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Inverse electronic scattering by Green’s functions and singular values decomposition

A. Mayer* and J.-P. Vigneron
Laboratoire de Physique du Solide, Faculte´s Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium

~Received 22 May 2000!

An inverse scattering technique is developed to enable a sample reconstruction from the diffraction figures
obtained by electronic projection microscopy. In its Green’s functions formulation, this technique takes ac-
count of all orders of diffraction by performing an iterative reconstruction of the wave function on the
observation screen. This scattered wave function is then backpropagated to the sample to determine the
potential-energy distribution, which is assumed real valued. The method relies on the use of singular values
decomposition techniques, thus providing the best least-squares solutions and enabling a reduction of noise.
The technique is applied to the analysis of a two-dimensional nanometric sample that is observed in Fresnel
conditions with an electronic energy of 25 eV. The algorithm turns out to provide results with a mean relative
error of the order of 5% and to be very stable against random noise.
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I. INTRODUCTION

Electron projection microscopes1–3 make use of the qua
siradial far propagation of electrons projected out of sm
tips to obtain highly magnified projections of small sampl
The tip and sample dimensions are of the order of a
nanometers~the tip having a single-atom termination to e
sure the pointlike character of the emission area!. The bias
responsible for the field-emission process is typically
tween a few tens volts and a few hundred volts.

Below a critical tip-sample distance, the incoming wave
essentially spherical on the scale of the sample, giving ris
Fresnel diffraction images, still highly correlated with direc
space representations of the object. The best resolution
tained so far by this direct approach is around 0.5 nm.
inverse scattering treatment should improve this resolut
by using the information present in all diffraction fringes a
by considering simultaneously the projections obtained
different positions of the source or different energy value

Theoretical support enabling the understanding of the
age formation~i.e., direct-scattering simulations! was first
given within the Fresnel-Kirchhoff flat-object formalism4

Consideration of three-dimensional aspects is possible
Green’s functions formulation.5–8 The main disadvantage o
this approach is that it requires excessive storage space w
the sample becomes large. Our approach of the problem
based on both the transfer-matrix and Green’s functi
formalisms.9–14 This approach enables direct-scatteri
simulations15–17 with reduced storage requirements. Ho
ever, due to the fact that the potential energy remains exp
itly present in the Green’s functions formulation, this latt
will be used in this inverse scattering approach.

Inverse scattering18–28 has been developed among othe
for x rays, ultrasonic, and electron transmission techniqu
Diffraction tomography refers to the treatment of a set
diffraction figures obtained for different positions of th
source. Among the works that inspired this paper, we refe
Maleki and Devaney18,19 and Wedberg and Stamnes20 who
use an iterative scheme to reconstruct the unknown phas
the scattered~acoustic/optical! field. The backpropagation o
the scattered field from the observation plane to the samp
PRB 620163-1829/2000/62~23!/16023~8!/$15.00
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achieved by the ~hybrid! filtered backpropagation
algorithm19 and the sample is assumed to be a weak s
terer. In the formulation of x-ray inverse scattering by Teg
and Faigel21,22 ~where weak scattering is also assumed!, the
scattered intensity is related linearly to the atomic scatter
factors~more precisely to the real part of a combination
these factors!. In their Fourier analysis of electron transmi
sion micrographs, Kluget al.23–25make interpolations in the
reciprocal space~by generalized inversions29! to complete
the data obtained from a limited set of projections.

The idea of this paper is to relate the scattered intensit
the sample potential energy in the Green’s functions form
ism and to solve the corresponding linear system of eq
tions by a singular values decomposition30 ~providing the
best least-squares solution!. The scattered wave function i
reconstructed iteratively to match the given intensity. T
paper starts with the derivation of this technique. In Sec.
it is applied to the reconstruction of a nanometric samp
from a clean diffraction figure first and then from a figu
with random noise. Only Fresnel diffraction is consider
and a comparison between our results and those obtaine
the techniques of Blelochet al.31 and Spenceet al.32 is
achieved. In the conditions of this paper, it turns out tha
sample reconstruction from a Fresnel figure is more sta
against noise, whose effects can be reduced by an appr
ate singular values selection and by increasing the elec
energy or the resolution and size of the diffraction figure

II. INVERSE SCATTERING BY GREEN’S FUNCTIONS
AND SINGULAR VALUES DECOMPOSITION

A. Direct scattering by Green’s functions

Let us consider the stationary electron Schro¨dinger equa-
tion:

F2
\2

2m
¹21V~r !GC~r !5EC~r !. ~1!

If C0(r ) is the solution forV50 agreeing with the scat
tering boundary conditions~i.e., vanishing value and deriva
16 023 ©2000 The American Physical Society
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16 024 PRB 62A. MAYER AND J.-P. VIGNERON
tive ad infinitum!, the solution of the full perturbed equatio
is given by the Lippmann-Schwinger equation:

C~r !5C0~r !1E E E dv8G~r ,r 8,E!V~r 8!C~r 8!. ~2!

The kernel in this integral equation is the vacuum Gree
function G which reads:

G~r ,r 8,E!52
m

2p\2

1

ur2r 8u
eiA(2mE/\2)ur2r8u. ~3!

The integration is naturally reduced to regions of spa
whereV(r 8)Þ0.

B. Matricial formulation of the scattering process

The Lippmann-Schwinger equation~2! is a Fredholm
equation of the second kind33,34 and the Fredholm metho
can be applied to obtain a numerical solution. The first s
is to perform a discretization of the regions whereV(r 8)
Þ0. Each discretization cell is assumed to identify a volu
Dv i . Labeling them by i 51, . . . ,nobj , the discrete
Lippmann-Schwinger equation is

C~r !5C0~r !1(
i 51

nobj

Dv iG~r ,r i ,E!V~r i !C~r i !. ~4!

The usual technique used to deal with the direct-scatte
problem is to solve the linear system ofnobj equations ob-
tained by writing Eq.~4! for r5r i , i 51, . . . ,nobj . The re-
sulting set of values$C(r i)% i 51,nobj

can then be used to com

pute C(r ) anywhere. The elementsG(r i ,r i ,E) are
calculated by integration over a spherical cell with volum
Dv i in order to avoid the divergence appearing whenur
2r 8u cancels.

In our inverse scattering problem, the unknown quantit
are the potential-energy valuesV(r i), which are to be deter
mined from the amplitude of the wave functionC(r j ), j
51, . . . ,nscr that is measured onnscr points of a distant
screen. We will assume the potential energy to be real va
~i.e., neglect energy transfers between the imaging elec
and the sample! and the unperturbed solutionC0(r ) to be
known.

Let us refer toCscr andCscr
0 as two vectors containing th

values ofC(r j ) and C0(r j ) on thenscr points of a distant
screen. The two vectorsCobj and Cobj

0 contain the corre-
sponding values on thenobj discretization cells of the object
Let V be a nobj3nobj diagonal matrix containing the un
known values of the potential energy in thesenobj diagonal-
ization cells. If thenscr3nobj matrix Gscr,obj contains the
quantitiesG(r j ,r i ,E)Dv i ~the r j referring to points on the
screen and ther i to points in the object! and if the
nobj3nobj matrix Gobj,obj contains the quantities
G(r j ,r i ,E)Dv i ~the r j and r i referring both to points in the
object!, Eq. ~4! leads to the system

Cobj5Cobj
0 1Gobj, objVCobj , ~5!

Cscr5Cscr
0 1Gscr, objVCobj , ~6!
s

e

p

e

g

s

ed
on

where these two matricial equations correspond to the
steps of the resolution, i.e., determination of the wa
function valuesC(r i) in the object and far propagation to th
screen.

C. Formulation as a Born series

The matricial equation~5! enabling the computation o
the wave function in the sample can be written in the for

Cobj5@ I2Gobj, objV#21Cobj
0 ~7!

5Cobj
0 1@Gobj, objV#Cobj

0 1@Gobj, objV#2Cobj
0 1•••,

~8!

provided this last series is convergent~i.e., Gobj, objV is a
contraction!.

The terms in this last expression refer to the Born exp
sion of the wave function. Let us refer byCobj

k to the kth
Born expansion term (k50, . . . ,̀ ) of the wave function in
the object, i.e.,

Cobj
k 5@Gobj, objV#kCobj

0 , ~9!

with the convention that@Gobj, objV#05I , the identity matrix.
According to Eq.~6!, one can write thekth Born expansion
term of the wave function on the screen as

Cscr
k 5

k50

Cscr
0 ~10!

5
k.0

Gscr, objVCobj
k215Gscr, objV@Gobj, objV#k21Cobj

0 .
~11!

Defining Cscr
i 2 j5(k5 i

j Cscr
k and Cobj

i 2 j5(k5 i
j Cobj

k , one
finds the relation

Cscr5Cscr
02`5Cscr

02k1Gscr, objVCobj
k2` . ~12!

This relation will enable a term by term construction
the wave function on screen from the screen intensity dis
bution.

D. Iterative reconstruction of the scattered-wave function

In the first step of the iteration (k50), we have the equa
tion Cscr5Cscr

0 1Gscr, objVCobj
02` , where Cobj

02` is approxi-
mated by its major contribution, i.e.,Cobj

02`.Cobj
0 , which is

associated withV50.
In this first and subsequent steps of the algorithm,

have an approximation ofCobj
k andCobj

k2` that is associated

with an approximation of Cscr
(k11)2` by Cscr

(k11)2`

5Gscr, objVCobj
k2` .

The intensities on thenscr points of the screen are give
by

uCscr~r j !u25uCscr
02k~r j !1Cscr

(k11)2`~r j !u2

5uCscr
02k~r j !u21uCscr

(k11)2`~r j !u2

12 Re@Cscr
02k~r j !* Cscr

(k11)2`~r j !#

5uCscr
02k~r j !u21uCscr

(k11)2`~r j !u2
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TABLE I. Scheme of the reconstruction algorithm.

Initialize: V50

Loop n from 0 to N: Initialize:

Cobj
02`5H Cobj

0 if n50

( l 50
` @Gobj, objV# lCobj

0 if n.0
Loop k from 0 to n:

Cscr
(k11)2`5Gscr, objVCobj

k2`

solve uCscr(r j )u25uCscr
02k(r j )1Cscr

(k11)2`(r j )u2 to
determineV

Cscr
02(k11)5Cscr

02k1Gscr, objVCobj
k

Cobj
k115@Gobj,objV#Cobj

k

Cobj
(k11)2`5@Gobj,objV#Cobj

k2`

Finalize:
solve Cscr

02(n11)2Cscr
0 5Gscr, obj@VCobj# to

determine @VCobj#

V~r j !5
@VCobj# j

@Cobj
0 1Gobj,objVCobj# j
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nobj

$2 Re@Cscr
02k~r j !* G~r j ,r l ,E!

3Dv lCobj
k2`~r l !#%V~r l !. ~13!

This equation is linear inV(r l) and can be written in
the form Ax5b, where x is a vector containing thenobj
values of V(r l), b a vector containing thenscr values
of uCscr(r j )u22uCscr

02k(r j )u22uCscr
(k11)2`(r j )u2 and A a

nscr3nobj matrix containing the coefficient

2 Re@Cscr
02k(r j )* G(r j ,r l ,E)Dv lCobj

k2`(r l)#. This equation
can be solved by a singular values decomposition~see, the
Appendix!, thus providing theV(r l) that give the best agree
ment ~in the least-squares sense! with the known values of
uCscr(r j )u2.

The potential-energy matrixV is then used to update th
estimation of the wave function on the screen by

Cscr
02(k11)5Cscr

02k1Gscr, objVCobj
k . ~14!

It is also used to provide the estimation ofCobj
k11 and

Cobj
(k11)2` for the next iteration by

Cobj
k115@Gobj,objV#Cobj

k , ~15!

Cobj
(k11)2`5@Gobj,objV#Cobj

k2` . ~16!

E. Determination of the potential energy
from the scattered-wave function

Once the scattered-wave functionCscr has been recon
structed, the equation

Cscr2Cscr
0 5Gscr, obj@VCobj#. ~17!

can be solved by computing the singular values decomp
tion of the matrixGscr, obj, thus providing the estimation o
i-

@VCobj# giving the best agreement~in the least-squares
sense! with the long-range~scattered! wave function values
Cscr2Cscr

0 .
The potential energy is then found by

V~r j !5
@VCobj# j

@Cobj
0 1Gobj,objVCobj# j

. ~18!

F. Comments on the algorithm efficiency

Although an estimation ofV is obtained during the recon
struction of the long-range wave function, it is of poor qua
ity compared to the final result obtained by Eq.~18!. The
estimation ofV resulting from Eq.~13! is only an intermedi-
ate result enabling the iterative reconstruction of the wa
function on the screen. Its accuracy is limited by the start
approximation onCobj

02` .
When repeating the whole reconstruction process, a be

accuracy can be achieved by evaluating this starting quan
by Cobj

02`5( l 50
` @Gobj, objV# lCobj

0 , whereV results from Eq.
~18! in the final step of the preceding reconstruction. T
algorithm should run fromk50 to k50 the first time, then
from k50 to k51 the second time and so on~see Table I for
a scheme of the reconstruction algorithm!. It is found that
running the algorithm a single time already provides a go
result, whose accuracy is comparable with that obtained
performing more iterations. This is related to the high-ord
terms of the Born series having a negligible contribution
the diffraction figure, in the situations considered in t
present paper.

The long-range intensities should be renormalized to
values that would have been observed on a spherical scr
In this way, the 1/r factor appearing in the asymptotic be
havior of the wave function takes the same value on
whole screen so this geometrical factor is removed from
information the singular values decomposition has to d
with.
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16 026 PRB 62A. MAYER AND J.-P. VIGNERON
To prevent high-frequency oscillations to appear in
reconstruction, it was found that only the singular values t
are higher than 1/19 of their maximum should be conside
~or even a more restricted set of singular values in the cas
strong noise!. The only situations where the reconstructi
completely fail occur when the singular values decompo
tions required for the reconstruction of the long-range wa
function cannot be achieved, usually due to the dimensi
of the screen being too small.

III. APPLICATION TO THE OBSERVATION
OF A HOMOGENEOUS OBJECT

A. Description of the situation

In this paper, we will consider the reconstruction of
nanometric sample, whose shape is given in Fig. 1. It is
X-like object characterized by a 5 eVpotential well~this is
the typical value for the electron affinity of a carbon ma
rial!. There is no surrounding electric field so the poten
energy goes directly from25 eV in the sample to 0 eV
outside. The width of the object is 0.1 nm.

The imaging electrons have an energy of 25 eV and
described by a spherical wave whose point source is on tz
axis. This axis is perpendicular to the sample and has
origin in the object center. The wavelengthl is 0.248 nm in
the vacuum and 0.226 nm in the sample, so some of its p
have dimensions that are lower than the electron wavele

FIG. 1. Potential-energy distribution~in eV! in the centralxy
plane of the sample.
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and lower than the resolution limitDd51/2Ald for source-
sample distancesd higher than 0.65 nm.

The diffraction figure is measured on a flat 10 cm dista
screen~on a regular Cartesian grid! but the intensity values
are renormalized to those that would have been measure
a sphere with a 10 cm radius.

B. Reconstruction from a clean diffraction figure

The first reconstruction is achieved by considering
source-sample distance of 3 nm, thus giving rise to Fres
diffraction. The corresponding~renormalized! intensity dis-
tribution is illustrated in the left part of Fig. 2. The screen
30 cm wide and has a 35335 resolution. The reconstructio
resulting from five iterations of the algorithm given in th
previous section is presented in the right part of this figure
horizontal section of this reconstruction is given in Fig.
where it is compared with the true potential-energy distrib
tion and with the result obtained with 40 eV energy. T
reconstruction turns out to be improved by this rise
energy.

The mean relative error is evaluated by

Ē5
1

nobj
(
i 51

nobj

uV i ,i
true2V i ,i

reconsu/~5 eV!,

wherenobj is the number of discretization cells in and arou
the sample and where theV i ,i

true andV i ,i
reconsrefer to the corre-

sponding true and reconstructed potential-energy values
When the sample is reconstructed in a 23131 nm3 sup-

port ~with the correctz position!, the mean relative error is
6.8%. This mean relative error is reduced to 3.2% when
electron energy is increased from 25 to 40 eV and to 5.
when the potential energy is not allowed to take values low
than 25 eV and higher than 0 eV. Increasing the electr
energy thus results in a better sample reconstruction, wh
is expected by the wavelength and resolution limit be
reduced. The next simulations will assume a 25 eV ene
Enforcing the potential energy to take values restricted to
@25,0# eV range is justified when the physical properties
the sample~i.e., its internal potential energy! are known. In-
creasing the resolution of the diffraction figure does not i
prove the reconstruction, unlike what is observed with no
ergy. The
FIG. 2. Left: renormalized Fresnel diffraction figure corresponding to a 3-nm-source-sample distance and a 25-eV electron en
screen is 10 cm away from the sample; right: reconstruction of the potential energy in the centralxy plane of the sample.
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PRB 62 16 027INVERSE ELECTRONIC SCATTERING BY GREEN’S . . .
data. Finally, making a reconstruction from theexactwave
function on the screen~i.e., applying only the technique o
Sec. II E with the trueCscr) provides a result undistinguish
able from Fig. 1, with a mean relative error of 1029!

When the dimensions of the sample support is exten
from 23131 nm3 to 33231 nm3, the mean relative er
ror takes the value of 5.6% when there is no restriction
the potential-energy values and 3.1% otherwise. A sin
iteration of the algorithm was performed, because the sin
lar values decomposition required in Sec. II E could not
achieved~the solution proposed in the Appendix was a
plied, but running the algorithm several times does not
prove the results when this situation occurs!. The reconstruc-
tion is presented in Fig. 4.

For the reconstruction to be successful, the singular
ues decomposition required in Sec. II D must be achie
~the success of the decomposition required in Sec. II E is
important!. This decomposition fails when the dimensions
the screen are not large enough. In the case of Fresne
fraction, the screen has to be around 2.5 times larger than
geometrical projection of the samplesupportfrom the point
source. The simulations presented so far considered a sc
respectively, 4.5 and 3 times as large as this geomet
projection. In the case of Fraunhofer diffraction, the scre
should be large enough to include the first-order fringes.

C. Reconstruction from a diffraction figure with random noise

To test the stability of the algorithm, a random noise w
added to the diffraction intensities. In the first case, arelative
noise was considered, i.e., a noise whose amplitude in e
screen pixel is proportional to the corresponding true int
sity value. In the second case, anabsolutenoise was taken
into account, i.e., a noise whose amplitude~everywhere! is
proportional to the true maximal intensity encountered on
screen. Finally, amixednoise containing both relative an
absolute noises was considered.

In the first simulation of this series, the extreme situat
of a 30% relative noise was considered. The resolution of
screen was increased to 1053105 pixels. The mean relativ

FIG. 3. Potential energy on the centralx axis of the sample:
exact result~full !, reconstruction at an energy of 25 eV~dashed!,
reconstruction at an energy of 40 eV~dot dashed!.
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error on the sample reconstruction is 22% without potent
energy restrictions and 14% otherwise. However, by keep
only the singular valuess i whose ratio to their maxima
value is higher than the noise level~i.e., s i /smax.0.3), the
mean relative error on the reconstruction is reduced to 9.
with the potential-energy restriction~and 15% without!. The
diffraction figure and the corresponding reconstruction
presented in Fig. 5.

In the second simulation, a 7% absolute noise was c
sidered. All conditions are the same as in the previous sim
lation. The mean relative error on the sample reconstruc
is 29% without potential-energy restrictions and 11% oth
wise. Again, by keeping only the singular valuess i whose
ratio to their maximal value is higher than the noise lev
~i.e., s i /smax.0.07), the mean relative error on the reco
struction is reduced to 9.2% with the potential-energy
striction ~and 23% without!. The diffraction figure and the
corresponding reconstruction are presented in Fig. 6.

Finally, a combination of 5% relative and 3% absolu
noises was considered, these values being more typical
‘‘correct’’ experiment. The observation conditions are u
changed. The mean relative error on the sample recons
tion is 14% without potential-energy restrictions and 7.2
otherwise. By keeping these potential-energy restrictions
increasing the electron energy from 25 to 40 eV, a 4.2
mean relative error is achieved. The noise level being low
than the 1/19 reference value, no improvement results fro
further singular values selection. The diffraction figure a
the corresponding reconstruction are presented in Fig. 7

These three simulations thus prove the stability of o
algorithm against random noise. The quality of the reco
struction can be substantially improved first by using exc
sively the singular values whose ratio to their maximal va
is higher than the noise level and also by restricting the
tential energy when knowledge of the physical properties
the sample allows so. It also turns out that increasing
resolution and dimensions of the screen leads to better
sults. Our algorithm is however less efficient in Fraunho
conditions, where random noise levels of a few percent
spoil the reconstruction.

D. Comparison with two other reconstruction techniques

We compared these results with those obtained by
other reconstruction techniques. The first is due to Blelo

FIG. 4. Reconstruction of the potential energy in the centralxy
plane of the sample in a 33231 nm3 extended support. The
screen is 30 cm wide and the electron energy is 25 eV.
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FIG. 5. Left: renormalized Fresnel diffraction figure corresponding to a 3-nm-source-sample distance and a 25-eV electron en
screen is 10 cm away from the sample and contains a 30% relative noise; right: reconstruction of the potential energy in the centraxy plane
of the sample~with restriction to the@25,0# eV range and consideration ofs i.0.3smax).
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et al.31 and consists of an iterative back-and-forth propa
tion of the wave function between the observation screen
the sample support. The wave function is enforced on
screen to have the amplitude corresponding to the meas
intensity distribution, while on the sample support it is e
forced to have the phase of the incident wave. The sec
reconstruction technique is due to Spenceet al.32 and con-
sists of a backpropagation of the intensity distribution fro
the screen to the sample. The reconstruction is not itera
and is affected by the twin image and second-order effe
The underlying formalism of these two techniques is ess
tially the Fresnel-Kirchhoff theory.4

In both cases, the description of the sample is reduce
a two-dimensional mask, whereas the technique of this pa
is suited for a three-dimensional reconstruction. Due to
underlying Fresnel-Kirchhoff theory and due to the phase
the incident wave being not affected by the sample~in Ble-
loch’s method! and second-order effects having to be neg
gible ~in Spence’s method!, these two techniques are esse
tially first-order treatments while our method deals with
orders of diffraction. They provide the shape of a tw
-
nd
e
ed
-
nd

ve
s.
n-

to
er
e
f

-
-
l
-

dimensional projection of the sample, by the amplitude~of
arbitrary magnitude! of the wave function in the sample an
not by a reconstructed potential-energy distribution.

For these reasons, these two techniques are better s
for the reconstruction of~large! opaque samples or holes i
opaque supports, where the corresponding assumptions
justified. They are not suited for the reconstruction of t
transparent sample considered in this paper, where the w
function has comparable amplitude inside and outside
sample. We only got these techniques to work by consid
ing the diffraction figure corresponding to the situatio
where the sample is a hole~with the same dimensions! in an
opaque support. The best reconstruction was achieved
Bleloch’s method: with a 35335 resolution on the 15-cm
wide screen, a mean relative error around 15% was obta
~instead of our 6.8% value!. In this situation, the number o
iterations ~around 20! required to reach convergence w
larger than with our method.

Let us say finally that due to the use of discrete Four
transforms in these two techniques, there are constrain
relations between the resolution in the sample and the r
ergy. The
l

FIG. 6. Left: renormalized Fresnel diffraction figure corresponding to a 3-nm-source-sample distance and a 25-eV electron en
screen is 10 cm away from the sample and contains 7% absolute noise; right: reconstruction of the potential energy in the centraxy plane
of the sample~with restriction to the@25,0# eV range and consideration ofs i.0.07smax).
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FIG. 7. Left: renormalized Fresnel diffraction figure corresponding to a 3-nm-source-sample distance and a 25-eV electron en
screen is 10 cm away from the sample and contains 5% relative and 3% absolute noises; right: reconstruction of the potential ene
centralxy plane of the sample~with restriction to the@25,0# eV range!.
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lution on the screen, while these parameters are indepen
in our method. The space requirements of the Bleloch
Spence’s techniques are however far less important.

IV. CONCLUSION

In this paper, an inverse scattering technique was p
sented. In its formulation, this technique takes account of
orders of diffraction by performing an iterative reconstru
tion of the wave function on the observation screen. For
present application, it turns out that the results are not
nificantly improved by running more than a few iterations
the algorithm. This is related to the sample being so thin~0.1
nm thickness! that the scattering process is essentially
duced to its first-order contribution, the high-order contrib
tions being smaller in magnitude than the noise or numer
accuracy.

The algorithm turns out to give better results in the ca
of Fresnel diffraction. This could be related on one side
the inhomogeneity of the incident wave in the sample~which
plays an important role as a reference for the reconstruct!
and on the other side to the diffraction figure being mo
contrasted than in Fraunhofer diffraction.

In Fresnel conditions, the algorithm is very stable agai
random noise, whose effects are reduced by neglecting
contributions associated with too small singular values. T
idea is similar to applying a low-pass filter to the diffractio
figure. This filtering of information is however achieved d
rectly by the technique and does not require any prelimin
treatment. To help the algorithm separating useful inform
tion from noise, it is useful to increase the resolution and s
of the screen~so more diffraction fringes are taken into a
count!. The results are also improved by increasing the e
tron energy~thus reducing both the wavelength and reso
tion limit and also reinforcing the predominance of firs
order diffraction!.

The limits of this approach come essentially from t
space needed to store and invert/decompose the two ma
Gobj,obj and Gscr,obj whose size is, respectively, proportion
to nobj

2 and nscrnobj , nobj and nscr being, respectively, the
number of discretization cells in the sample and the num
of pixels on the screen. Extending significantly the range
ent
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the technique will require further developments or the use
out-of-core techniques.

Due to the phase-recovering part of the algorithm~see
Sec. II D!, this technique is limited to real valued potenti
energies. Absorption processes are therefore not consid
and in its present form this technique will apply essentia
to small transparent samples~for which the most interpreta
tion is needed!.

An exact knowledge of the incident wave is assumed. T
amplitude and the angular dependence of the incident w
can be determined by measuring the electron beam obta
without any sample. The source-sample distanced can then
be determined approximately from the changes induced
the projection by a lateral source displacement. In a final s
this distanced can be refined by selecting the value provi
ing a reconstruction with a minimum of oscillations.

In the present paper the sample is essentially two dim
sional ~no variation of its structure alongz). In its formula-
tion, our technique is not limited to this peculiar case a
due to the inhomogeneity of the incident wave, should
ready provide good results for true three-dimensio
samples. However, it should be useful to consider simu
neously the diffraction figures obtained for different sour
positions ~thus performing a diffraction tomography!. The
present formalism is already suited to such a descrip
since nothing prevents theC vectors to contain values asso
ciated with different source positions. It could also be use
to take simultaneously into account projections obtained
different energy values. Finally enforcing the sample to ha
a minimal curvature could still improve the reconstruction
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APPENDIX: SOLUTION OF AX Ä B BY SINGULAR
VALUES DECOMPOSITION

Computing the singular values decomposition~SVD! of a
m3n matrix A consists of expressing it as

A5USV†, ~A1!

whereU andV are, respectively, twom3n andn3n matri-
ces with orthonormalized columns. Then3n diagonal ma-
trix S contains the singular valuess i .

Given anm-vectorb, the SVD technique can be used
find a solutionx, of the systemAx5b. It is ann-vector given
by

x5VS21U†b. ~A2!
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