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Accuracy-control techniques applied to stable transfer-matrix computations
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The transfer-matrix methodology is frequently used to deal with elastic scattering problems that require a
solution of the Schrdinger or homogeneous Maxwell equations in the continuous part of their spectra. The
numerical stability of the transfer-matrix algorithm can be dramatically improved by a subdivision of the
diffusive part of the system into several adjacent layers. However, until now, no accurate recommendation on
the number of layers to use was given. This paper presents the transfer-matrix technique and the layer addition
algorithm. A model is developed to analyze the accuracy of these techniques and enable a quantitative control.
As a result of the model, an expression for the minimum number of layers to consider in order to achieve a
given accuracy on the transfer-matrix computation is derived. The theory is illustrated by a simulation of
electronic field emissior.51063-651%99)02904-9

PACS numbdps): 02.70—c, 11.80—m, 61.14.Dc

I. INTRODUCTION precision of a transfer-matrix computation and is used in
Sec. V to determine the minimum number of subdivisions to
Linear systems of differential equations are frequently enconsider in order to achieve a given accuracy on the result. In
countered in theoretical physics. Such equations indeed aec. VI, the theory is applied to the simulation of electronic
pear when dealing with the Sclfioger equation in quantum field emission.
mechanics or with the Maxwell equations in electromagne-
tism. A useful property that appears in these situations is the Il. TRANSFER-MATRIX METHOD
additivity of solutions. When an analytic solution is not ob-
tainable, several numerical techniques exist to deal with
these equations in the energy or frequency continuum. Let us consider the scattering in a physical system made
The transfer-matrix methodologil—6] is one of these of three adjacent regions and let us assume the intermediate
techniques. To apply this methodology, the physical systentegion to be the only diffusive part. The scanning tunneling
considered should be located between two separate bounarcroscope[9] and the Fresnel projection microscofio]
aries. Given a set of basic states used for the wave functioprovide examples of such situations. Let us refer to the in-
expansion, the transfer matrices contain, for each state inciermediate region as “region II” and the two other regions
dent on one boundary of the system, the amplitudes of thas “region I” and “region Ill.” Let z be a coordinate axis
corresponding transmitted and reflected states. oriented from region | to region lll, so that region Il corre-
The method basically depends on the additivity propertysponds to the interval€z<D.
of solutions and requires the numerical propagation of basic At this point, we should make the choice of simple basic
states from one boundary to the other. Some of them castates to represent the waves in regions | and Ill. They should
have transmission coefficients several orders of magnitudereferably be the same in both regions, but this is only a
lower than others. All these numbers are gathered in a matrimnatter of convenience. Let us write these staiés+ in re-
that has to be inverted. The method reaches its limit whegjion | and\If}”’t in region lll. The sign* stands for the
the condition number of such matrices exceeds the represedirection of propagation relative to theaxis.
tation possibilities of the machine. The layer addition algo- Let us writetjg andt,g for the matrices that contain in
rithm, introduced by Pendr}7,8] in dynamic a low-energy each column the amplitudes of the respectively transmitted

electron diffraction(LEED) computation, enables the inver- and reflected basic states corresponding to each basic state
sion of matrices associated with a smaller part of the totayith unit amplitude injected fronz=—c. Similarly,

system and therefore better conditioned.

A. Presentation

top
andtj, collect the amplitudes of the transmitted and re-

This paper first presents the transfer-matrix technique angle 1o 4 pasic states corresponding to each basic state with
the layer addition algorithm in Secs. Il and Ill. This presen- .. amplitude coming fronz= + . The subscripts 0 and

tation incIL_Jdes the impl_ementation _p_ro_cedure that gives _thgtand for the boundaries which limit the diffusive part of the
most precise results. Since a subdivision of the system int

several adjacent layers can improve the accuracy of the resu%YStem'
but only qualitative indications on how to split the system
exist, a model is developed in Sec. IV to analyze the accu-
racy of the layer addition algorithm. This model predicts the Let us now turn to the construction of two transfer matri-
cestyp andtyg . To obtain them, each outgoing stalrg *
is considered individually and propagated backwards from
* Author to whom correspondence should be addressed. Electroniz=D to z=0, by using the relevant propagation equation.
address: alexandre.mayer@fundp.ac.be The solution is then written as a combination of incident

B. Implementation
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states¥!' " and reflected state®! ~ . The following set of 1 1 d\p (z=D)
solutions results from these operations: Nj=3 ¥/ (z=D)- T et b (@)
K
_zs=0 z=D . . . LT
‘I’f _ 2 Ai,j‘l’:’++z Bi’jq,il,— — \I,}II,+_ (1) Since the states in region Il are propagatiud/; /dz(z

=D)=ik, ;¥ (z=D), with k,; the z component of the

wave vector associated with the stdte in region lll. It is
Since the relevant propagation equation is assumed to be E’T g

linear, these solutions can be combined in order to derive a easy to check that

set of solutions corresponding to a single incident sﬂa,-”té IM.eXiP)|

in region I: 7 . (8)
INje™ P

z<0 z=D

- - This relation means that the two parts of the solution con-
= qf}v*+§i) (tog)i Wi~ = 2 (tg), v . P

i tribute equally to the initial value oﬂf;’. By integrating
2 numerically fromz=D to z=0, the exponentially increasing
solut|onN e~ KiZ will dominate the exponentially decreasing
The two transfer matricety andt,p are related to the v eK 2. This last part of the solution will consequently van-
A and B matrices of Eq.(1) throughtJS—A andtyp ish from the small number of representative digits stored by
=B AL the computer. This is, however, acceptable since the result-
In the same way, each staﬂq‘" can be considered indi- ing solution corresponds to the physical one. This appears
vidually and propagated backwards from+0 to z=D, clearly if one considers the relation
where the solution is written as a combination of incident

states¥|" ~ and reflected state®|" * . Another set of so- IMjeio 9
lutions results: INje Ko o ©
j
o zso " " Since the coefficients of the matricés and B depend
vy = ZI A +Ei Bi¥i". (3 linearly on ¥;"(z=0) and d¥/dz(z=0), the ratio be-

tween the contribution of the two parts of the solution is

Using again the linearity of the propagation equation,glvgn bytLh'S last result.t i that the int fi ¢

these solutions can be combined to establish a set of SO|L(- drct)rr]n ;ase r:lr:gumetn_ Sé; apdpgars a h'e integra |on|s €p

tions corresponding to a single incident stﬁt}é’" in region and therefore the matricés andB) can achieve an excel-

- lent accuracy. The same comments apply to the matrices
needed to computly, andtyy . However, depending on
the peculiar values df;, these two matrices are likely to be

z<0 z=D . . . ..
= (too) W= w4 (i, i made of numbers with different orders of magnitude. Antici-
0 ' J ~ 0D L] pating the results of Sec. IV, the condition number of such
(4) matrices is expected to be of the order @fma® with
K max= V(2m/2)V in the case of tunneling through a poten-
The two transfer matricet, , andta o are given by the tial barrier with heightV. The accuracy is then drastically
relations:typ, =A™t andtgp =B A~ reduced in the inversion step and can even be completely lost
' ' if D were too large. From there come the limits of the
transfer-matrix technique. However, the layer addition algo-
rithm allows us to deal with much larger distances.
To highlight the advantage of a backwards integration, let
us consider the simple case whelft?+ takes the form of a Ill. LAYER ADDITION ALGORITHM
pair of exponential solutions in region II:

C. Advantage of a backwards numerical integration

Since problems arise when systems characterized by large
0<z<D integration distances are treated in a single step, a possibility
\E(z) = M;efiz+N;e K7, (5  to cope with them is to split this large distance into several
adjacent layers. Their number is chosen so that each one is
where K; would take the expression K; smaIIf enough to t_araable th;a comp_utation of its i(r;_dividuarl1
_ 2 2 transfer matrices. The transfer matrices corresponding to the
=(@ma?)(v- E)+kj with k; the transverse component .\ system are obtained by combination of 51e indﬁ/idual

of the wave vector associated with the Smﬁ , inthe case  transfer matrices. Pendfy,8] has developed the appropriate
of tunneling through a potential barrier with heigiitby  formulas:

particles with energe<V.

The coefficients are obtained from L e S N i S G )
-+ _ i+ - _ it — 144+

q; (z= D)_;_iw -K;D (6) L AL 1Z[ Zo itz 1 252y’

"2 Ki dz ’ 1D

j
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—— = C— gt —1i——
R e Rt (12 2|2 (niikt OB:k,) A KBk
|k
_ _ _ _ _ 1 €EAB™ ) (17)
t;O'Zi: Z—lvzi—’_t;:jlvzi ;r()'zi—l[l_tzijl'zi ;()*Zifl] ltZi71vzi’ 2 |(AB)' |
(13 0 "

where zy=0<- .- <z_,<z<z,,<---<z,=D. This set Which is evaluated simply by
of formulas is used to compute iteratively the transfer matri-

ces corresponding to thdirst layers, as a combination of the Enp=€pt €p. (18
transfer matrices associated with kel first layers and the
layer i. The transfer matrices of each individual slab are 2. Addition

computed with the method given in Sec. Il B. The only ma-
trices needed at each stépare the four transfer matrices
corresponding to the set of the-1 first layers and those
corresponding to the last considered layer

By considering the components Af and B individually,
one finds

Z I[(8a:i jAj T 88:i,iBi )/ (A j+Bi ) I(A+B),

IV. ACCURACY OF THE TRANSFER-MATRIX Epip= . ,
COMPUTATION S |(A+B),|
3 ’

A. Mathematical analysis of the accuracy (19)

To represent the accuracy of a result, a distinction is made _ _
between the true, but unknown, value of a maband its ~ Which is evaluated by thé@wice) weighted average

known approximate representatién Their components can
be related by IEJ [(enlAi |+ €slBi jDI(JA ;| +1Bi jDII(A+B); |

Ai = (1+ On A, (14)  €a+B=

g — —
2 [(A+B)y

where d,;; ; stands for the relative error on the true value of ! (20)
A; j . We define the average relative error on the mafritry

It easy to check that ikpa=eg=¢€, then we have also
eanrp= €. A useful property is
iEj | Snci iA il Ave

T — (15) min(ep,eg)<€ep. g=<Max e, €p). (22)
> 1Al .
ihj 3. Inversion

. : When solving the equatioA x=bh, the relative errors of

We t_hus_ have a single parameter that takes into account tgaﬁl elements of the equation are relafdd] by

relative importance of each component. The result is consid-

ered meaningless &> 1.

The best possible accuraey,m, for a computer-stored A < condA) /@ | 9Al . (22
result depends on the representation limits of the machine x|~ 1—condA)[[SA/JAI [o] ~ [A]
and is related to the largest numbewhose representation . - ] ]
differs fromx+ 1. For a binary representation: with cond(A) the condition number of the matrik, majored
by
Ecomp=2 "% (10 oy M 23
condA)= i (23

whereny;; is the number of bits used to represent the frac-
tional part of reals. It is related to the number of hig,
lkj)z?sd égézgr\?v?t?'nzgﬁzseésg:ef;E?ﬁ ﬁnd the sign of real NUM¥te value of the eigenvalues #f.
it™ expt* H H
When operating with imperfectly represented matrices, In the computation of the inverse 4, b corresponds to a

one wishes to know the accuracy of the result. Let us Congolumn of the identity matrix an to the corresponding

sider the effect on accuracy of three common operations(.;oIumn of A™%. Considering||6A|l/|A= e, and [Ax|/|X

multiplication, addition, and inversion. = €a-1, One finds

with max\;| and min\;| the maximum and minimum abso-

1. Multiplication €a-1=€acondA) (24)
Let A and B be matrices represented, respectively, withby assuminge,-1=eacond(A) negligible compared to 1.
an accuracy, andeg . By application of the definitioifl5),  This condition is fulfilled until the accuracy is completely

one finds the following expression fepg: lost.
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B. Accuracy of a transfer-matrix computation €+ = €gaf 2i — 1). (28)
with no layer subdivision i

Remembering the considerations of Sec. Il C, the accu- Equations(10) and(12) relevant to the matrices* and
racy of the matrixA is expected to be very good. Let us t~~ imply the transmission across the set efl1 first layers
assume it to bes= egomp,. However, for a potential barrier and the layeri. The factors[| —t;(),’ziiltz’:lvzi]*l and [I
with heightV and lengthD the condition number cond\) is —t,* _t;~, ]! stand for multiple scattering at the inter-
given by the ratio between the maximum possible value offac'*l’ 170711
A ; (i.e., emaP) and the minimum possible valuge., 1 if
propagative solutions exist in region;lso one finds

e between the two layers considered. Since the matrix to
invert is made of numbers with the same order of magnitude,
its accuracy is given by, +- + eq,p. After the inversion, the

I

€1 1= €KmaP €comp: (25 accuracy of these factors is multiplied by the condition num-
_ ber condP), whereP stands for[| _t;rojziflt;jl'zi] or [l
With Kma= V(2m/A5)V. —t, " 2tz ,]- This number is expected to be small due to

the fact that the components of the matrices to invert are all

of the same order of magnitude. Typical values of cétd(

=5 are encountered in applications. We thus have the fol-
Let us assume the distanBeto be split inton layers with  lowing recurrent relation for the accuracy of the two transfer

the same lengtid = D/n. The four transfer matrices will matrices associated with reflection at step

be computed with the same accuracy:

C. Accuracy of a transfer-matrix computation
with a layer subdivision

< b €= €siapt € -1 CONAP) (€ + €giap)- (29
€slab— € ma0 €comp- (26)

By using the expressiof28) for €, and (26) for egap,

one finds the accuracy of a transfer-matrix computation,
when performed by a subdivision intolayers:

Let us consider the construction of the matridés’.
They are updated iteratively by using E4J1). In situations
of tunneling by particles with an enerdy smaller than the
potential barrier height, all incident states are essentially re-

— 9= NpitaV(2M/A2)VD/
flected. In typical field emission applications, the top of the €n=2" Mg (2MATVE

potential barrier is located at the beginning of the interval x {cond P)n2+[1+cond P)]Jn—2 cond P)}.
[0,D]. The first term of Eq.(11) stands for states that are

reflected by the first layer encountered. The second term (30
stands for states that are reflected by the last layer consid-

ered. Since this term implies two tunneling processes across V. PRACTICAL CONSIDERATIONS

the first layenwhich grows in the iterative constructipnt is ) , ) .
negligible compared to the first term and the accuracy of the o practical purpc&é_the behavior of E80) is domi-
transfer matrices™* has the accuracy of the matrix corre- nated by the factoe'2™#9IVP/" which decreases with in-
sponding to the first layer. We can thus write the accuracy o€reasingn. It is, however, to be noted that for extremely

the matrixt™* corresponding to thefirst layers: large values ofn, the factor{cond(P)n?+[1+cond(P)]n
—2 condP)} can make the relative erref,>1. This occurs
€+ = Esiab. (270 when 2vit=cond(P)n?. In double precision rfy;=53), n

has to take values around “10The hypothesis behind the

Since this result is not used in the next part of the developModel presented in Sec. IV C should not be valid for so

ment, we do not have to care about the generality of thén@ny layers and the relative error should grow more rapidly.

assumptions made to derive it. This is expected since the contribution of evanescent states is
Let us now consider the construction of the matrices. ~ not negligible compared to propagative states for too thin

They are updated iteratively by using EG.3). In general, layers ande.:- should grow more rapidly.

the situation differs from the previous case since the first ﬂ:ze_ the distanceD appears only in the factor

layer encountered is not reflective for all incoming statese"™#IVD/n it is possible to deal with large distances just

The first term of Eq(13) stands for states that are reflected by increasing the number of layers, as longhaoes not take

by the layen. The corresponding accuracyds,,. The sec- extreme values.

ond term stands for states that are reflected by the set of A useful piece of information is the minimum number of

—1 first layers and are transmitted twice through the layer layers to consider in order to obtain a relative e 1. If

Since propagative solutions exist in the layerll compo- e consider only the faCtCEV/(Zm/hZ)VD/n, it is given by

nents of the second term are not negligible compared to

those of the first term. These propagative solutions are re- J(2m/%2)VD
flected by the set of—1 first layers and there is essentially nmin:—nb_tln(z) : (31
I

no multiple scattering at the interface with the layeifhe
accuracy associated with the second term of @) in the

i \/(2m/h2)VD/n in— 2Npi H H .
stepi is then given by 24+ € By taking the largest for which e min=2"k, This peculiar value ofimn
i

] ; i corresponds to the minimum number of layers to consider in
value, we have a recursive equation &rf -, whose solution  grder to obtain significant transfer matrices in each layer. As
is a result of the presence of the factdcond(P)n?+[1
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+cond(P)]n—2 cond(P)}, a larger number of layers has to Etenttel-enerer-Hatuibutlon.[ AV.]

be considered. By considering the relatiot2™#)V0/nmin
=2"Mit, jt can be seen that=2n,,, gives results with ap-
proximatively one-half of the represented digits significant
and that this number increases by 50% by each further in-
crease oh;,. We recommend to use=4n,. [

Another way to improve the accuracy consists in consid- & . Lo
ering only, at each step of the computation, the incident ~ '
states that have the highest transmission probability. This
restriction aims at reducing the local value kf,,, to some -F
fixed value\(2m/%?) AE, whereAE can take the value of a
few electronvolts. The transfer matrices corresponding to a
smaller number of basic states need less storage space ar °_3 2 =
the time needed to compute them is also reduced. The ne x[nm ]
glected basic states are considered to be completely reflecte
by the layer and the corresponding coefficients in the transfer
matrices associated with transmissigaflectiorn) are set to
the value 0(1).

«©

[ nm ]

Potential—energy distribution [ eV ]

20

VI. APPLICATION TO THE SIMULATION
OF FIELD EMISSION

A. Preliminaries

To illustrate this theory, let us consider the electronic field °
emission from a small tip and the diffraction of the extracted

beam by a carbon fiber facing the emitter. The extraction < ;

-2 -1 0 1 2 3

field results from the application of a potential bM®stab- 5[ ms ]

lished between the metallic support of the tip and a conduct-

ing grid located at a distand®. This grid supports the car-  FIG. 1. Potential-energy distributiofin eV) in the x-z plane
bon fiber. (top pant andy-z plane(bottom part. A 25 V bias is applied over

Region |(i.e., the metallic support of the tips a Som-  the 4 nm separation between the metal surface and the conducting
merfeld metal, delimited by the plaze=0 and characterized grid. This grid supports a carbon fiber oriented alongxfeis.
by empirical values oW (work function and Ex (Fermi
energy. The potential energy in region lii.e., the region

beyond the conducting grid>D) is set conventionally to gl = — g omE#Z—K2 2
the constant value 0. The potential energy value in region | is Yimj=e I Wm, i) (P b, (33
thenV .=eV—W-—Eg. With these assumptions, region ||
is the only diffusive part of the problem and, the Salinger
equation being linear, the transfer-matrix methodology canyith
be applied.
B. Wave function expansion Jm(km,jp)eim¢
B,y (p, )= , (34

Let us assume the axial directiarto be ann-fold sym- R

metry axis and let us use polar coordinates in the plane nor- \/wa p[Jm(km,jp)]zdp

mal to the symmetry axi§.e., ¢ for the azimuthal angle and 0

p for the radial distance to the axisThe wave function is

then expanded along basic functigashat contain thep and

p dependences. The set of these functions is forced to be

enumerable, by specifying that the scattering electron remaiwhere all functions involved in these expressions have a pair

localized inside a cylinder with radiug[5]. of subscripts n,j). The radial wave vectork, ; are solu-
The basic state%"*~ and¥"" * introduced in Sec. 1B to tions of J;(k, ;R) =0.

describe the wave function in regions | and Ill take then the

specific form _ _
C. Propagation equations

To propagate the wave functlorﬂ' L and W
— @i 2mE- Ve h? kG ; Zmi(prd), (32) propag m,j) (m,j)

(m n= through region I, we use the following expressmn
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d?® 1 jy(2) | 2m 2m

":[,(7m,j):rnz'j q)(m])(z)(ﬁ(m])(p!qs)! (35) + ?E_kzm,J Py VO(Z) q)(m’j)(Z)

where thez dependence is contained in the coefficients v B

@ mj)(2) of the expansion. :zq: 2 M (2P (m-anj(2), (36
When this expression is introduced in the stationary _ : _ o

Schralinger equation, the wave function expansion coeffi-whereE is the electron energy and the coupling coefficients

!

cients® i, ;(2) verify the exact set of coupled equations M?ﬁfj (2) are defined by the expression

R __
fO qu(va)Jm(km,jp)Jm—qF(km—qF,j 'p)dp

q,j’ 2m
My (2)= — . (37)
h R 2 R 2
\/ PLIm(Km,jp)] dp\/ PLIm-qgn(Km-qn,j-p)1°dp
0 0
|
In these expressiond/o(z) and V,(p,z) are the coeffi- D. Characterization of the physical system
cients used in the-fold symmetric potential energy: Let us consider an electric bias of 25 V and a metal-grid

distance of 4 nm. The bulk of the metal is characterized by a
_ - Fermi energy of 19.1 eV and a work function of 4.5 eV
V(p,$,2)=Vo(2)+ > Vq(p,2)e'"?, (38 (values for tungsten The carbon fiber is assumed to have a
a=-" dielectric constant of 16.%value for diamond14]) and a
work function of 4.82 eMvalue for carbon materia[d4]). It
where the choice 0¥(z) is arbitrary but should correspond is infinite along thex axis and has a 0.8 nm section along the
to the main part of the potential for better efficiency. y and z directions. The potential distribution in region Il is
It is to be noted that the coupling between componentgomputed by overrelaxatiosee Ref[12]) and represented
with differentm subscripts occurs only when the correspond-in Fig. 1.
ing m subscripts are separated by a multiple of the symmetry
axis ordern. There are therefora independent groups of . ) ) ]
coupled components that can be treated independently in the !t iS possible to predict the accuracy of the transfer-matrix
transfer-matrix implementation. For details on how to usecOmputation as a function of the number of layers used to
Egs. (36) and (37) and for the computation of the current SPlit the distance by using expressio(80). A better esti-
density associated to all incident basic states in region |, se@ation is obtained by using the recurrent relations-
Refs.[12,13. =2€gapt €t and €= €gayt €1+ Cond(P)(etit—l+ €slab)
and considering the local potential barrier height in each slab

+ oo

E. Accuracy considerations

1x10% T 1 4 — /‘ — 3
o F E
C o K E
o 2 E 3
o 5 F
s F E
0 Sk 1
5 2 F ]
© 15} E 3
12 g E 3
! 3k
: -15§r 3
1x10™F_, P g ey oo o ey I s % ¢ 5 0§ ¢ v 5 s E
5 10 15 20 0 1 2 5 4

Number of slabs Position along the potential barrier [ nm ]

FIG. 2. Accuracy of the transfer matrices for a 25 eV potential FIG. 3. Cumulated relative error of the transfer matrices along
barrier with a length of 4 nm, as a function of the number of layersthe length of a 25 eV potential barrier, for 1, 3, 6, 9, 12, and 15
used to split this distance. Values of coRJ& 10, ny;=53 (i.e., layers(from top to bottom. Values of condP) =10, n,;=53(i.e.,
double precisionare assumed. The horizontal line corresponds to adouble precision are assumed. The upper line corresponds to a
100% relative error. 100% relative error.
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Current Density (z—component) [ A / cm2 ]

4x108

Y[ nm ]
3x108

!
|
2x10°

X[ nm ]

Current Density (z—component) [ A / em2 ]

Y[ nm]

X[ nm ]

Current Density (z—component) [ A / cm?2 ]

~
=)
x
©

‘
6x107

Y[ nm ]
j
4x107

2x107

(=)

X[ nm ]

FIG. 4. Current densityZ componentcomputed on the extrac-

to define the corresponding value @f,,. The result of this
estimation is illustrated in Fig. 2.

By using relation(31), the minimum number of layers to
use is found to be 3, in agreement with the results presented
in Fig. 2. Expression$30) and (31) are derived by a model
that considers the maximum potential-energy value encoun-
tered over the whole distand® to estimateeg,, in each
layer. This is the reason fo¢, and n,,, being in general
overestimated. Since larger valuesnodire associated with a
better accuracy, expressi@¢Bl) remains a useful result. It
can be seen in Fig. 2 that the gain in significant digits is
reduced by a factor of 2 at each additional increase,gf
layers. This appears more clearly in Fig. 3, where the relative
error is represented as a function of the position in the length
D for 1, 3, 6, 9, 12, and 15 layers.

The result for one slab illustrates the limits of the transfer-
matrix methodology, when it is applied without the layer
addition algorithm: for a 25 eV potential barrier, all signifi-
cant digits are lost after 1.4 nm. The figure shows clearly the
improvement in accuracy due to a layer subdivision and con-
firms 4n.,, to be a good recommendation.

F. Results

The result of the simulations are presented in Fig. 4. The
figure shows the current density corresponding to all states
incident in region | and evaluated in the planeD. The
different parts of the figure correspond to a computation
without layer subdivision, with a subdivision into two layers,
and a subdivision into three layers. No change is visible
when the number of layers is further increagee tried up
to 400 layers In agreement with conclusions drawn from
Fig. 2, a minimum of three layers is needed to obtain a
significant result.

VII. CONCLUSION

The transfer-matrix methodology was presented. It ap-
pears limited by numerical instabilities that were related to
the physical characteristics of the system considépeten-
tial barrier height and lengihThe layer addition algorithm
comes as a solution to these problems.

To evaluate these methods and determine the minimum
number of layers to use in order to obtain significant results,
a formalism was developed that accounts for the relative er-
ror on a computer-stored result. Simple rules were derived to
update the accuracy evaluation in the case of matrix multi-
plication, addition, and inversion. These rules can be used to
evaluate the accuracy of a transfer-matrix computation and
give predictions of this accuracy by physical considerations.

The theory was illustrated by a field emission simulation.
The model supplies useful information on the dependence of
accuracy on the number of layers. The predicted minimum
number to use is in agreement with the results of the simu-
lations.
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