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Inverse electronic scattering by Green’s functions and singular values decomposition
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An inverse scattering technique is developed to enable a sample reconstruction from the diffraction figures
obtained by electronic projection microscopy. In its Green’s functions formulation, this technique takes ac-
count of all orders of diffraction by performing an iterative reconstruction of the wave function on the
observation screen. This scattered wave function is then backpropagated to the sample to determine the
potential-energy distribution, which is assumed real valued. The method relies on the use of singular values
decomposition techniques, thus providing the best least-squares solutions and enabling a reduction of noise.
The technique is applied to the analysis of a two-dimensional nanometric sample that is observed in Fresnel
conditions with an electronic energy of 25 eV. The algorithm turns out to provide results with a mean relative
error of the order of 5% and to be very stable against random noise.

[. INTRODUCTION achieved by the (hybrid) filtered backpropagation
algorithm'® and the sample is assumed to be a weak scat-

Electron projection microscopes make use of the qua- terer. In the formulation of x-ray inverse scattering by Tegze
siradial far propagation of electrons projected out of smallend Faigel*?? (where weak scattering is also assuméble
tips to obtain highly magnified projections of small samp|es_scattered intensity is related linearly to the atomic scattering
The tip and sample dimensions are of the order of a fewfactors(more precisely to the real part of a combination of
nanometersthe tip having a single-atom termination to en- these factors In their Fourier analysis of electron transmis-
sure the pointlike character of the emission ar@e bias ~Sion micrographs, Klugt al**~?*make interpolations in the
responsible for the field-emission process is typically bel€ciprocal spacéby generalized inversiofi to complete
tween a few tens volts and a few hundred volts. the data obtained from a limited set of projections.

Below a critical tip-sample distance, the incoming wave is ~ The idea of this paper is to relate the scattered intensity to
essentially spherical on the scale of the sample, giving rise t1€ sample potential energy in the Green’s functions formal-
Fresnel diffraction images, still highly correlated with direct- iSm and to solve the corresponding linear system of equa-
space representations of the object. The best resolution oons by a singular values decompositibriproviding the
tained so far by this direct approach is around 0.5 nm. ArPest least-squares solutiorThe scattered wave function is
inverse scattering treatment should improve this resolutionfeconstructed iteratively to match the given intensity. This
by using the information present in all diffraction fringes and Paper starts with the derivation of this technique. In Sec. I,
by considering simultaneously the projections obtained foft is applied to the reconstruction of a nanometric sample,
different positions of the source or different energy values. from a clean diffraction figure first and then from a figure

Theoretical support enab]ing the understanding of the |mW|th random noise. Only Fresnel diffraction is considered
age formation(i.e., direct-scattering simulationsvas first ~and a comparison between our results and those obtained by
given within the Fresnel-Kirchhoff flat-object formalish. the techniques of Blelocfet al** and Spenceet al* is
Consideration of three-dimensional aspects is possible in @chieved. In the conditions of this paper, it turns out that a
Green’s functions formulatio?. The main disadvantage of Sample reconstruction from a Fresnel figure is more stable
this approach is that it requires excessive storage space whagainst noise, whose effects can be reduced by an appropri-
the sample becomes large. Our approach of the problem waée singular values selection and by increasing the electron
based on both the transfer-matrix and Green’s function€nergy or the resolution and size of the diffraction figure.
formalisms®>~'* This approach enables direct-scattering

simulations®~'” with reduced storage requirements. HOW- || |N\VERSE SCATTERING BY GREEN'S EUNCTIONS
ever, due to the fact that the potential energy remains explic- AND SINGULAR VALUES DECOMPOSITION

itly present in the Green’s functions formulation, this latter

will be used in this inverse scattering approach. A. Direct scattering by Green’s functions

i 8—28 . . v g
Inverse scatteriri§ > has been developed among others | et us consider the stationary electron Sciinger equa-
for x rays, ultrasonic, and electron transmission techniquesijgn:

Diffraction tomography refers to the treatment of a set of

diffraction figures obtained for different positions of the 52
source. Among the works that inspired this paper, we refer to [_ —V2+V(r)}qf(r): EW(r). )
Maleki and Devanel'® and Wedberg and Stamrisvho 2m

use an iterative scheme to reconstruct the unknown phase of

the scatteredacoustic/opticalfield. The backpropagation of If Wo(r) is the solution forV=0 agreeing with the scat-
the scattered field from the observation plane to the sample i®ring boundary condition§.e., vanishing value and deriva-
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tive ad infinitum, the solution of the full perturbed equation where these two matricial equations correspond to the two
is given by the Lippmann-Schwinger equation: steps of the resolution, i.e., determination of the wave-
function valuesV (r;) in the object and far propagation to the
screen.

\If(r)=\lf0(r)+f f jdv’G(r,r’,E)V(r’)\If(r’). 2

o o C. Formulation as a Born series
The kernel in this integral equation is the vacuum Green’s

function G which reads: The matricial equation(5) enabling the computation of

the wave function in the sample can be written in the form

G(r,r,,E):_ ei\/(ZmE/ﬁz)‘l’*r"' (3) q’obj:[l_GObj,Oij]_l‘I’gbj (7)
27h? |r—r'|
_ o _ =Wyt [ Gopj, ob 1Wori+ [ Gobj, oV 1 Wopit - - -
The integration is naturally reduced to regions of space (8)

whereV(r')#0. provided this last series is convergeie., Gop oV is @

contraction.
The terms in this last expression refer to the Born expan-
The Lippmann-Schwinger equatiof?) is a Fredholm sion of the wave function. Let us refer by':,bj to the kth
equation of the second kift®* and the Fredholm method Born expansion termk=0, . .. =) of the wave function in
can be applied to obtain a numerical solution. The first stegphe object, i.e.,
is to perform a discretization of the regions wherér’) . N
#0. Each discretization cell is assumed to identify a volume Woni= [ Gobj, oV 1 W o €)
Av;. Labeling them by i=1,... 0Ny, the discrete
Lippmann-Schwinger equation is

B. Matricial formulation of the scattering process

with the convention thtG,,;, 0ij]°= I, the identity matrix.
According to Eq.(6), one can write thé&th Born expansion
term of the wave function on the screen as

Nobj
W(N)=Wo(n)+ 2, AviG(rr E)V()W(r).  (4) o
\I’ECF ‘I’gcr (10)
The usual technique used to deal with the direct-scattering
problem is to solve the linear system wof,; equations ob- k>0 1 1o
tained by writing Eq.(4) for r=r;, i=1,... ngy,;. The re- = Gscr, obV Wobj = Gscr, ob) [ Gobj, obV 1" ™~ Wopj:
sulting set of value$W (rj)}i -1, can then be used to com- (11)
pute ¥(r) anywhere. The element&(r;,r;,E) are Defining \I’iszrj:E{(:ilplécr and lI"io_ijZEf.(:ilplc()bj’ one

calculated by integration over a spherical cell with volumefin

. . . ) ds the relation
Av; in order to avoid the divergence appearing when

—r'| cancels. _ N W Wo, =W 4 Gy oV Wl ™. (12)

In our inverse scattering problem, the unknown quantities
are the potential-energy valu&4r;), which are to be deter- This relation will enable a term by term construction of
mined from the amplitude of the wave functiohi(r;),] the wave function on screen from the screen intensity distri-
=1,... ngy that is measured omg., points of a distant bution.

screen. We will assume the potential energy to be real valued

(i.e., neglect energy transfers between the imaging electron p_jterative reconstruction of the scattered-wave function
and the samp)eand the unperturbed solutiofiy(r) to be

Known. In the first step of the iteratiork& 0), we have the equa-
; _ a0 00— 0—o .

Let us refer oW, andW¥?,, as two vectors containing the 10N Wse= Weet Gser, obV Wopy ‘_’Vhe[ﬁgobj o> approxi-
values of ¥(r;) and Wo(r;) on then,, points of a distant Mated by its major contribution, i.eWoy; =gy, which is
screen. The two vectord,y; and W3, contain the corre- associated withy =0. _
sponding values on the,, discretization cells of the object. !N this first and subsequent steps of the algorithm, we
Let V be angy,X Ny, diagonal matrix containing the un- Nave an approximation o¥/gy, and W~ that is associated
known values of the potential energy in thegg; diagonal- ~ with an approximation of WiV~ by WM™~
ization cells. If thengXngy matrix Geg o CONtains the =Gy, Oij\yggﬁ.
quantitiesG(r;,ri,E)Av; (ther; referring to points on the The intensities on thag., points of the screen are given
screen and ther; to points in the objeg¢tand if the by
NobjX Nopj  Matrix  Ggpopj CONtains  the  quantities
G(r;.r;,E)Av; (ther; andr; referring both to points in the |Weor))|2= W () + WD (r))|?
objecd, Eq. (4) leads to the system =I‘Ifggrk(rj)lerI‘I'Qf;l)%(rj)lz

— aly0
Won=Wobi T Gobj, otV Wob (5 +2 REWo (1) * w7 (r))]

W= \F(s)cr"' Gscr, oijlpobj ) (6) = |lp2c_rk( y ) | 2+ |lllgé:' 1)_m(rj)|2
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TABLE I. Scheme of the reconstruction algorithm.

Initialize: V=0

Loop n from O toN: Initialize:

W, if n=0

0-=_1J . )
Wonj =1 27 o[ Gopj, opV]' WY, if n>0

Loop k from O ton:

Kk — o K—oo
q’éc;r D= Gscr, oij\I’Obj
-k k+1)—oo
solve | We(r)) =W, (r) + WD (r)|? to
determineV
0—(k+1) _ Ajy0—k K
\I’scr( ’ )_q’scr +Gscr, oij‘I"

obj
K+1_ K
Wop~ = [ Gobi,onV 1o,

k+1)—o K—o
WD =[Gy oV W

Finalize:
solve \ch;(n+l)_‘l’2cr: Gscr, ob[V‘I'obj] to
determine [VW]
VW, i
V(rj)= - [ Dbj]]
(W o0 Gobj,obV Woby]
Nobj ok [VW,,] giving the best agreemer(in the least-squares
+|21 12 REW, “(rj)*G(rj,r,E) sensg with the long-ranggscattereyl wave function values
\I’scr_ \I’(s)cr' . )
XAUﬂI’Eij(n)]}V(r,). (13 The potential energy is then found by
This equation is linear inV(r;) and can be written in V()= [VWopl _ (18)
the form Ax=h, wherex is a vector containing the, Y W3+ GopionV Wonl;
values of V(r|), b a vector containing theng, values
of |‘I’scr(rj)|2_|‘1’2<;rk(rj)|2_ |‘I’gé:r1)7w(rj)|2 and A a F. Comments on the algorithm efficiency

Nser Nobj matrix containing the coefficients Although an estimation 0¥ is obtained during the recon-

0-k k—o0 - -

2 REWee, (r))"G(r,ry,E)Av,Woy ()] This equation  sirction of the long-range wave function, it is of poor qual-

can be solved by a singular values decompositg®e, the jty compared to the final result obtained by H48). The

Appendix), thus providing the/(r,) that give the best agree- ggtimation ofV resulting from Eq(13) is only an intermedi-

ment (in t2he least-squares sefseith the known values of  ate result enabling the iterative reconstruction of the wave

|‘I’scr(rj)| - ) function on the screen. Its accuracy is limited by the starting

The potential-energy matri¥ is then used to update the 4pproximation orﬂ,ggjw
estimation of the wave function on the screen by When repeating the whole reconstruction process, a better
0—(k+1) _ ,gy0—k sk accuracy can be achieved by evaluating this starting quantity

W W+ Gaer, o Wob; - (14) by Wop, " =3Z o[ Gopj oV ] Woy;, WhereV results from Eq.

It is also used to provide the estimation &' and (18) in the final step of the preceding reconstruction. The

WD 00 the next iteration by ot algorithm should run fronk=0 to k=0 the first time, then
ob fromk=0 tok=1 the second time and so ¢see Table | for
‘I"f,&lZ[Gobj,oij]‘I'lébj, (15) & scheme of the reconstruction algorithrit is found that
running the algorithm a single time already provides a good
P> _rg ke 16 result, whose accuracy is comparable with that obtained by
obj [Gobi o0V 1Wa (16 performing more iterations. This is related to the high-order
o _ terms of the Born series having a negligible contribution to
E. Determination of the potential energy the diffraction figure, in the situations considered in the
from the scattered-wave function present paper.
Once the scattered-wave functioB,, has been recon- The long-range intensities should be renormalized to the
structed, the equation values that would have been observed on a spherical screen.
In this way, the 17 factor appearing in the asymptotic be-
| q’gcr: Gaser, ob| VWopil. (17) havior of the wave function takes the same value on the

whole screen so this geometrical factor is removed from the
can be solved by computing the singular values decomposinformation the singular values decomposition has to deal
tion of the matrixGg, oy, thus providing the estimation of with.
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Potential energy [ eV ] and lower than the resolution limitd=1/2y/\d for source-
sample distanced higher than 0.65 nm.

o
The diffraction figure is measured on a flat 10 cm distant
screen(on a regular Cartesian gpidbut the intensity values
@ are renormalized to those that would have been measured on
a sphere with a 10 cm radius.
¥ B. Reconstruction from a clean diffraction figure
The first reconstruction is achieved by considering a
-0.5 0 0.5

source-sample distance of 3 nm, thus giving rise to Fresnel
X[ nm ] diffraction. The correspondingenormalizedl intensity dis-

tribution is illustrated in the left part of Fig. 2. The screen is

FIG. 1. Potential-energy distributiofin eV) in the centralxy 30 cm wide and has a 3535 resolution. The reconstruction

plane of the sample. resulting from five iterations of the algorithm given in the
. o . previous section is presented in the right part of this figure. A

To prevent high-frequency oscillations to appear in thenorizontal section of this reconstruction is given in Fig. 3,
reconstruction, it was found that only the singular values thafyhere it is compared with the true potential-energy distribu-
are higher than 1/19 of their maximum should be consideregign and with the result obtained with 40 eV energy. The

(or even a more restricted set of singular values in the case @gconstruction turns out to be improved by this rise of
strong noisg The only situations where the reconstruction gnergy.

completely fail occur when the singular values decomposi- The mean relative error is evaluated by
tions required for the reconstruction of the long-range wave

function cannot be achieved, usually due to the dimensions 1 Mobi
of the screen being too small. — > |Vive— v/ (5 V),

02 0.4

Y[ nm ]

-04 -02 0

Nopj i=1
IIl. APPLICATION TO THE OBSERVATION wheren,y, is the number of discretization cells in and around
OF A HOMOGENEOUS OBJECT the sample and where the'® andV[5°"*refer to the corre-

sponding true and reconstructed potential-energy values.

When the sample is reconstructed in'@2x1 nnt sup-

In this paper, we will consider the reconstruction of aport (with the correctz position, the mean relative error is
nanometric sample, whose shape is given in Fig. 1. It is a®.8%. This mean relative error is reduced to 3.2% when the
X-like object characterizedyba 5 eV potential well(this is  electron energy is increased from 25 to 40 eV and to 5.7%
the typical value for the electron affinity of a carbon mate-when the potential energy is not allowed to take values lower
rial). There is no surrounding electric field so the potentialthan —5 eV and higher than 0 eV. Increasing the electron
energy goes directly from-5 eV in the sample to 0 eV energy thus results in a better sample reconstruction, which
outside. The width of the object is 0.1 nm. is expected by the wavelength and resolution limit being

The imaging electrons have an energy of 25 eV and areeduced. The next simulations will assume a 25 eV energy.
described by a spherical wave whose point source is om theEnforcing the potential energy to take values restricted to the
axis. This axis is perpendicular to the sample and has itf—5,0] eV range is justified when the physical properties of
origin in the object center. The wavelengthis 0.248 nm in  the sampldi.e., its internal potential energyare known. In-
the vacuum and 0.226 nm in the sample, so some of its partyeasing the resolution of the diffraction figure does not im-
have dimensions that are lower than the electron wavelengtprove the reconstruction, unlike what is observed with noisy

A. Description of the situation

Intensity Potential energy [ eV ]
=
o
N
g —¢c
5 g
g
g F o
> > Q |
° o
S |
-
T
-0.5 0 0.5
-10 0 10
X[ em ] X [ nm ]

FIG. 2. Left: renormalized Fresnel diffraction figure corresponding to a 3-nm-source-sample distance and a 25-eV electron energy. The
screen is 10 cm away from the sample; right: reconstruction of the potential energy in the xgmitahe of the sample.
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Potential energy [ eV ] Potential energy [ eV ]
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—0.5 0 0.5 FIG. 4. Reconstruction of the potential energy in the centyal
X[ ] plane of the sample in a>32x1 nnt extended support. The
nm

screen is 30 cm wide and the electron energy is 25 eV.

FIG. 3. Potential energy on the centralaxis of the sample:
exact resulf(full), reconstruction at an energy of 25 ddashedg,
reconstruction at an energy of 40 éiot dashejl

error on the sample reconstruction is 22% without potential-
energy restrictions and 14% otherwise. However, by keeping
only the singular valuesr; whose ratio to their maximal

. . . value is higher than the noise levgke., o /o ma>0.3), the
data. Finally, making a reconstruction from teeactwave  ean relative error on the reconstruction is reduced to 9.6%
function on the screefi.e., applying only the technique of it the potential-energy restrictioand 15% without The
Sec. Il E with the trueWy.) provides a result undistinguish- jffraction figure and the corresponding reconstruction are
able from Fig. 1, with a mean relative error of 170 presented in Fig. 5.

When the dimensions of the sample support is extended |n the second simulation, a 7% absolute noise was con-
from 2x1x1 nn? to 3X2X1 nn?, the mean relative er- sidered. All conditions are the same as in the previous simu-
ror takes the value of 5.6% when there is no restriction orlation. The mean relative error on the sample reconstruction
the potential-energy values and 3.1% otherwise. A singlés 29% without potential-energy restrictions and 11% other-
iteration of the algorithm was performed, because the singuwise. Again, by keeping only the singular valueswhose
lar values decomposition required in Sec. Il E could not bgatio to their maximal value is higher than the noise level
achieved(the solution proposed in the Appendix was ap-(i.e., o/0onac>0.07), the mean relative error on the recon-
plied, but running the algorithm several times does not im-truction is reduced to 9.2% with the potential-energy re-
prove the results when this situation ocouf&he reconstruc-  Striction (and 23% withouyt The diffraction figure and the
tion is presented in Fig. 4. corresponding reconstruction are presented in Fig. 6.

For the reconstruction to be successful, the singular val- Finally, a combination of 5% relative and 3% absolute
ues decomposition required in Sec. Il D must be achieved©!Se€s was considered, these values being more typical of a
(the success of the decomposition required in Sec. Il E is les$COMeCt” experiment. The observation conditions are un-
important. This decomposition fails when the dimensions of changed. The mean relative error on the sample reconstruc-

the screen are not large enough. In the case of Fresnel difon IS 14% without potential-energy restrictions and 7.2%

fraction, the screen has to be around 2.5 times larger than tﬁ)éhervvlse. By keeping these potential-energy restrictions and

. T : Increasing the electron energy from 25 to 40 eV, a 4.2%
geometrical projection of the sampseipportirom the point mean relative error is achieved. The noise level being lower

source._The simulations p_resented so far consi_dered a Scr.e?ﬁ'an the 1/19 reference value, no improvement results from a
respectively, 4.5 and 3 times as large as this geometricg), o gingular values selection. The diffraction figure and

projection. In the case of F_raunhofer di_ffraction, the SCreen e corresponding reconstruction are presented in Fig. 7.
should be large enough to include the first-order fringes. These three simulations thus prove the stability of our

algorithm against random noise. The quality of the recon-

C. Reconstruction from a diffraction figure with random noise struction can be substantially improved first by using exclu-

To test the stability of the algorithm, a random noise wassively the singular values whose ratio to their maximal value
added to the diffraction intensities. In the first caseglative IS higher than the noise level and also by restricting the po-
noise was considered, i.e., a noise whose amplitude in eadfntial energy when knowledge of the physical properties of
screen pixel is proportional to the corresponding true intenthe sample allows so. It also turns out that increasing the
sity value. In the second case, ahsolutenoise was taken resolution and dimensions of the screen leads to better re-
into account, i.e., a noise whose amplitu@werywherg is  sults. Our algorithm is however less efficient in Fraunhofer
proportional to the true maximal intensity encountered on th&onditions, where random noise levels of a few percent can
screen. Finally, anixednoise containing both relative and SpPoil the reconstruction.
absolute noises was considered. ) _ _ _

In the first simulation of this series, the extreme situation D Comparison with two other reconstruction techniques
of a 30% relative noise was considered. The resolution of the We compared these results with those obtained by two
screen was increased to 20805 pixels. The mean relative other reconstruction techniques. The first is due to Bleloch
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Intensity Potential energy [ eV ]
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FIG. 5. Left: renormalized Fresnel diffraction figure corresponding to a 3-nm-source-sample distance and a 25-eV electron energy. The
screen is 10 cm away from the sample and contains a 30% relative noise; right: reconstruction of the potential energy in thye @antal
of the samplgwith restriction to thg —5,0] eV range and consideration 0f>0.30 ) -

et al®! and consists of an iterative back-and-forth propagadimensional projection of the sample, by the amplitde
tion of the wave function between the observation screen andrbitrary magnitudeof the wave function in the sample and
the sample support. The wave function is enforced on th@ot by a reconstructed potential-energy distribution.
screen to have the amplitude corresponding to the measured For these reasons, these two techniques are better suited
intensity distribution, while on the sample support it is en-for the reconstruction oflarge opaque samples or holes in
forced to have the phase of the incident wave. The secondpaque supports, where the corresponding assumptions are
reconstruction technique is due to Spemtal®? and con- justified. They are not suited for the reconstruction of the
sists of a backpropagation of the intensity distribution fromtransparent sample considered in this paper, where the wave
the screen to the sample. The reconstruction is not iterativlunction has comparable amplitude inside and outside the
and is affected by the twin image and second-order effectsample. We only got these techniques to work by consider-
The underlying formalism of these two techniques is essening the diffraction figure corresponding to the situation
tially the Fresnel-Kirchhoff theor§. where the sample is a holwith the same dimensioh& an

In both cases, the description of the sample is reduced topaque support. The best reconstruction was achieved with
a two-dimensional mask, whereas the technique of this pap@leloch’s method: with a 3835 resolution on the 15-cm-
is suited for a three-dimensional reconstruction. Due to thevide screen, a mean relative error around 15% was obtained
underlying Fresnel-Kirchhoff theory and due to the phase ofinstead of our 6.8% valyeln this situation, the number of
the incident wave being not affected by the sam(pteBle- iterations (around 20 required to reach convergence was
loch’s methodl and second-order effects having to be negli-larger than with our method.
gible (in Spence’s methggdthese two techniques are essen- Let us say finally that due to the use of discrete Fourier
tially first-order treatments while our method deals with all transforms in these two techniques, there are constraining
orders of diffraction. They provide the shape of a two-relations between the resolution in the sample and the reso-

Intensity Potential energy [ eV ]
g o °©
o
Q
— o
~ o E
g 8
S o
>
™ o
o
3 |
) +
7
-0.5 0 0.5
X[em] X[ nm ]

FIG. 6. Left: renormalized Fresnel diffraction figure corresponding to a 3-nm-source-sample distance and a 25-eV electron energy. The
screen is 10 cm away from the sample and contains 7% absolute noise; right: reconstruction of the potential energy in thy anial
of the samplgwith restriction to thg —5,0] eV range and consideration 0f>0.070,,,) -
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FIG. 7. Left: renormalized Fresnel diffraction figure corresponding to a 3-nm-source-sample distance and a 25-eV electron energy. The
screen is 10 cm away from the sample and contains 5% relative and 3% absolute noises; right: reconstruction of the potential energy in the
centralxy plane of the sampléwith restriction to thg —5,0] eV range.

lution on the screen, while these parameters are independethie technique will require further developments or the use of
in our method. The space requirements of the Bleloch andut-of-core techniques.

Spence’s techniques are however far less important. Due to the phase-recovering part of the algoritlgee
Sec. II D, this technique is limited to real valued potential
IV. CONCLUSION energies. Absorption processes are therefore not considered

. . . . and in its present form this technique will apply essentiall
In this paper, an inverse scattering technique was pre: P d PPy y

sented. In its formulation, this technique takes account of aII.0 small transparent sampléier which the most interpreta-
orders of diffraction by performing an iterative reconstruc-

ion is needed
tion of the wave function on the observation screen. For the An exact knowledge of the incident wave is assumed. The
present application, it turns out that the results are not sig

amplitude and the angular dependence of the incident wave

nificantly improved by running more than a few iterations of “3" be determined by measuring the electron beam obtained
the algorithm. This is related to the sample being so tgia ~ Without any sample. The source-sample distasioan then
nm thickness that the scattering process is essentially re€ determined approximately from the changes induced in
duced to its first-order contribution, the high-order contribu-the projection by a lateral source displacement. In a final step
tions being smaller in magnitude than the noise or numericahis distanced can be refined by selecting the value provid-
accuracy. ing a reconstruction with a minimum of oscillations.

The algorithm turns out to give better results in the case In the present paper the sample is essentially two dimen-
of Fresnel diffraction. This could be related on one side tosional (no variation of its structure along). In its formula-
the inhomogeneity of the incident wave in the samplaich  tion, our technique is not limited to this peculiar case and,
plays an important role as a reference for the reconstructiordue to the inhomogeneity of the incident wave, should al-
and on the other side to the diffraction figure being moreready provide good results for true three-dimensional
contrasted than in Fraunhofer diffraction. samples. However, it should be useful to consider simulta-

In Fresnel conditions, the algorithm is very stable againsheously the diffraction figures obtained for different source
random noise, whose effects are reduced by neglecting theositions (thus performing a diffraction tomographyThe
contributions associated with too small singular values. Thigyresent formalism is already suited to such a description
idea is similar to applying a low-pass filter to the diffraction gjnce nothing prevents th# vectors to contain values asso-
figure. This filtering of information is however achieved di- ¢iated with different source positions. It could also be useful
rectly by the technique and does not require any preliminary,, ake simultaneously into account projections obtained for
treatment. To help the algorithm separating useful informagitterent energy values. Finally enforcing the sample to have

tion from noise, it is useful to increase the resolution and siz<=a minimal curvature could still improve the reconstruction
of the screer(so more diffraction fringes are taken into ac-

coun). The results are also improved by increasing the elec-
tron energy(thus reducing both the wavelength and resolu-
tion limit and also reinforcing the predominance of first-
order diffraction). A.M. was supported by the Belgian National Fund for

The limits of this approach come essentially from theScientific ResearctFNRS. The authors acknowledge the
space needed to store and invert/decompose the two matricgational program on the Interuniversity Research Project
Gobj,obj @Nd Gy oy Whose size s, respectively, proportional (PAI) and the use of the Namur Scientific Computing Facil-
to ngbj and ngcNep, Nopy @nd ng, being, respectively, the ity, a common project between the FNRS, IBM-Belgium,
number of discretization cells in the sample and the numbeand the FUNDP. The authors thank A. Istace and G. Gilquin
of pixels on the screen. Extending significantly the range ofor useful discussions.
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APPENDIX: SOLUTION OF AX = B BY SINGULAR
VALUES DECOMPOSITION

Computing the singular values decompositi&vD) of a
mXn matrix A consists of expressing it as

A=U3VT, (A1)

whereU andV are, respectively, twanX n andnxn matri-
ces with orthonormalized columns. Tiexn diagonal ma-
trix 3 contains the singular values .

Given anm-vectorb, the SVD technique can be used to
find a solutiorx, of the systenAx=Dh. It is ann-vector given
by

x=V3 U'b. (A2)

.-P. VIGNERON
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The elements of the diagonal mat®X * are given by

O'i_l if o;#0

-1_
2“ if a;i=0.

(A3)

This solutionx has the property to minimizén the least-
square sengeghe norm of the “error’|Ax—b|.

In some case@n this paper when the screen is not large
enough, the matrixX can only be reduced to a bidiagonal
(instead of a diagonplform. The matrix¥ ! is then the
usual inverse o. These situations do not spoil the recon-
struction if they occur in the part of the algorithm described
in Sec. Il E.
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