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Group theory used to improve the efficiency of transfer-matrix computations
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Transfer-matrix methodology is frequently used to deal with elastic scattering problems that require a
solution of Schrdinger or homogeneous Maxwell equations in the continuous part of their spectra. As pre-
dicted by group theory, the basic states used for the expansion of the solutions can be separated into indepen-
dent sets, thus enabling the scattering problem to be solved with a drastically improved efficiency. Depending
on the peculiar symmetry in the problem, the basic states can present pairs of “conjugate sets,” whose
associated characters are complex conjugate of each other. When the potential energy takes strict real values,
the transfer matrices corresponding to these conjugate sets have well-defined relationships that enable the
transfer matrices of both conjugate sets to be computed from a single propagation step. This results in a further
reduction of up to 50% of the total computation time. This paper presents the way group theory can be used
systematically to improve the efficiency of transfer-matrix computations. In a first part, the basic states are
separated into independent sets. Relationships between the transfer matrices corresponding to conjugate sets
are then derived. The theory is finally illustrated by a simulation of electronic scattering gyraocule in
a projection configuratior.S1063-651X99)06912-3

PACS numbgs): 02.70—-c, 61.14.Dc, 03.65.Fd, 02.20.Df

[. INTRODUCTION spent in this propagation step, any way to reduce the number
of basic states to treat simultaneously or bypass the propaga-
Linear systems of differential equations are frequently ention step should be considered.
countered in theoretical physics. Such equations indeed ap- By applying group theory, any symmetry assumed in the
pear when dealing with the Sclimger equation in quantum problem can be exploited to split the basic states used for the
mechanics or with the Maxwell equations in electromagne-expansion of the solutions into independent sets. This sepa-
tism. A useful property that appears in these situations is theation enables the scattering problem to be solved by consid-
additivity of solutions. When an analytic solution is not ob- ering these sets separately, thus drastically reducing both the
tainable, several numerical techniques exist to deal Withequired storage space and Computation tialeo see Ref.
these equations in thg energy or frequency continuum. [10] for taking advantage ofC, symmetry within the
~The Green's-function formalism is one of these tech-Green's-function formalisin Depending on the peculiar
niques. In addition to many other applications, this real-symmetry in the problem, the basic states can present pairs
space approach provided excellent simulations of the scanst g4 called “conjugate sets,” whose associated characters
ning tF‘””e””g microscop€STM) [1], calculations Of. field re complex conjugates of éach other. When the potential
intensity maps around fullerene molecules trapped in a ST nergy is real valued, the complex conjugate of the solutions

junction [2] and more recently simulations of the FresnelComputed with a given set of basic states provides new so-

projection microscop¢3]. Although the application of this luti it Lgate set. The t ¢ i 4-
formalism is not sensitive to the orientation and relative po-_u 1ons In 1ts conjugate Set. 1he transier matrices correspon
sition of the constitutive parts of the physical system, excesd o this conjugatg set can be derived from these new:so-
sive storage requirements are encountered when they canrdfions, thus enabling one to bypass the construction of
be kept localized in space. mtermedl_ate s.olut|ons. by a tlme—c_onsummg numgncal
The transfer-matrix methodolog¢—9] comes as a useful Propagation. Since a single propagation step is required to
alternative to the Green's-function formalism, since the storderive the transfer matrices of two sets of basic states, con-

age space requirements are significantly reduced. To appBjdering these conjugate sets results in a reduction of up to
this methodology, the physical system considered should b20% of the total computation time.
located between two separate boundaries. Given basic statesThe objective of this paper is to show how group theory
used for the wave function expansion, the transfer matricesan be used systematically to improve the efficiency of a
contain, for each state incident on one boundary of the sygransfer-matrix computation, by enabling a reduction of the
tem, the amplitudes of the corresponding transmitted and reébasic states to consider them simultaneously, and taking ad-
flected states. The method basically depends on the additivityantage of conjugate sets. The subdivision of the basic states
property of solutions, and requirés its basic formulation  into independent sets by application of group theory is pre-
the numerical propagation of basic states from one boundarsented in Sec. Il. The technique, enabling the computation of
to the other. Since the main part of the computation time ighe corresponding transfer matrices by a numerical propaga-
tion step or by consideration of conjugate sets, is presented

in Sec. Ill. In Sec. IV, the theory is illustrated by a simula-
* Author to whom correspondence should be addressed. Electrontton of electronic diffraction by a g molecule in a projec-
address: alexandre.mayer@fundp.ac.be tion configuration.
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II TABLE I. Character table corresponding t&€g symmetry. The
notationsk and wy stand for the number of the inequivalent irre-

R — ducible representations ang,=e'*?™" respectively.
II k E C, C? cht
AN " 0 1 1 1 1
= 1 1 wi wi wrl]_l
I n—1 1 oy wi_, oh_1

FIG. 1. Configuration of the three regions involved with scatter-
ing. These regions are referred to as regioz<0Q), region Il (0
<z=<D), and region Il g=D). Region Il is the only diffusive part

and the initial set of basic stat¢¥;} is split into indepen-
dent sets that are representative of the symmetry.

of the system. Table | gives the character table relevant tG asymme-
try (z being ann-fold axis). When the physical system is
Il. CONSTRUCTION OF INDEPENDENT SETS OF BASIC characterized by this symmetry, the projection is achieved
STATES according to

Let us consider scattering in a physical system made of
three adjacent regions, and let us assume the intermediate 1 o
region to be the only diffusive part. The scanning tunneling V== 2 [w;'é'n]\pj , (4)
microscope[6,11] and the Fresnel projection microscope n -
[12] provide examples of such situations. Let us refer to the
intermediate region as “region Il,” and the two other regions
as “region I” and “region IIl.” Let z be a coordinate axis with w,=e*?"" andC2=E.
oriented from region I to region Ill, so that region Il corre- A set of basic states is “conjugate” to a given $8t; )
sponds to the interval €z<D. This situation is depicted in if the characters associated with these two sets are complex
Fig. 1. conjugates of each other. In the caseGyf symmetry, this

At this point, we should make the choice of simple basiCgjtation is encountered with the sets numbered land n
states to expand the wave function in all regions. Let us write k. Sincew,_ =
. ne

these basic stategV;}. In the context of a transfer-matrix — -, We refer conventionally to the two
: i ) conjugate sets bYWV} and{W¥.;_4}. Except for the set
computation, they usually take the form 119 g} ISk b

characterized bk=0 (for which the notatiorA is relevant

B B and the set characterized ky-n/2 (for which the notatiorB
() =(r[¥;)=2;(2)¢;(p), (1) is relevant whem is even, each set is conjugate to another
set and all pairs of conjugate sets are gathered in the charac-

wherer=(p,z). _ ter table under the notatidh.
Any symmetry in the physical problem can be used to
separate these stat¢¥;} into independent set§W;},
wherek stands for_ the set of basic states assoc_|ated with a L. COMPUTATION OF THE TRANSFER MATRICES
given representation of the symmetry. These independent

sets are obtained by projection of the basic stfdeg on the A. Objective

various inequivalent irreducible representations of the sym- Let us now distinguish the basic states by writing them

metry. If g is the order of the symmetry group, the sym- Wi or Wiy~ according to whether they describe the wave

metry operator, ang,(R) the character associated with the fynction in region I or Ill. The sign+ stands for the direc-
operatorR in the kth inequivalent irreducible representation, tion of propagation relative to theaxis. In the context of a
the projection is achieved according to scattering problem, we are interested in computing the trans-
mitted and reflected parts of the wave functions correspond-
ing to a single incoming basic staﬂ!}'[?;] in region | or
Vg =[PV, Wiy in region lll. Since the basic states are separated ac-
cording to the symmetry of the Hamiltonian, the expansion
1 L of these solutions will imply a single sé&tof basic states.
=— E [xk (RIR]V;. (2)  The coefficients of this expansion corresponding to the trans-
9 R mitted and reflected parts of the solutions are stored, respec-
tively, in the two transfer matrice);” andt;;” when the

Due to the orthogonality of the lines in the character table;ncident Statep},[;] belongs to region | and the two transfer

these projections represent the symmetry in the fOHOWingmatricest[‘k]‘ andtﬁq_ when the incident Sta@}l{li(]— belongs
sense:

to region Il
R ~ The solutions we aim to construct can be written in the
(r[RIW 1) = x(Rr [ W), (3)  following forms:
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( N - (oW - W Ot for z<0 5
SRR U R N :I[Ik]+1---)tﬁ<]+ for z>D,
(.o Wing -~ )ty for z=<0

o, )= _ _ 6

( TCRREY (oWl o+ Ot for z=D. ©)
ikl i[k] [K]
|
B. Construction from solutions provided by numerical lutions are obtained by considering a single outgoing state

propagation (¥liy" in region Il or Wi in region ), propagating it to

The usual way to derive the solutions given in E¢s.  the opposite side of region I, and expanding the solution
and (6) consists of constructing intermediate solutions andalong incident and reflected basic states. The following set of
operating an appropriate combination. The intermediate scsolutions is then obtained:

(L . (oo Wi - DA+ Wl . )Bfy for z<0 -
R SR (... ¥, ...) for z=D,
_ (... ¥jq,-..) for z=<0
(Wi, o= plll - — I, + - - (8)
(..., i[k] ')A[k]+( ""\Pi[k] ')B[k] fOI‘ Z/D,

where the two matriceAﬁ(] andA[y, contain the coefficients tions, which can be used as intermediate solutions for deriv-
of the expansion corresponding to the incident part of théng transfer matrices corresponding to the conjugate set
solutions, ancB[+k] and By, contain those corresponding to —k. This enables to bypass the time-consuming construction
the reflected part. of the intermediate solutions given in E¢g) and(8). When

Once the construction of these intermediate solutions ishe potential energy takes strict real values, the wave func-
completed, it is straightforward to derive those given in Eqstion ¥ (r) is the only complex-valued quantity in the Schro
(5) and(6). The four transfer matrices describing these soludinger equation- (%2/2m)V2W¥ (r)+V(r)¥ (r)=E¥(r), so
tions are indeed given by its complex conjugat&* (r) is also a solution of this equa-
tion.

g =Ang © " 7h int i - i
' e key point is that the complex conjugate of a solution
b oAt -1 described in a given sétof basic states belongs to its con-
g =BrgApg (10 jugate set-k. In fact, by considering the complex conjugate
I of Eqg. (3), one finds
tg =Ang (17
rIRIW, ) =xE (RI(r| ), 13
t[T<]_:B[_1<]A[_|<]_1- (12) (rR| J[k]> Xk (R)(r| ][k]> (13

An efficient technique to control the numerical instabili- __ . * : * o
. . . with (r|W¥: standing for¥:; .(r). So by considering the
ties encountered in the computation of these transfer matri- {r W) g jria(") y 9

ces is presented in Refgl3—-15. A generalization of this CO”?p'eX conjugate O.f the solutions obtgined in a giyep set of
formalism to deal with nonsquare transfer matrices is giverPaSIC states, we straightforwardly obtgu_n solutions in its con-
in Ref. [16]. While this way of computing the transfer ma- Jugate set, WhICh can be used for deriving the corresponding
trices reveals efficienfwith the extensions of Ref§13,16),  transfer matrices.

the derivation of the intermediate solutiof® and (8) is by To establish the relations enabling the derivation of these
far the most time-consuming part of the technique. It is theransfer matrices, let us first relate the basic states in the two
reason for now presenting an alternative method. conjugate sets by writing

C. Construction from solutions provided by a conjugate set _
R kR )
Let us assume the scattering problem to be solved for a i i

given setk of basic stategby the previously given method - . urt o ut
The idea we are going to develop is the following: whenthe  =(. .. Wity - - Wi ---) Ut- U
i i - [ [
potential energy takes strict real values, taking the complex
conjugate of these solutions provides another set of solu- (14
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I ||| —% _ || ||| Up" Un®
When the basic states are orthonormal, these two relations imply a unitary transformation matrix.
Considering these relations, the complex conjugate of the solutions given iri3t@sd (6) takes the forms
g p Jug g @s
" UASUT
(PN 4 Y \IfJ[ Koo e) o u-- I\ for z=<0
b ox | [ [K]
( . 1\PJ[k] ’ ) U++ U7+ t++ (16)
Cooowltog, w70 T for z=D,
UIII UIII 0
I+ l,— UI++ Ul7+ 0
( \If k] y ’\I,j’[—k] y ) U _ U__ t___ fOI‘ Z$0
- % _ | I [K]
(’\I,J[k] ,)— + + —+ pp— (17)
(N 4 Vi ) (U”, Vi )(t[k] ) for z=D
J Ui~ Uy /L
where the notation% refer to the complex conjugate of the matri¢§§ .

We can now make combinations of these solutions, i.e., consider the expressions
(""\Pﬁ—k]'"'):(""\Ifﬁk]*'"')M+++(""‘Pj—[k]*’"')M_+’ (18)
(...,Wﬁ,k],...):(...,\I,ﬁk]*,...)M+7+(...,"P]‘7[k]*,...)Mii, (19)

and choose the four matricé™ = in order to obtain the appropriate form:
( I
(N 4 SN ')(tﬁq) for z<0
(""\Pﬁ—k]""): t++ (20)
(..., ;'['1],...«1»"['k],...>( [(-)kl) for z=D,
\
( I, + l,— O f <0
(""\Pj[—k]' ""\I,j[—k]’ ) t[__k] or zs=
(oW, = - (21
(.. wl k],...,\lf}'["k],...)( [;"]) for z=D.
|
Solving forM=* provides the results The coefficientsM == of the combinations to consider

being known, the transfer matricgs’; corresponding to the
conjugate set-k of basic states are obtained from

F={IU g U TU g U
P Lo g =TU g M+ LU Tty +Up T IM

+Up~ tk]] Uty tig 1% (22 (26)
=l + Ut M [0 T M

M™F=—[Uy" +Ujy t ] Ut ]M++, (23 (27)
tr =LY thg IM™H[U] Tty +USTIMT,

={[Uy"~ t[k +Uy 1=y t[k] ][U (28)

U g T g (24) =0+ Ui g M+ LU "t M7 9

L N — Equations(22)—(25) are formulated so that the inversion
M* " =—[U " +U " ] (U "ty thg IM™". (25 of matrices with bad condition numbers is avoided. These
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matrices are those expressing transmission, g, and ~ tion can be expanded along a discrete set of basic states,
tyg - In fact, the range of their eigenvalues grows exponenWhose specific forms in regions | and Il are given by
tially with the distanceD (see Ref[13]). On the other hand,
the eigenvalues of the transfer matrices expressing reflection, - wiomE V2
ety andt), , remain close to unity, and therefore have Wimjp(r)=e- me mi“m,y(p: ), (30)
better condition numbers. Furthermore, since the eigenvalues
of the transfer matrices expressing transmission all decrease
exponentially with the distanc®, the terms that contain
these matrices tend to become negligible compared to the M+ otiemEnd) 12, 2,
others. These considerations explair£1J f?)r the effifiency of re- W (r) =e™ (e d), (3D
lations (22)—(25).

Computing the transfer matrices of a given set of basic
states from those corresponding to its conjugate set requires,
negligible time, compared to that needed for construc’[ind"”t
intermediate solutions like those given in E¢#.and(8) by
numerical propagation. In the case®f symmetry, there are
(n—1)/2 pairs of conjugate sets if is odd and (—2)/2

pairs in the other case. Since a single propagation step is Jm(km,jp)e‘m‘ﬁ
required for two conjugate sets, the computation time turns - if p<R
out to be reduced nearly by a factor 2 wheris large. Py (P b) = \/277]0 p[Jm(km,jp)]zdp

0 otherwise,

(32
IV. APPLICATION TO DIFFRACTION BY AC 4
MOLECULE

A. Preliminaries . . . . .
] ) } ) ) where all functions involved in these expressions have a pair
To illustrate this theoretical material, let us simulate elec-of sybscripts fn,j). The radial wave vectorky, ; are solu-

tronic fjeld emission from a small conical tjd7] and the tion of J;,(Km ;R)=0.
scattering of the extracted beam by g @olecule centered ’
on the tip axis. The extraction field results from a potential
biasV established between the metallic support of the tip and
a conducting grid located at a distari@e This grid supports
the G molecule, which stands on a pentagonal ring. o } o
Let us assume region (i.e., the metallic support of the By application of Eq(4), the basic states are split into
tip) to be a Sommerfeld metal, delimited by the plae0  independent sets of functiony, jyq and W (7 associ-
and characterized by empirical valuesWf(work function  ated withm subscripts given byn=k+in, with i an integer
andEg (Fermi energy. If we conventionally set the potential andk ranging from 0 ton—1. The conjugate sets are those
energy in region lli(i.e., the region beyond the conducting numbered by andn—k, respectively.
grid z=D) to the constant value 0, the potential energy in The matriced);” = andU;;~ introduced in Sec. Ill C take
region | is thenV,,,=eV—W—Eg. With these assump- the specific forms
tions, region Il is the only diffusive part of the problem and,
the Schrdinger equation being linear, the problem can be i . |
solved within the transfer-matrix methodology. U Uty [si-pP)  sP
Due to the conical shape of the tip and thg, @olecule (VAR U N sp S(1-PY )" (33
standing on a pentagon, the symmetry of the proble@s|s
(with z the corresponding symmetry axifHowever, since

C. Consideration of group theory

the associated character table only enables the construction Utt uot S(1—pi) sp!
of four independent sets of basic states and does not contain t t :( ) (34)
any pair of lines with values that are complex conjugates of Ui~ Uy~ sp! S(1—pP") )’

each other, we take account only of 8¢ symmetry. This
symmetry indeed predicts five independent sets of basic
states with two pairs of conjugate sets.
whereS, P!, andP" are diagonal matrices defined by
B. Wave function expansion

In the general case df, symmetry, it is useful to use
polar coordinates in the plane normal to the symmetry axis m ) L )
(i.e., ¢ for the azimuthal angle angl for the radial distance (=1 it (m",j")=(m.j)
to thez axis). By assuming the scattering electron to remain 0 otherwise,
localized inside a cylinder with radiu®[18], the wave func- (35

St 7). (m,j) =
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o . [2m
pt b L) =mi) and k< \/ -5 (E=Vne) 36

(m’,j"),(m,j)
0 otherwise,

2m
i Loif (m,j)=(mj) and knj=\/—3E
Pl miy = h (37)

(m”,j"),(m,j)
0 otherwise.

The matrixS characterizes the transformation of the faatgy, j)(p, ¢) that appears in the basic states. Its peculiar form is due

to the propertyd _ (x)=(—1)MJ,(x) of Bessel functions. The two matricBsandP"' characterize the transformation of the
other factor® ;) (2), by indicating the basic states whose propagation direction is changed in the complex conjugate
operation. In this context, the wave vectégs; are restricted by the conditidky, ;< \(2m/4%)E, so one ha®" =1.

D. Propagation equations

To propagate the solutioni(*m'j)[k] and \I_f(’myj)[k] through region Il, we use the expression:

\P(_m,j)[k]:m%j D (m,j)(2) P, j(p, D), (39
where the unknowrz dependence of the wave function is contained in the coefficiepts,(z) of the expansion, and the sum
is restricted to them subscripts defined bgn=Kk+in.

When this expression is substituted in the stationary Rltthger equation, the wave function expansion coefficients
D m.jy(2) turn out to verify the exact set of coupled equatiph8,20:

dzq)(m’j)(Z) n

2 D) (2)= E 2 M3 (2)D (g0 (2), (39)

, 2m
—5E- kmj 72 VO(Z)
whereE is the electron energy, and the coupling coefficidﬂﬁfj'(z) are defined by the expression

f PVq(P 2)J m(km]P)Jm qn(km qnj'p)dp

\/j p[Jm(kap)]zdp\/J plIm- qn(km qnj’P)] dp

MQJ]( )_

(40)

In these expressiond/y(z) and Vq(p,z) are the coeffi- radius of 1 nm, and is represented by a continuous medium

cients used in the-fold symmetric potential energy, with infinite dielectric constant. The atoms of thgy@nol-
ecule are described by Gaussian electronic distributions that
+oo move rigidly around the positive nuclei as the result of the
V(p,b,2)=Vo(2)+ E Vq(pyz)eiqnzb, (41) local electric field. The dynamic polarizability of the carbon
q=—o atoms is chosen according to REZ1]. A vertical section of

the potential energy distribution in region Il is illustrated in
where the choice d¥y(z) is arbitrary but should correspond Fig. 2. The details of this computation are given in R2g].
to the main part of the potential energy for better efficiency.
Inspection of Eq(39) confirms the fact that coupling is re- F. Results
stricted to a single sdtof basic states, since only basic states ) ) )
with m subscripts separated by an integer multiple of the 1h€ current density on the conducting gud-D was

symmetry axis orden are involved by the sum in the right- computed by considering a cancelation radsf 4 nm, and
hand side. m values ranging from—20 to 20. The number of basic

states corresponding to these parameters is 1403. By taking
account of theCs symmetry, these basic states are split into
five independent sets whose associatedalues and number

An electric bias of 40 V and a metal-grid distance of 4 nmof basic states are given in Table Il. The two pairs of conju-
are considered. The bulk of the metal is characterized by gate sets correspond ke=1 and 4, respectively, for the first
Fermi energy of 19.1 eV and a work function of 4.5 eV pair andk=2 and 3, respectively, for the second pair, and
(values for tungsten The conical tip has a height and basis differ only by the sign of the associated subscripts.

E. Characterization of the physical system
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Potential—energy distribution [ eV ] Current Density (z—component) [ A / em® ]

a

40

~
o
i
X
9
o

20

Z [ nm ]

-1 0 1

X[ nm ] X[ nm ]

FIG. 2. Potential energy distributiofin eV) in the XZ vertical FIG. 3. Current densityin A/cm?) on the conducting grid. A
plane. A 40-V bias is applied over the 4-nm separation between tha0-V bias is applied over the 4-nm separation between the metallic
metallic tip holder surface and the sample supporting grid. This gridip holder surface and the sample supporting grid. This grid sup-
supports a g, molecule standing on a pentagonal ring. ports a Gy molecule standing on a pentagonal ring.

The result of the scattering computation is presented ir=125. Since there are two pairs of conjugate sets and the
Fig. 3. This figure shows the electronic beam that resultotential energy is exclusively real valued, the numerical
from the field-emission process. The variations of intensityPropagation step can be bypassed for two sets among the five
in the central part of the figure are related to the atomidndependent sets of basic states. This results in a further re-
structure of the g molecule, and can be interpreted as aduction of the time requirement by a factor 5/3.
projection of the carbon atoms from the tip apex on the con-
ducting grid. The fivefold symmetry is clearly visible.

The results obtained by considering all basic states simul- V. CONCLUSION
taneously, the five sets of basic states separately, or taking
account of the two pairs of conjugate sets are identiical
short-precision representatjorHowever, there is a signifi-
cant difference in the storage and time requirements.
quantify this difference, let us refer to the number of basi
states to consider simultaneously ilg. To be efficient, the
computation of the coupling coefficients requires the storag
of an array whose size is typically proportionalrib®. The
time needed to compute the coupling coefficients and p
form all matrix inversions along the distan&eis propor-
tional to DEY?nb®. Since the numbenb of basic states to
consider simultaneously is reduced approximately by a fact

5 when the independent sets are considered, the storage aﬁ&gﬂlv[smn;s. ts of basic stat hen the ch "
time requirements turn out to be reduced by a factdr 5  ~OMugate SEIs of basic stales appear when the character

table contains pairs of lines whose values are complex con-
jugates of each other. In general, symmetry operators in-
volved with rotations have to be encountered for this situa-
tion to occur. When the potential energy is real valued,
computing the transfer matrices corresponding to a pair of
conjugate sets requires a single propagation step. Since this

Group theory can be used systematically to improve the
efficiency of transfer-matrix computations in situations
TYhere a given symmetry can be assumed, by enabling a re-
cduction of the basic states to consider simultaneously and
taking advantage of conjugate sets. The number of possible
éubdivisions in the initial set of basic states is given by the
number of irreducible inequivalent representations of the
erymmetry. Since the storage and time requirements are pro-
portional to the cube of the number of basic states to con-
sider simultaneously, the efficiency of the technique is in-
0ﬁ:reased approximately by the cube of the achieved

TABLE II. List of the m values and number of elements in the
five independent sets of basic states corresponding to a cancella-
tion radiusR of 4 nm and an energig=eV—W of 35.5 eV.

k mvalues Number of basic states ; - )

step is the most time-consuming part of the whole process,
0 —-20, —15, -10, -5, 0, 5, 10, 15, 20 305 the time requirement for this pair of conjugate sets is thus
1 —19,-14,-9,-4,1,6,11, 16 274 reduced by a factor 2. The time needed to solve the scattering
2 —18,-13,-8,-3,2,7,12,17 275 problem can therefore be reduced by another factor close to 2
3 -17,-12,-7,-2, 3,8,13,18 275 when the main parts of the independent sets are in pairs of
4 —16,-11,-6, -1, 4,9, 14, 19 274 conjugate sets.

This theoretical material was illustrated by a simulation of
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