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Abstract

In order to address the band-structure and transport properties of carbon nanotubes, we build a local pseudopotential from the

requirement that results relevant to the p-bands of simple hexagonal graphite and isolated graphene sheets are reproduced. We then
apply a transfer-matrix technique to compute the band structure and conductance of the (10,0), (5,5), (10,10), (15,15) and

(10,10)@(15,15) carbon nanotubes. We also investigate how the conductance of a broken (10,10) nanotube is affected by a (15,15)

tube placed around the gap. Our results show how fast band-structure and stationary-wave effects appear in finite-size nanotubes.

They provide a complementary insight on the effects of the tubes’ curvature and the transferability of parameters from graphite to

carbon nanotubes.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The transfer-matrix methodology is one of the tech-
niques used to derive scattering solutions in situations

where the relevant propagation equations are linear. The

physical systems to which it applies are those located

between two separate boundaries, standing for the re-

gions of incidence and transmission. Given a set of

boundary states used for the expansion of the wave

function in these two regions, the transfer matrices

provide for each incident state the coefficients of the
corresponding transmitted and reflected states.

The technique has been developed by many authors,

including Bayman [1], Tamura [2], Pendry [3–7], Pala-

cios [8], Wu [9], Sheng [10,11], Price [12], Kostyrko [13],

Andriotis [14], Choi [15] and ourself [16–18]. Its com-

putation time grows as the cube of the number of basis

states used for the expansion of the wave function (be-

cause of the matrix multiplications). This number de-
pends on the lateral size of the system and the cut-off
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energy. The number of states one has to consider

simultaneously can however be reduced significantly if

symmetries are present [18]. The computational effort
required to propagate these states through the system is

simply proportional to its length, which constitutes the

main advantage of the technique. In situations where the

system is periodic, the procedure is still more efficient as

one can use repeatedly the transfer matrices associated

with a single cell. If N is the number of basic cells one

wants to consider and if an algorithm based on the

binary decomposition of N is used, the computational
time turns out to depend on logN .
Using the layer-addition algorithm [2–4] enables one

to control the stability of the procedure [16] and address

periodic repetitions of a given cell. The ‘‘closed’’ or

‘‘quasi-bound’’ states, which only exist in the interme-

diate region, influence the transmission of the ‘‘open’’

scattering states and must be considered. That issue was

discussed by others [1,9–12] and several solutions were
proposed to remove them from the final expressions,

where only propagating states subsist. Our specific ap-

proach regarding that point is to use non-square transfer

matrices at the boundaries [17], thus imposing a physical

reflection to those closed states and preventing numeri-

cal instabilities.

mail to: alexandre.mayer@fundp.ac.be


Fig. 1. Schematic representation of the situation considered. Regions I

and III are the regions of incidence and transmission. The intermediate

Region II contains the basic cell of the nanotubes.
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Transfer matrices are generally applied in electro-

magnetism or in the study of electronic wave guides

having defects or being subject to magnetic fields. For a

few years they are also applied to carbon nanotubes
[7,13–15]. In situations where the wave function must be

determined not only inside but also outside the nano-

tube, a real-space formulation of the technique is

appropriate. Pseudopotentials are then used for the

representation of each atom [15]. In this paper, we build

a pseudopotential that is local and suited to a one-

electron approach, and address the transport properties

of carbon nanotubes. After a presentation of key aspects
of the transfer-matrix methodology in Section 2, we

construct in the following section the pseudopotential

from the requirement that it reproduces the p-bands of
simple hexagonal graphite and isolated graphene sheets.

We then apply in Section 4 these techniques to the

computation of the band structure and conductance of

the (10,0), (5,5), (10,10), (15,15) and (10,10)@(15,15)

nanotubes. We also investigate how the conductance of
a broken (10,10) nanotube is affected by a (15,15) tube

placed around the gap. Our results turn out to be in

excellent agreement with those obtained using other

techniques and show how fast band-structure and sta-

tionary-wave effects appear in finite-size nanotubes.

They provide a complementary insight on the effects of

the tubes’ curvature and the transferability of parame-

ters from graphite to carbon nanotubes.
2. Theory

We present here the main lines of the technique used

to derive the scattering solutions and band structures

presented here-after. Let us consider the system depicted

in Fig. 1. It consists of three parts: Region I (z6 0),
Region II (06 z6D) that contains the scattering
strengths, and Region III (zPD). We refer by fWI=III;�

j g
to the basis states used to expand the wave function in

Regions I and III, for a given value of the energy E. The
± sign refers to the propagation direction relative to the

z axis and the subscript j enumerates the parameters
fkq;mg that characterize each basis state in cylindrical
coordinates. Our objective is to determine how states

incident on one side of Region II are scattered towards
the other.

2.1. Derivation of scattering solutions

In order to reach that objective, we start by estab-

lishing solutions associated with single outgoing WIII;þ
j

or incoming WIII;�
j states in Region III. Since the wave

function and its derivatives are entirely defined in

Region III, one can propagate these states numerically

[19–22] from z ¼ D to z ¼ 0, where the solutions are
expanded in terms of incident WI;þ

j and reflected WI;�
j

states. The coefficients of these expansions are stored in

T�;� matrices and we thus establish the following set of

solutions:

W
þ
j ¼z6 0

X
i

Tþþ
i;j WI;þ

i þ
X
i

T�þ
i;j WI;�

i ¼zPD
WIII;þ

j ; ð1Þ

W
�
j ¼z6 0

X
i

Tþ�
i;j WI;þ

i þ
X
i

T��
i;j WI;�

i ¼zPD
WIII;�

j : ð2Þ

Due to the linearity of the propagation equations, one

can consider combinations of those expressions and

establish scattering solutions associated with either a

single incident state WI;þ
j in Region I or a single incident

state WIII;�
j in Region III. Formally these new solutions

are expressed in terms of S�;� matrices in the following

way:

Wþ
j ¼z6 0WI;þ

j þ
X
i

S�þ
i;j WI;�

i ¼zPD
X
i

Sþþ
i;j WIII;þ

i ; ð3Þ

W�
j ¼z6 0

X
i

S��
i;j WI;�

i ¼zPD
WIII;�

j þ
X
i

Sþ�
i;j WIII;þ

i : ð4Þ

The S�;� matrices, which contain the coefficients of the

transmitted and reflected states, are obtained directly

from the T�;� matrices established previously using [4]

Sþþ ¼ Tþþ�1
, S�þ ¼ T�þTþþ�1

, S�� ¼ T�� � T�þTþþ�1

Tþ� and Sþ� ¼ �Tþþ�1
Tþ�.

The numerical instabilities that appear when D is too
large (because of the inversion of Tþþ) are controlled by

splitting Region II into smaller segments and treating

them separately. The S�� matrices associated with the

complete system are obtained using the combination

rules given in Refs. [2–4,16]. In order to deal with an-

other source of instabilities, the T�� and S�� matrices of

Eqs. (1)–(4) should only connect propagating states in
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Regions I and III. As additional states are however re-

quired to represent accurately the wave function in the

intermediate Region II, specific techniques are required

to match the solutions at z ¼ 0 and z ¼ D. We deal with
that point by considering a reference potential suffi-

ciently low to have only propagative boundary states at

the limits of each segment in Region II. The connection

with the ‘‘external states’’ at z ¼ 0 and z ¼ D is then

achieved using non-square transfer matrices [17], thus

imposing a physical reflection to the ‘‘internal states’’.

2.2. Derivation of the band structure of periodic materials

Let us now consider the basic cell of a periodic
material. For each value of the energy E, one can
compute the transfer matrices that describe its scattering

solutions. The Bloch states that define the band struc-

ture of the material are those that keep unchanged after

propagation through one period a of the material, ex-
cept for the phase factor eikza. If we assume that the basis

states WI;�
j and WIII;�

j have the form wjðq;/Þ expð�ikz;jzÞ,
the Bloch states are actually found by solving the fol-
lowing generalized eigenvalue problem [4]:

Sþþ 0

�S�þ I

� �
X ¼ k

I �Sþ�

0 S��

� �
	 diag½e�ikz;ja; . . . ; eikz;ja�X; ð5Þ

where I is the identity matrix and diag½ � stands for a
diagonal matrix containing the elements in brackets.

The eigenvalues k that are relevant to the band structure
are those that satisfy jkj ¼ 1 (considering the limited
accuracy of the computation). Each eigenvalue then

defines one point ðkz;EÞ of the band structure (through
k ¼ eikza), while the corresponding eigenvector X con-

tains the coefficients of the Bloch states at z ¼ 0. The kz
values found using that procedure are automatically

restricted to the first Brillouin zone ½�p=a; p=a� of the
material.
3. Construction of a local pseudopotential for reproducing

the p-bands of simple hexagonal graphite and isolated

graphene sheets

In order to apply this transfer-matrix technique to

carbon nanotubes, one needs a pseudopotential for the

representation of the carbon atoms. In order to meet the

specificities of our formalism, the pseudopotential has to
be local and suited to a one-electron approach (the

pseudopotentials developed for the density functional

theory are non-local and meant to be used by many-

electrons techniques). Since we are interested by the

conduction properties of carbon nanotubes, we require

more specifically the pseudopotential to be representa-

tive of the p-electrons.
Following the standard approach, we build the

pseudopotential so that it reproduces results obtained

with graphite (with geometric parameters taken from

Ref. [23]). Keeping in mind that it will be applied
hereafter to nanotubes, we will focus essentially on the

C, K and M points of the first Brillouin zone. As ex-

plained in the paper by Charlier et al. [24], there are non-

negligible interactions between the layers of graphite,

which are responsible for the energies of these three

points to be raised by 0.75 eV compared to the Fermi

level. To account for these interactions, we impose the

pseudopotential to reproduce results obtained for both
graphite and isolated graphene sheets. These additional

constrains actually fix the width of the pseudopotential

and improve the reliability of the technique when ap-

plied to single-wall and multi-wall nanotubes.

The results we seek to reproduce are those given by

the tight-binding model of Charlier et al. [24], whose

parameters are determined from the DFT calculations

of Ref. [23]. This model indeed provides an analytical
expression for the p-bands of simple hexagonal graphite
(AAA stacking), which accounts for inter-layer inter-

actions. As these interactions are clearly manifested

along the edge KH of the first Brillouin zone, we will

include it in our representations. Finally following

experimental data [25,26], we fix the position of the

Fermi level of graphite by assuming a work function of

4.6 eV.
We assume that the pseudopotential associated with

each atom has the form V ðrÞ ¼
P3

i¼1 Ai expð�air2Þ,
where r is the distance to the nucleus. Using a gaussian
basis is convenient when computing the Fourier com-

ponents of the potential energy and gives this latter a

finite range (which is appropriate for neutral atoms).

Other functions could complete this basis. For given

values of the parameters Ai and ai, we can apply stan-
dard plane-wave techniques [27] and compute the ener-

gies at the C, K, M and H points of the first Brillouin

zone for both the simple hexagonal graphite and iso-

lated graphene sheets (which are actually represented by

simple hexagonal graphite with a double interlayer

spacing). The construction procedure consists therefore

in a Monte Carlo research of the parameters that pro-

vide the best agreement with the results of Charlier et al.
[23,24]. The values we found for A1, A2 and A3 are
10.607, 29.711 and )98.911 eV respectively, while the

parameters a1, a2 and a3 take the value of 0.12126,
1.9148 and 0.60078 r�2Bohr respectively.
The result of the fit is represented in Fig. 2, where the

p-bands given by the tight-binding model of Charlier are
compared with those obtained using the pseudopoten-

tial. There is a good agreement between the two models,
except at high energies and along the edge KH in the

first Brillouin zone of graphite where the energy should

decrease because of interactions between neighboring

layers [24]. This poor reproduction of the bands along
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Fig. 2. Band structure of simple hexagonal graphite (left) and isolated graphene sheets (right), as calculated by a tight binding model (solid) and

using a local pseudopotential (dots). The Fermi level is 4.6 eV below the vacuum level.
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KH can be traced to the absence of non-local interac-

tions in our model and explains why we did not consider
other forms of graphite [28]. We however managed to

raise satisfactorily the bands in the K–C–M plane of

graphite, which is achieved by letting the pseudopoten-

tial be positive when r exceeds 0.12 nm. Considering that
our main objective is to address conduction properties

of carbon nanotubes, which are essentially determined

by the p-bands of the K–C–M plane at energies close to

the Fermi level, the fit is quite satisfactory. Indeed the
mean error at the K, M and lower C points is 0.036 eV
only. The pseudopotential should however not be used

with systems whose configuration is not that of graphite

(three neighboring carbons for each atom with a bond-

ing length around 0.142 nm). For those systems, tight-

binding Hamiltonians with intersystem hopping

parameters [29–33] will provide better results. Indeed

they can easily describe non-local interactions along the
KH edge of graphite where our technique fails to be

accurate and they have the advantage to include by

construction the angular dependence of the p orbitals.
The pseudopotential is however appropriate for the

nanotubes considered hereafter, as demonstrated by the

comparisons with the tight-binding formalism. It is also

useful in situations where the wave function must be

calculated in distant vacuum regions (as an expansion in
terms of atomic orbitals is not pertinent in those re-

gions).
4. Band-structure and transport properties of carbon
nanotubes

Once the pseudopotential has been constructed, one

can compute band-structure and transport properties of

carbon nanotubes. Following previous publications [19–

22], we adopt cylindrical coordinates and assume that

the electrons involved by scattering are confined in a
cylinder with radius R, which encloses the nanotube. The
boundary states of Section 2 take therefore the form

WI=III;�
m;j ðq;/; zÞ ¼ Jmðkm;jqÞ expðim/Þ

R�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
R R
0
dqq½Jmðkm;jqÞ�2

q

	 exp
 

� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

�h2
E � k2m;j

r
z

!
; ð6Þ

where Jm are Bessel functions, the radial wave vectors
km;j are solutions of J 0

mðkm;jRÞ ¼ 0 and E is defined as the
kinetic energy in Regions I and III (those two regions

are described as perfect metals with a constant potential

energy 25 eV lower than the vacuum level).

As the basis states are normalized so that the inte-

gration of jWI=III;�
m;j j2 gives one electron per unit volume,

the conductance [34] is computed using

GðEÞ ¼ dI
dV

¼ 2e
2

h

X
ðm0 ;j0Þ;ðm;jÞ

vIII;ðm0 ;j0Þ

vI;ðm;jÞ
jSþþ

ðm0;j0Þ;ðm;jÞj
2
; ð7Þ

where vI=III;ðm;jÞ ¼ �h
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
�h2
E � k2m;j

q
are the group velocities

in Regions I and III and the summation only includes

propagative states.

To obtain accurate results, the pseudopotentials have
to be sampled with a resolution of 0.005 nm and it is

sufficient to take R larger by 0.34 nm than the nano-

tube’s radius. The number of wave vectors km;j is
determined by the condition �h2k2m;j=2m6E in Regions I
and III and by �h2k2m;j=2m6E þ DE in the intermediate
Region II where the nanotube is present. The parameter

DE acts as a cut-off energy and determines the number
of additional basis states that are required in Region II
in order to reach a satisfactory representation of the

wave function. We obtained stable results using

DE ¼ 200 eV. Finally the results obtained using

J 0
mðkm;jRÞ ¼ 0 as boundary condition appeared identical
with those obtained imposing Jmðkm;jRÞ ¼ 0, although
convergence seems slightly faster using the first condi-

tion.
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We will consider exclusively ðn; 0Þ and ðn; nÞ nano-
tubes, which are characterized by a central n-fold axis
and reflection symmetries. As explained in Ref. [18], the

n-fold symmetry enables one to separate the basis states
into n independent groups (the potential coupling only
states whose m values are separated by an integer mul-
tiple of n). Taking account of the reflection symmetries
leads to further improvements, since the Fourier com-

ponents of the potential and the corresponding coupling

elements are pure real numbers instead of being com-

plex. It turns out that the m values to consider in order
to reach satisfactory results can be limited to those
satisfying jmj6 5 � n.
Fig. 4. Band structure of the (10,0) nanotube, as given by tight-

binding models, using either the p-orbital approximation (solid) or a
complete spxpypz basis (dashed), and as calculated using the pseudo-

potential (dots).
4.1. Band-structure and transport properties of the (10,0)

nanotube

We start by considering the semiconducting (10,0)

nanotube, whose configuration and band structure are

represented in Figs. 3 and 4. The energy values are

counted from the Fermi level, whose position is fixed by

the middle of the gap. Compared to graphite, the Fermi
level of the (10,0) nanotube turns out to be 0.25 eV

higher (which means that its work function is 0.25 eV

smaller). In the framework of our model, we explain this

difference by the curvature of the nanotube and the

long-range repulsive part of our pseudopotential

(remember that its extension is sufficient to raise the

electrons’ energy by 0.75 eV at a distance of 0.335 nm).

The tube’s curvature is indeed responsible for the atoms
being closer than in the flat planes of graphite, which
Fig. 3. Structure of the (10,0) nanotube. Only four basic units are

represented.
makes them more feel the neighborhood’s potential

more strongly.

Fig. 4 reveals an excellent agreement between the

results obtained using our local pseudopotential and

those given by tight-binding models using either the p-
orbital approximation [35] or a complete spxpypz basis

[23]. The only significant discrepancies with the p-orbital
model occur when the energy is higher than the Fermi

level by at least 2 eV, as already observed with graphite.

While the pseudopotential was build using the hopping

parameter a0 ¼ 2:569 eV in graphite [23], the best gen-
eral agreement between our results and those provided

by the two tight-binding models is achieved using as

hopping parameter c0 (Vppp) the experimental value of
)2.75 eV. The gap-width found using our technique is
1.04 eV, which is very close to the value of 0.966 eV

given by the p model and that of 1.015 eV provided by
the model of Moussaddar et al. [36], where c0 ¼ �3:033
eV and deformation potentials are taken into account.

Fig. 5 illustrates the conductance GðEÞ of eight and
16 basic units of the (10,0) nanotube. Besides addressing

finite-size effects, the result also accounts for reflections

at the interface between the nanotube and the two
metallic contacts. The figure shows that a nanotube

consisting of eight units (i.e., twice the number repre-

sented in Fig. 2) already displays the essential conduc-

tion properties of infinite structures, which are

essentially characterized by the band-gap and van Hove

singularities [37]. For 16 units, these band-structure ef-

fects are perfectly defined. The figure also reveals other

oscillations, whose number is proportional to the length
of the tube and which come from stationary waves in the

nanotube. Looking at the conductance at the Fermi

level, one finds that it decreases exponentially with the

length of the tube, each basic cell being responsible for

a reduction by a factor of 1.93.



Fig. 5. Conductance of eight (solid) and 16 (dashed) basic units of the

(10,0) nanotube. The results account for reflections at the metallic

contacts that surround the tubes.

Fig. 7. Band structure of the (5,5) nanotube, as given by tight-binding

models, using either the p-orbital approximation (solid) or a complete
spxpypz basis (dashed), and as calculated using the pseudopotential

(dots).
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4.2. Band-structure and transport properties of the (5,5),

(10,10) and (15,15) nanotube

Let us now consider the metallic (5,5), (10,10) and

(15,15) nanotubes. We represented the configuration of

the (5,5) in Fig. 6, and the band structure of the three

nanotubes in Figs. 7–9. The energy values are counted
from the Fermi level, whose position is fixed by the band

crossing around 2
3
p=a. Compared to graphite, the Fermi

level of the (5,5), (10,10) and (15,15) nanotubes turns

out to be 0.34, 0.11 and 0.075 eV higher. These upwards

displacements in the position of the Fermi level are

again related to the extension of the pseudopotential
Fig. 6. Structure of the (5,5) nanotube. Only eight basic units are

represented.

Fig. 8. Band structure of the (10,10) nanotube, as given by tight-

binding models, using either the p-orbital approximation (solid) or a
complete spxpypz basis (dashed), and as calculated using the pseudo-

potential (dots).
and the curvature of the nanotubes, and decrease with

their radius. In the framework of our model, we explain

this result by the fact that the carbon atoms are less

affected by the repulsive part of the neighborhood’s

potential as the tube’s radius increases, because of the

growing inter-atomic distances. In the large-radius limit,
the position of the band crossing must be the same as

that characterizing isolated graphene sheets. These

conclusions also hold for the horizontal position of the

band crossing, which appears at 0.656(7), 0.664(7) and

0.666(2) p=a for the (5,5), (10,10) and (15,15) nanotubes
respectively (the ideal value predicted by models [35]

based on the p-orbital approximation is 2
3
p=a).

There is again a good agreement between the bands
obtained using the pseudopotential and those given by



Fig. 9. Band structure of the (15,15) nanotube, as given by tight-

binding models, using either the p-orbital approximation (solid) or a
complete spxpypz basis (dashed), and as calculated using the pseudo-

potential (dots).
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tight-binding models. For the (5,5) our results are

actually closer to those provided by the spxpypz model,

which accounts for the curvature of the tube. As these

curvature effects become negligible when considering the

(10,10) and (15,15) nanotubes, the spxpypz model then
reproduces the bands obtained within the p-band
approximation and a good general agreement between

the three techniques is achieved. As observed previously,

it is the hopping parameter c0 (Vppp) of )2.75 eV that
gives the best general agreement between the different

techniques, while the parameter a0 ¼ 2:569 eV relevant
to graphite [23] only improves the matching for the two

bands involved by the crossing.
Fig. 10 illustrates the conductance GðEÞ of eight and

16 basic units of the (5,5) nanotube. The constant

metallic plateau in these distributions reflects the line-
Fig. 10. Conductance of eight (solid) and 16 (dashed) basic units of the

(5,5) nanotube. The results account for reflections at the metallic

contacts that surround the tubes.
arity of the two bands that cross at the Fermi level. It is

delimited by the opening of new bands (with van Hove

singularities responsible for the sharp peaks). These

band-structure effects are already manifested after
propagation through eight units of the tube (i.e., the

structure displayed in Fig. 6), and are completely defined

after 16 units. The width of the metallic plateau is 3.20

eV, which is close to the value of 3.27 eV given by the

tight-binding model of Ref. [38]. As observed with the

(10,0) structure, the (5,5) nanotube can accommodate

stationary waves, whose number increases with the

length of the tube and which are manifested by oscilla-
tions in the energy distributions. Similar finite-size ef-

fects were observed experimentally by Liang et al.

[39].

Looking at the conductance at the Fermi level, one

finds that it oscillates as a function of the tube’s length

(after an initial transition region). This is illustrated in

Fig. 11, where we also represented results relevant to the

(10,10) and (15,15) nanotubes. One can see that the
period of oscillation is 3

2
a, as expected for wave vectors

kz close to 23 p=a. In the case of the (5,5), one can however
observe that the conductance values are not repeated

exactly when going from one cycle to the next. This

evolution is due to the deviation of the actual value of kz
from the ideal value of 2

3
p=a. This effect does not appear

for the (10,10) and (15,15) nanotubes, where the corre-

sponding deviations are significantly smaller. Besides
addressing these stationary-state solutions, our tech-

nique also describes the initial transition where non-

propagating states decrease exponentially. One can see

that the width of this transition increases with the tube’s

radius. We explain this behavior by the larger number of

states that wide tubes can accommodate (before selec-

tion of particular combinations due to band-structure
Fig. 11. Conductance at the Fermi level for (5,5) (solid), (10,10) (da-

shed) and (15,15) (dot-dashed) nanotubes, as a function of the number

of basic units. The results account for reflections at the metallic con-

tacts that surround the tubes.
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effects). For the (5,5) and (10,10) nanotubes, nine basic

units appear sufficient to reach stationary-state condi-

tions (with variations smaller than one percent from one

cycle to the next). For the (15,15), 13 units are necessary.
Finally one can notice that in all cases the conductance

is smaller than the theoretical value of 2 (2e2=h) that
characterize infinite nanotubes. In stationary-state con-

ditions, the conductance indeed oscillates between 0.88

and 1.62 for the (5,5), 0.75 and 1.64 for the (10,10), 1.00

and 1.64 for the (15,15). These reduced conductance

values come from reflections at the interface between the

nanotubes and the metallic contacts.
4.3. Band-structure and transport properties of the

(10,10)@(15,15) nanotube

We consider in this section the multi-wall

(10,10)@(15,15) structure and investigate how the con-
ductance of a broken (10,10) nanotube is affected by a

(15,15) tube placed around the gap. In all cases, D5h

configurations are considered in order to preserve the

reflection symmetries.

Compared to graphite, the Fermi level of the

(10,10)@(15,15) nanotube is 0.425 eV higher. This en-

ergy displacement is larger than the 0.11 and 0.075 eV

shifts that characterize its single-wall components. In
the framework of our model, this is a consequence of the

additional repulsive interactions that exist between the

layers of multi-wall nanotubes. The band structure of

the (10,10)@(15,15) nanotube is represented in Fig. 12.

The result is actually the superposition, with a separa-

tion of 0.2 eV, of the bands that characterize the isolated

tubes. This appears clearly when representing those
Fig. 12. Band structure of the (10,10)@(15,15) nanotube (in its D5h

configuration), as calculated using the pseudopotential (dots). The

figure also includes the bands characterizing the (10,10) and (15,15)

nanotubes (solid), as obtained within the p-orbital approximation after
a shift of 0.1 eV upwards for the (10,10) and downwards for the

(15,15).
bands simultaneously. The fact that these bands are

only affected by uniform displacements, without avoi-

ded-crossing effects, is due to the conservation of

reflection symmetries (which cancels any coupling be-
tween symmetric and anti-symmetric solutions)

[40–42].

Fig. 13 illustrates a broken (10,10) nanotube, which

consists of 18 units separated symmetrically by a gap

whose width is that of a basic cell (0.24595 nm). The gap

turns out to be responsible for a reduction of the con-

ductance at the Fermi level GðEFÞ from 1.64 to

8.97 · 10�6 (2e2=h). This finite value accounts for elec-
tronic tunneling through the gap. Considering a gap

three times larger, the conductance GðEFÞ reduces to
1.56 · 10�9 (2e2=h). Using a (15,15) nanotube, one can in
principle surround the gap and study how the conduc-

tance of the broken (10,10) is affected. To provide an

example of the systems we consider, we represented in

the right part of Fig. 13 the same broken (10,10) tube

with seven units of the (15,15). We only consider similar
systems, where the (15,15) segment is placed symmetri-

cally around the gap. As the conductance of the two

parts of the broken (10,10) tube has a 3
2
a period and the

(15,15) segment is distributed among these two parts, we

expect the conductance of the system to oscillate with

the length of the (15,15) segment according to a period

of 3a.
We represented in Fig. 14 the conductance of the

broken (10,10) nanotube, as a function of the length of

the (15,15) segment. The two parts of the representation

correspond to a gap length of either one or three basic

cells (0.24595 nm), respectively. It appears that the

conductance of the broken (10,10) nanotube starts pre-

senting contrasted variations only after the length of the

(15,15) segment has become longer than the gap by three

units, i.e. for the two cases considered after 4 and 6 units
respectively. This minimal length actually corresponds

to a 3
2
a period on each side of the gap. Below this point

the conductance only exhibits monotonic variations,

while from this point it oscillates with the expected

period of 3a. For the situations considered, the maximal
conductance is achieved in the first cycle and corre-

sponds to enhancements of the initial value by two and

five orders of magnitude respectively.
5. Conclusion

We described how the transfer-matrix technique can
describe periodic materials, providing both scattering

solutions and the band structure of these materials. In

order to apply this methodology to carbon nanotubes,

one had to build a local pseudopotential that represents

the carbon atoms and can be used in a one-electron

approach. This pseudopotential is interesting in itself,

since it enables one to reproduce the p-bands of simple



Fig. 14. Conductance of a broken (10,10) nanotube, as a function of

the length of the (15,15) segment. The solid and dashed curves corre-

spond to gap lengths of one and three basic cells (0.24595 nm),

respectively.

Fig. 13. Potential energy in a broken (10,10) nanotube, without (15,15) (left) and with seven units of the (15,15) (right).

A. Mayer / Carbon 42 (2004) 2057–2066 2065
hexagonal graphite, isolated graphene sheets and carbon

nanotubes with a reasonable accuracy and using ele-

mentary techniques.

The present approach has the advantage to fix the

position of the Fermi level, predicting smaller work-

function values than in graphite. The variations are of

the order of those found in the literature [43] (typically

0.2 eV). In the framework of our model, they are a
consequence of the extension of the pseudopotential and

the tubes’ curvature, which also explains for the band

crossing of armchair nanotubes appearing at wave

vectors situated slightly below 2
3
p=a. Other factors,

including charge transfers and r�–p� hybridizations

that appear at small radii [44,45], tend to increase
the work function [25,26,45,46] but were not consid-

ered.

Despite these limitations, the band structures ob-

tained using this technique are in excellent agreement

with those provided by tight-binding models and pro-

vide some insight on the transferability of parameters
from graphite to nanotubes. We could reproduce the p-
bands of semiconducting and metallic nanotubes and

compute their conductance. These calculations revealed

how fast band-structure effects (i.e., band-gaps, constant

metallic plateaus and van Hove singularities) appear in

finite-size nanotubes. We could also study how the

conductance depends on the energy and the tubes’

length, thus revealing stationary-wave effects associated
with reflections at the metallic contacts. Multi-wall

nanotubes were considered and we investigated how the

conductance of a broken nanotube is affected by a sec-

ond tube that surrounds the gap.

The present technique provides an alternative in sit-

uations where the density functional theory requires

excessive computational resources and the determina-

tion of the tight-binding parameters is questionable. The
present applications involving multi-wall or broken

nanotubes provide examples of such situations. Other

examples are the treatment of long, non-periodic struc-

tures that contain defects [15] or encapsulated molecules

[47], are subject to electric fields (field emission) or

constitute only a part of problems where tunneling or

ballistic transport outside the nanotube must be de-

scribed accurately (electron microscopy). The contents
of this paper enables one to address these applications

and include correct band-structure effects in models that

rely on a potential-energy representation of carbon

nanotubes.



2066 A. Mayer / Carbon 42 (2004) 2057–2066
Acknowledgements

A.M. is supported as Research Associate by the

National Fund for Scientific Research (FNRS) of Bel-
gium. The author acknowledges the use of the Namur

Scientific Computing Facility and the Belgian State In-

teruniversity Research Program on Quantum size effects

in nanostructured materials (PAI/IUAP P5/01). J.-P.

Vigneron and Ph. Lambin are acknowledged for useful

discussions.
References

[1] Bayman BF, Mehoke CJ. Am J Phys 1983;51(10):875–83.

[2] Tamura H, Ando T. Phys Rev B 1991;44(4):1792–800.

[3] Pendry JB, MacKinnon A. Phys Rev Lett 1992;69(19):2772–5.

[4] Pendry JB. J Mod Opt 1994;41(2):209–29.

[5] Pendry JB. J Phys Condensed Matter 1996;8:1085–8.

[6] Ward AJ, Pendry JB. J Mod Opt 1997;44(9):1703–14.

[7] Garc�ıa-Vidal FJ, Pitarke JM, Pendry JB. Phys Rev B 1998;58:

6783–6.

[8] Palacios JJ, Tejedor C. Phys Rev B 1993;48(8):5386–94.

[9] Wu H, Sprung DL. Appl Phys A 1994;58:581–7.

[10] Sheng WD, Xia JB. J Phys Condensed Matter 1994;8:3635–45.

[11] Sheng WD. J Phys Condensed Matter 1997;9:8369–80.

[12] Price PJ. Microelectron J 1999;30:925–34.

[13] Kostyrko T. Phys Rev B 2000;62:2458–65.

[14] Andriotis AN, Menon M, Srivastava D. J Chem Phys 2002;

117:2836–43.

[15] Choi HJ, Ihm J. Phys Rev B 1999;59:2267–75.

[16] Mayer A, Vigneron JP. Phys Rev E 1999;59(4):4659–66.

[17] Mayer A, Vigneron JP. Phys Rev E 2000;61(5):5953–60.

[18] Mayer A, Vigneron JP. Phys Rev E 1999;60(6):7533–40.

[19] Mayer A, Vigneron JP. Phys Rev B 1997;56(19):12599–607.

[20] Mayer A, Vigneron JP. J Phys Condensed Matter 1998;10(4):869–

81.

[21] Mayer A, Vigneron JP. Phys Rev B 1999;60(4):2875–82.

[22] Mayer A, Vigneron JP. Phys Rev B 2000;62(23):16138–45.

[23] Charlier JC, Michenaud JP, Gonze X. Phys Rev B 1992;46(8):

4531–9.
[24] Charlier JC, Michenaud JP, Gonze X, Vigneron JP. Phys Rev B

1991;44(24):13237–49.

[25] Suzuki S, Bower C, Watanabe Y, Zhou O. Appl Phys Lett

2000;76(26):4007–9.

[26] Suzuki S, Watanabe Y, Kiyokura T, Nath KG, Ogino T, Heun S,

et al. Phys Rev B 2001;63:245418_1–7.

[27] Kittel CH. Physique de l’�etat solide. 7th ed. Paris: Dunod; 1998. p.

167–169.

[28] Charlier JC, Gonze X, Michenaud JP. Phys Rev B 1991;43(6):

4579–89.

[29] Tabor S, Stafstr€om S. Synth Met 1993;57(2–3):4278–83.

[30] Tanaka A, Onari S, Arai T. Phys Rev B 1993;47(3):1237–43.

[31] Paulsson M, Stafstr€om S. Phys Rev B 1999;60(11):7939–43.
[32] L�az�ar A, Surj�an PR, Paulsson M, Stafstr€om S. Int J Quant Chem

2001;84:216–25.

[33] Surj�an PR, L�az�ar A, Szabados A. Phys Rev A 2003;68:062503_1–

3.

[34] B€uttiker M, Imry Y, Landauer R, Pinhas S. Phys Rev B

1985;31(10):6207–15.

[35] Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Appl Phys

Lett 1992;60(18):2204–6.

[36] Moussaddar R, Charlier A, McRae E, Heyd R, Charlier MF.

Synth Met 1997;89:81–6.

[37] Ziman JM. Principles of the theory of solids. Cambridge: The

University Press; 1964. p. 46–7.

[38] Charlier JC, Lambin Ph. Phys Rev B 1998;57(24):R15037–9.

[39] Liang W, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park

H. Nature 2001;411:665–9.

[40] Saito R, Dresselhaus G, Dresselhaus MS. J Appl Phys 1993;

73(2):494–500.

[41] Lambin Ph, Charlier JC, Michenaud JP. In: Kuzmany H, Fink J,

Mehring M, editors. Progress in fullerene research. Singapore:

World Scientific; 1994 p. 130–4.

[42] Kwon YK, Tom�anek D. Phys Rev B 1998;58(24):R16001–4.

[43] Chen P, Wu X, Sun X, Lin J, Ji W, Tan KL. Phys Rev Lett

1999;82(12):2548–51.

[44] Blase X, Benedict LX, Shirley EL, Louie SG. Phys Rev Lett

1994;72(12):1878–81.

[45] Miyamoto Y, Saito S, Tomanek D. Phys Rev B 2001;65:

041402_1–4.

[46] Zhou G, Duan W, Gu B. Phys Rev Lett 2001;87(9):095504_1–4.

[47] Yoon YG, Mazzoni MSC, Louie SG. Appl Phys Lett 2003;83(25):

5217–9.


	Band structure and transport properties of carbon nanotubes using a local pseudopotential and a transfer-matrix technique
	Introduction
	Theory
	Derivation of scattering solutions
	Derivation of the band structure of periodic materials

	Construction of a local pseudopotential for reproducing the pi-bands of simple hexagonal graphite and isolated graphene sheets
	Band-structure and transport properties of carbon nanotubes
	Band-structure and transport properties of the (10,0) nanotube
	Band-structure and transport properties of the (5,5), (10,10) and (15,15) nanotube
	Band-structure and transport properties of the (10,10)@(15,15) nanotube

	Conclusion
	Acknowledgements
	References


