
March 2004 
  
                                                                   Phys. Chem. News 16 (2004) 46-53                                                         PCN 

 46

BAND-STRUCTURE AND TRANSPORT CALCULATIONS  
IN QUANTUM WIRES USING A TRANSFER-MATRIX TECHNIQUE 

 
A. Mayer 

Laboratoire de Physique du Solide, 
Faculté Universitaires Notre-Dame de la Paix, 
Rue de Bruxelles 61, B-5000 Namur, Belgium 

* Corresponding author. E-mail : alexandre.mayer@fundp.ac.be 
Received : 15 February 2003 ; revised version accepted :29 June 2003 

 
Abstract   
 The transfer-matrix methodology is used to solve linear systems of differential equations, in situations 
where the solutions of interest are in the continuous part of the energy spectrum. The technique is actually 
a generalization in three dimensions of methods used to obtain scattering solutions in one dimension. 
Using the layer-addition algorithm allows one to control the stability of the computation and describe 
efficiently periodic repetitions of a basic unit. The paper provides a pedagogical presentation of this 
technique. It also describes in details how the band structure associated with an infinite periodic medium 
can be extracted from the transfer matrices characterizing a single basic unit. The method is applied to the 
calculation of the transmission and band structure of electrons subject to cosine potentials in a cylindrical 
wire. The simulations show that bound states must be considered because of their impact as sharp 
resonances in the transmission diagram and to obtain complete band structures. Additional states only 
improve the completeness of the representation. 
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1. Introduction  
 The transfer-matrix methodology is one of the 
techniques used to solve linear systems of 
differential equations, in situations where the 
solutions of interest are in the continuous part of 
the energy spectrum. For this numerical scheme to 
be relevant, the physical system considered should 
be located between two separate boundaries 
(standing for the regions of incidence and 
transmission). Given a set of basis states used for 
the expansion of the wave function, the transfer 
matrices provide, for each state incident on one 
boundary of the system, the coefficients of the 
corresponding reflected and transmitted states. 
 The advantage of this technique is that it does 
not require the storage of the wave function in the 
intermediate part of the system (where solutions 
are only propagated through). Its storage space 
requirements therefore depend essentially on the 
number N of basis states used for the expansion of 
the solutions (more precisely on N3), and not 
directly on the dimensions of the system. This 
technique was first developed by Pendry [1-4] for 
Low Energy Electron Diffraction simulations. It 
was used and developed by other authors [5-15], 
including Mayer et al. [16-18] for the simulation 
of the Fresnel projection microscope [19-22] and 
for the modeling of (photon-stimulated) field 
emission [23-24]. 
 An interesting feature of the method is that it 
can easily handle periodic repetitions of a basic 

unit. From the transfer matrices associated with a 
single unit of the structure, it is indeed 
straightforward (using the layer-addition algorithm 
[1-2]) to derive those corresponding to an arbitrary 
number of units. The band structure that 
characterizes the infinite repetition of these units 
can also be extracted from the transfer matrices.  
 It is the objective of this paper to provide a 
pedagogical presentation of the transfer-matrix 
methodology and describe how band structures 
can be derived in this approach. The theoretical 
aspects of this scheme are developed in Sec. II. 
The technique is then applied in Sec. III to the 
study of electrons that are confined in a cylindrical 
wire and subject to cosine potentials. The 
simulations show how fast band structure effects 
appear with the number of periods. The features of 
the transmission diagram are related to those of 
the band structure and interpreted in terms of 
quantum conductance and band-gap effects. The 
issue of bound states is also considered. It is found 
that they need to be considered in order to 
reproduce sharp resonances in the transmission 
diagram and to obtain complete band structures. 
Additional states only improve the completeness 
of the representation. 
 
2. Theory  
 Let us consider three regions: the Region I 
(z0), the Region II (0zD) and the Region III 
(zD). We consider the scattering strengths to be 
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in the intermediate Region II and want to compute 
how electronic states incident on one side of the 
Region II are scattered towards the other. 
Let us consider two sets of basis states in the two 

boundary Regions I and III, namely   ,I
j  

and  ,III
j . These states are used to expand the 

wave function in the Regions I and III, for a given 

value of the energy E. The subscript j enumerates 
the allowed values of {k,m} in cylindrical 
coordinates ({kx,ky} in cartesian coordinates), 
considering boundary conditions and the energy E. 
The  signs refer to the propagation direction 
relative to the z axis, which is oriented from the 
Region I to the Region III (see Fig. 1).  

 

 
Figure 1 : Schematic representation of the situation considered. The Regions I and III are the regions of incidence 

and transmission. The intermediate Region II contains a cylindrical wire with cosine potentials. 
 
We assume that these states are separable in the 
following way: 

)exp(),(),,( ,
, zikz jzj

I
j    , 

(1) 
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(2) 
These relations will be used to derive band 
structures and are only required for this specific 
application. 
We will describe in this section how scattering 
solutions, corresponding to a single incident state 

 ,I
j in the Region I or  ,III

j  in the Region III 

can be derived. We will describe shortly the layer-
addition algorithm and finally explain how the 
band structure associated with the infinite 
repetition of a basic unit can be extracted from 
these solutions. 
 
2.1 Basic formulation of the transfer-matrix 
technique  
 The first step of the technique consists in 
establishing solutions associated with single 

outgoing  ,III
j  or incoming  ,III

j  states in the 

Region III. Since the wave function and its 
derivatives are entirely defined in the Region III, 
one can propagate these states numerically from 
z=D to z=0, where the solutions are expanded in 

terms of incident  ,I
j  and reflected  ,I

j  

states. The corresponding expansion coefficients 

are stored in T matrices and we end up with the 
following set of solutions: 
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In the second step of the procedure, these 
solutions are combined linearly in order to derive 
new solutions satisfying the scattering boundary 
conditions, namely solutions associated with either 

a single incident state  ,I
j  in the Region I or a 

single incident state  ,III
j  in the Region III (with 

this time reflected states in the region of incidence 
and transmitted states in the other one). Formally, 
these solutions are expressed in terms of S 
matrices in the following way: 
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(6) 
The S matrices, which contain the expansion 
coefficients of these solutions are related to the 
T matrices of Eqs 3 and 4 by S++=(T++)-1,  
S-+=T-+(T++)-1, S--=T---T-+(T++)-1T+- and  
S+-=- (T++)-1 T+-. 
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2.2 The layer-addition algorithm for the control of 
accuracy and the description of periodic systems  
 To control the numerical instabilities that 
appear with large distances D (when inverting T++ 
to obtain the S matrices) or to treat efficiently 
periodic systems, it is useful to use the layer-
addition algorithm [1-2]. Given a subdivision  
0=z0<z1<z2<…<zn-1<zn=D of the interval [0,D] and 

referring by 
ji zzS , , 

ji zzS , , 
ji zzS ,  and 

ji zzS , to 

the S matrices associated with the interval [zi,zj], 
one can derive those associated with the entire 
interval [0,D] from the recursive application of the 
following relations: 
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These relations enable a straightforward derivation 
of the S matrices associated with the periodic 
repetition of an arbitrarily large number of units 
once the transmission through a single unit has 
been established. Even in the case of non-periodic 
systems, it is generally useful to use this algorithm 
since the relative error on the transfer-matrix 
calculations increases exponentially with the 
distance D if it is considered in a single step. The 
number of subdivisions to consider in order to 
achieve a given accuracy is given, with other 
considerations on the stability of transfer-matrix 
calculations, in Ref. [16]. 
 For the derivation of band structures in the next 
subsection, we will use the T matrices. These 
matrices keep stable when considering large 
distances D (only the inversion of T++ is unstable 
when D is too large). When these matrices are 
obtained for subdivisions of the [0,D] interval, 
they can be updated according to the following 
formula: 
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2.3 Derivation of band structures from transfer 
matrices  
 Let us now consider a basic unit, of length a in 
the z direction. One can compute the transfer 

matrices associated with this structure, for given 
values of the energy E. Our objective is to extract 
from these matrices the band structure 
characterizing the infinite, periodic repetition of 
this unit. 
 For this purpose let us first reconsider the 
solutions of Eqs 3 and 4, which are recast in the 
following way: 
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We want to find combinations  Ujj
    of 

these solutions that satisfy the relation: 
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with  a diagonal matrix containing elements of 
the form =exp(ikza). These combinations 
describe particular states that keep unchanged 
after propagation through one period of the system 
except for a phase factor exp(ikza). These states 
are therefore Bloch states associated with wave 
vectors kz in the first Brillouin zone [-/a,/a] of 
the periodic system (for the energy E considered) 
and the couples of points (kz,E) will represent the 
band structure of the system. By considering the 
propagative solutions given in Eq. 12, this relation 
can be written as: 
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If we now remember the expressions 1 and 2 of 

the basis states  ,I
j  and  ,III

j , we can relate 

them by 
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where diag[ ] stands for a diagonal matrix 
containing the elements in brackets, so the 
equation 14 finally leads to: 
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which means that the eigen values   of the 
matrix on the right-hand side of this expression 
will provide the wavevectors kz characterizing the 
Bloch states associated with the energy E [through  

)exp(1 aikz  ]. Note that in most 

techniques the values of E are obtained as a 
function of kz and that the restriction of kz in the 
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first Brillouin zone [-/a, /a] of the periodic 
system is automatically verified.  

 It has to be noted that the values of 1   

are not always in the form )exp( aikz , especially 

in situations involving tunneling processes or in 
band-gap regions. Many if not all of them can 
indeed exhibit an exponential dependence 

)exp(Ka  and are therefore not relevant to the 

band structure. One distinguishes the values  to 
consider for the representation of the band 
structure by the condition ||=1 (within numerical 
precision). 
 For a given problem, this technique provides a 
particular representation of the band structure, 
since its structure in the three-dimensional 
reciprocal space is projected on the kz axis. This is 
a consequence of formulating the three-
dimensional scattering of the wave function as the 
one-dimensional propagation of its components. In 
general this representation is appropriate in 
situations where a treatment by transfer matrices is 
relevant. 
 
3. Application: band structure and transport 
properties of cylindrical wires  
 The applications considered in this paper will 
focus on the scattering of electrons subject to  

cosine potentials in a cylindrical wire. We will 
compute the transmission through a finite number 
of periods and compare these results with the band 
structure characterizing the infinite medium. We 
will also study the impact of bound states in the 
intermediate region and discuss the necessity to 
consider them or not. 
 We assume that the radius R of the wires is 
identical to the period a in the z direction. Using 
cylindrical coordinates, the boundary states we use 
for the representation of the wave function in the 
Region I and III are given by: 
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The radial wave vectors km,j characterizing these 
states are solutions of J’m(km,jR)=0. This condition 
of vanishing radial derivative of the wave function  
on the border of the cylinder is imposed in the 
entire system (Region II included). It enables the 
wire to allow for at least one solution, namely 
k0,0=0, for any value of the energy E. The way the 
electronic states are propagated through the 
Region II is explained with details in Ref. [20,21]. 
In order to improve the clarity of the results, only 
axially symmetric states will be considered. 
 

 

 
Figure 2: Values of dI/dE after 2 (solid), 4 (dotted), 8 (dot-dashed) and 16 (dotted) periods of a V(z)=0.4 cos(2/a z) 
eV potential in a cylinder with radius a=0.434 nm. 
 
3.1 Transmission and band structure for a V(z) = V0 
cos(2/a z) potential  
 The first potential we consider is given by V(z) 
= V0 cos(2/a z), with V0=0.4 eV and a=0.434 
nm. These parameters are chosen so that a 0.4 eV-
wide band gap appears at an electron energy of 

2
2 )/(

2

am  =2 eV. After calculation of the 

transfer matrices associated with a single period a 

of the potential and using the layer-addition 
algorithm presented in Sec. II.2, it is 
straightforward to compute how the electronic 
transmission in the wire changes as the number of 
periods increases. 
 We illustrated in Fig. 2 the electronic 
transmission (more precisely the values of dI/dE) 
for tube lengths corresponding to 2, 4, 8 and 16 
periods of the potential and electron energies 



A. Mayer, Phys. Chem. News 16 (2004) 46-53 

 50

ranging from 0 to 15 eV. One can observe the 
apparition of gaps, which tend to be more 
pronounced as the number of periods increases. 
Besides the gaps, the transmission tends to its 
maximal value and exhibits oscillations that are 
related to stationary waves in the structure. Indeed 
their number and the sharpness of their 
contribution in the transmission diagram increase 
with the number of periods. Similar observations 
were made when studying the conduction and 
field-emission properties of the semiconducting 
(10,0) carbon nanotube [25].  

 These non-zero values of the transmission at 
energies   where   a   band-gap   exists   when   the 
medium is infinite is due to the finite length of the 
structures considered here and to the existence of 
exponentially decaying solutions in these regions. 
It is only in truly infinite structures that these 
solutions are prohibited because of their exploding 
behavior at either z=+ or -. The existence of 
decaying solutions in band-gaps was invoked in 
Ref. [24] to justify the presence of photon-excited 
electrons in the gap of a (10,0) nanotube (in the 
context of field emission). 

 

 
Figure 3: Left: values of dI/dE after 32 periods of a V(z)=0.4 cos(2/a z) eV potential in a cylinder with radius 

a=0.434 nm. Right: band structure characterizing the infinite medium. 
 
The values of the transmission after 32 periods of 
the potential and the band structure characterizing 
the infinite medium are represented in Fig. 3. The 
gaps in the transmission diagram are now well 
pronounced and in agreement with those in the 
band structure. There is a step in the transmission 
each time the energy is sufficient to allow for a 
new state in the radial direction. The occurrence of 
these steps coincide with the beginning of new 
bands in the band structure. The height of the steps 
is given by 2e2/h (7.7410-5 -1), which is twice 
the value of the conductance quantum since each 
basis state is representative of two electrons with 
opposite spins. Because of the value of the period 
a, the gaps follow always by 2 eV the steps in the 
transmission diagram, which reflects the fact that 
the band-gaps are always 2 eV higher in energy 
than the beginning of the new bands. 
It is interesting to notice that the energy where all 
transitions or gaps appear are close to integer 
values (in eV)! In particular, the steps associated 
with new solutions appear at 3 and 10 eV. This 
peculiarity can be explained by the fact that the 
solutions of the boundary condition J’0(k0,ja)=0 are 
given by k0,ja = (j+1/4)  (in a first approximation 
[26]). If we remember that a was chosen so that 

2
2 )/(

2

am  = 2 eV, it can easily be shown that the 

energy associated with the lateral wave vectors k0,j 

is given approximately by E0,j= (2j2+j+1/8) eV, 
which explains our observations and predicts the 
position of the next steps. 
 
3.2 The issue of bound states with a V()=V0 
cos(2/T ) potential  
 We will now address the issue of bound states 
in the intermediate Region II and the related 
question of the number of basis states to consider 
in this region. In the Regions I and III, the number 
of basis states is fixed by the condition 

Em

k jm 2

2
,

2
. Indeed basis states with higher km,j 

values would be real exponentials in the z 
direction, carrying no current and causing only 
instabilities (we assume the potential energy to be 
zero in the Regions I and III). Since however the 
potential energy in the intermediate Region II can 
take negative values, the condition on km,j inside 
the Region II must be relaxed to 

EEm

k jm 2

2
,

2
 and there is the possibility for 

this region to accommodate additional states, 
which are exponentially decreasing outside this 
region but not inside.  
 This raises an issue on the necessity to consider 
these bound states or not. A first technical 
difficulty arises from the fact the number of states 
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in the Region II is different from that in Regions I 
and III. Because of that, connecting the solutions 
at z=0 and z=D involves the inversion of non-
square matrices [27]. All techniques required to 
deal efficiently with this point were however 
developed in Ref. [17]. Another point is that, 
according to the literature and for different 
formulations of the transfer-matrix methodology 
[9-10], these bound states are likely to cause 
numerical instabilities. Our objective was 
therefore to create artificially bound states in our 
system and study their effect as well as the 
necessity to consider them or not. 
 Let  us  first  consider  a  V()=V0 cos(2/T )  
 

potential, with V0=1 eV. The length D and radius 
R=2T of the cylinder are increased to 1 nm. 
Because of its -dependence - and unlike the 
previous case - this potential introduces a coupling 
between the basis states in Region II, which is a 
necessary condition to observe any effect 
associated with bound states. Since the potential is 
independent of z, its effect is actually to redefine 
the electronic states that propagate independently 
in the wire from the original ones (i.e., states 
characterized by given values of m and j) to 
combinations of them and one can already 
understand the necessity to a have enough basis 
states to represent these new states correctly. 

 

 
Figure 4: Left: values of dI/dE after D=1 nm of a V()=cos(2/T ) eV potential in a cylinder with radius R=2T=1 

nm. The solid curve corresponds to E=20 eV and the dashed one to E= 0. Right: band structure characterizing the 
infinite repetition of the Region II. 

 
 We represented in Fig. 4 the values of dI/dE 
obtained at z=D as well as the band structure 
characterizing the infinite repetition of the Region 
II. These results were obtained by considering 
E=20 eV, i.e. nine basis states within the Region 
II while there are only four of them in the Regions 
I and III. These additional states serve essentially 
to remove unphysical discontinuities in the band 
structure, which appear when the degree of 
completeness of the basis is poor. The role of E 
is identical to the "cut-off energy" in plane-waves 
calculations and there is no effect associated with 
bound states, which are not present here. We 
checked that these results keep unchanged when 
considering higher values of E (up to 50 eV). For 
the purpose of comparison we represented the 
values of dI/dE obtained with E=0 (showing that 
the currents are less sensitive to the completeness 
of the basis than the band structures). 
 Let us now consider the V()=V0 cos(2/T )-1 
eV potential. We represented in Fig. 5 the 
corresponding values of dI/dE as well as the band 
structure that would characterize the Region II if 
repeated periodically. As expected, the band 
structure is shifted down by 1 eV. This means that 

the two bands that stood between 0 and 1 eV in 
Fig. 4 now give rise to discrete energy levels, 
characterizing bound states. The position of these 
energy levels is given by the intersection of the 
former bands with the limits /D of the first 
Brillouin zone (namely at -0.71 and -0.28 eV), 
since the length D of the Region II is then an 
integer multiple of half the electronic wave length 
in the z direction. For the same reason, quasi-
bound states in the continuum part of the spectrum 
(E0) will exist each time the bands of Fig. 5 meet 
the limits /D of the first Brillouin zone. 
 Despite the fact these bound states only exist in 
the Region II, they have an impact on the 
propagative solutions in the E0 range. As 
observed in Ref. [9,13-15], this impact is 
essentially limited to localized resonances in the 
dI/dE values, at energies where the interaction 
between propagative states and (quasi-)bound 
ones is stronger. Indeed the two resonances in Fig. 
5 appear at energies where bands meet the border 
of the first Brillouin zone for the first time (the 
electronic wave length in the z direction is then 
identical to that of the bound states, which 
enhances the interactions). 
 



A. Mayer, Phys. Chem. News 16 (2004) 46-53 

 52

 
Figure 5: Left: values of dI/dE after D=1 nm of a V() = cos(2/T )-1 eV potential in a cylinder with radius 

R=2T=1 nm. The solid curve corresponds to E=20 eV, the dashed one to E=0 and the dot-dashed one to E=1 eV. 
Right: band structure characterizing the infinite repetition of the Region II. 

 
 The results presented here were obtained by 
taking  E=20 eV, as required for the 
completeness of the basis. In particular it is 
necessary to consider the two bound states (which 
are part of the solution within the Region II). 
Neglecting them by taking E =0 has indeed a 
strong impact on both the band structure (all bands 
are truncated at their beginning on the first eV) 
and the dI/dE values (the resonances disappear). 
As illustrated in Fig. 5, taking E=1 eV is 
sufficient to include the bound states and therefore 
reproduce the resonances and complete the bands. 
The additional states introduced by taking higher 
values of E only improve the completeness of the 
basis and serve essentially to remove unphysical 
discontinuities in the bands. 
The relation between resonances in the 
transmission currents and quasi-bound states in the 
system was well described by Price [13-15], who 
actually relates them to poles of the S matrix 
(whose elements are considered as functions of the 
energy). The present simulations show that these 
effects are addressed properly, provided additional 
basis states are considered in the intermediate 
Region II (through E>0). The "interior states" do 
not need to be computed explicitly, nor treated 
differently from "open states" [9-10]. The 
specificity of our approach is to use non-square 
transfer matrices [17] to prevent instabilities when 
making the connection between the different 
regions. 
 
4. Conclusions  
 This paper was a pedagogical presentation of 
the transfer-matrix technique, with an extension to 
extract the band structure of periodic materials 
from the T matrices associated with a single unit. 
Because of the transfer-matrix formulation of the 
scattering problem, the band structure is projected 

on the kz axis, which is often appropriate in 
situations where this technique can be applied. 
We provided calculations of the transmission and 
band structure of electrons confined in a 
cylindrical wire and subject to cosine potentials. 
We observed how fast the transmission diagram 
exhibits characteristics predicted by the band 
structure (namely gaps and steps associated with 
the opening of new bands), while keeping features 
associated with their finite length. Comparisons 
could be made with results obtained for a 
semiconducting (10,0) carbon nanotube, 
confirming and providing an insight on processes 
observed in complex structures. 
 The issue of bound states was considered. 
Although they exist only in the intermediate 
region, they need to be included in the 
representation because of their impact on 
propagative solutions (as localized resonances in 
the transmission) and to avoid unphysical 
truncations of the bands. Considering additional 
states essentially improves the completeness of the 
representation and solves for discontinuities in the 
bands. The connection between the intermediate 
region (which may contain "interior states") and 
the neighboring ones (which contain only 
propagative states) is achieved using non-square 
transfer matrices, making the technique perfectly 
stable. 
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