originate partly from inside and partly from
outside the fiber
In order to justify the lack of direct information on the
atomic structure of the fibers in their projected image, we
introduced a sinusoidal perturbation in the internal potential
5 of the previously considered fiber and examined its observ-
ability in the projected image as a function of the period of
the perturbation.
The fiber considered in these  simulations
has a dielectric constant of 16.5. The internal

FIG. 2. Potential-energy distributiciin eV) in they-z vertical ~ Potential is changed from—4.82 eV to —4.82 eV
plane. A 25-V bias is applied over the 3.5 nm separation between 2* Sin(2mx/P)* sin(2my/P)*sin(2xwz/P) eV, where P is
the metallic tip holder surface and the sample supporting grid. Thi¢he period of the perturbation in each direction. Due to the
grid supports a carbon fiber with 1 nm thickness that is orienteddeculiar form of this perturbation, the average of the poten-
along thex axis. tial energy in the fiber keeps the same value-0£.82 eV.

We have illustrated in Fig. 4 the current density computed on
distribution, computed by overrelaxatidhjs illustrated in  the 10 cm distant screen when the perfoi$, respectively, 1
Fig. 2. nm, 0.5 nm, and 0.25 nm.

In order to highlight the effects of sample polarization on We see that the effects of the sinusoidal perturbation are
the shape of the projected image, we compared the currenisible for P=1 nm. They hardly appear in the second part
density obtained on the 10 cm distant screen when the fibeaf Fig. 4. The third part of this figure is nearly identical to
is not polarized and when polarization is present. The firsthe second part of Fig. 3. The resolution limit due to diffrac-
situation is obtained by characterizing the fiber with a dielection can be estimated fromy=\/\d. By taking \=0.24
tric constant of 1, while in the second situatilor which  nm andd=2 nm, we findA4=0.35 nm. This accounts for
the potential-energy distribution in Fig. 2 is relevatite  the fact that a sinusoidal perturbation with a period of 0.5 nm
fiber is characterized by a dielectric constant of 16.5. Thesaardly induces visible effects, while a perturbation with a
two results, computed by considering a cancellation raRius period of 0.25 nm cannot be detected in the projected image.
of 3.5 nm andm values ranging from-20 until +20, are  These simulations make clear why the potential-energy cor-
presented in Fig. 3. rugations associated with the atomic structure of the fiber do

The results in Fig. 3 show that the polarization of the fibernot appear in the projected images.
is responsible for its projected image to appear brighter. This For the atoms to be detected, the resolution lidhjf
“sucking-in" effect is due to the attraction of the traveling should be smaller than 0.1 nm. This requires us to reduce
electrons by the electric field surrounding the fiber when it iseither A or d. However, since the local electric field on the
polarized. It is interesting to notice that the side of the fiber,nanotip cannot be significantly larger than 10 V/nm, it is not
when projected geometrically from the point sour@s-  possible to reduce both andd arbitrarily. By minimizing

20
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FIG. 3. Current densityin A/lcm?) on the 10 cm distant screen corresponding to the observation of a carbon fiber with 1 nm thickness
under a bias of 25 V. Left part: the fiber is not polarized=(1). Right part: the fiber is polarized € 16.5).
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Current Density (r—component) [ 1077 / cm2] Current Density (r—component) [ 10~7A / cm2 ] Current Density (r—component) [ 10~7A / cm2 ]

0.3

0.3
0.3

0.2
0.2
0.2

0.1
0.1
0.1

-5 ] 5 -5 ) 5 -5 0 5
X[em] X[em] X[ ]
FIG. 4. Current densityin A/lcm?) on the 10 cm distant screen corresponding to the observation of a polarized carbon fiber with 1 nm
thickness and modified internal potential under a bias of 25 V. From left to right: the period of the sinusoidal perturbation of the internal
potential is, respectively, 1 nm, 0.5 nm, and 0.25 nm.

A4 under the conditionE+W)/d<10 V/nm, a limit of 0.35 national program on the Interuniversity Research Project
nm is found for the resolution of the projection microscope.(PAI) and the use of the Namur Scientific Computing Facil-
This limit is not compatible with the direct observation of the ity, a common project between the FNRS, IBM-Belgium,
atomic structure of a sample by standard projection microsand the FUNDP.
copy.
APPENDIX: HUYGENS PRINCIPLE
IV. CONCLUSION IN THE GREEN FORMALISM

An efficient technique for the simulation of electronic L€t us consider the stationary Sctioger equation with
projection microscopy was presented. This technique, thdfe relation defining the associated Green function:
relies on both the transfer-matrix and Green’s-function for- om
malisms, can take advantage of a centrdbld symmetry Vf,\p(r/)_,_ ﬁ[E_V(rr)]q,(rr)zo’ (A1)
axis.

The technique enables the computation of current densi-
ties at arbitrary distances. The computation effort for the _, , 2m , , 2m |
electronic scattering can be minimized by confining the elec- Vr/G(r',r.E)+ ?[E—V(r )]G(r',r.E)= ?5“ —n.
trons, in the part where the scattering occurs, in a cylinder (A2)
with a radiusR as small as physically admissible. Once the
scattering is computed, the result is straightforwardly propa- Let us multiply the first equation b&(r’,r,E), the sec-
gated to the imaging screen by using the Green’s-functioond by W (r’), and subtract the two expressions. When the

formalism. result is integrated over a volunvethat containg, one finds
This method differs essentially from the Fresnel-

Kirchhoff theory in the fact that the empirical point source f f f [G(r',r E)Vz,\lf(r’)

and the two-dimensional mask are replaced by an accurate v v '

transfer-matrix computation, that takes into account the
three-dimensional electric field distribution. Breaking
through the limits of two-dimensional models, this improved
technique enables us to simulate the interaction of the trav-
eling electrons with the electric field surrounding the sample. (A3)
It also makes it possible to consider three-dimensional cor-
rugations in the sample.

These extended capabilities were used to illustrate the in-
fluence of the electric field surrounding a carbon fiber on its J f n-[G(r',r,E)V,W(r’)
projected imagésucking-in effect. The simulations also in- S
vestigated the observability of corrugations inside the fiber

2 2m
—¥(r")V.G(r',r,E)]dV'=— ?\If(r).

By using the Green’s formula, this last result becomes

and revealed a critical size for a detection to be possible. —W(r')V,.G(r',r,E)]dS = — Z_mq,(r)’
These results justify the lack of direct information on the h?

atomic structure in the images obtained by projection mi- (Ad)
croscopy.

where S is the limiting surface of the volum¥ andn is a
unit vector normal tcS and oriented outwards.
This equation makes it possible to compute the wave
A.M. was supported by the Belgian National Fund for function[solution of Eq.(A1)] at a given point by using its
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