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Group theory used to improve the efficiency of transfer-matrix computations

A. Mayer* and J.-P. Vigneron
Laboratoire de Physique du Solide, Faculte´s Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium

~Received 6 May 1999!

Transfer-matrix methodology is frequently used to deal with elastic scattering problems that require a
solution of Schro¨dinger or homogeneous Maxwell equations in the continuous part of their spectra. As pre-
dicted by group theory, the basic states used for the expansion of the solutions can be separated into indepen-
dent sets, thus enabling the scattering problem to be solved with a drastically improved efficiency. Depending
on the peculiar symmetry in the problem, the basic states can present pairs of ‘‘conjugate sets,’’ whose
associated characters are complex conjugate of each other. When the potential energy takes strict real values,
the transfer matrices corresponding to these conjugate sets have well-defined relationships that enable the
transfer matrices of both conjugate sets to be computed from a single propagation step. This results in a further
reduction of up to 50% of the total computation time. This paper presents the way group theory can be used
systematically to improve the efficiency of transfer-matrix computations. In a first part, the basic states are
separated into independent sets. Relationships between the transfer matrices corresponding to conjugate sets
are then derived. The theory is finally illustrated by a simulation of electronic scattering by a C60 molecule in
a projection configuration.@S1063-651X~99!06912-3#

PACS number~s!: 02.70.2c, 61.14.Dc, 03.65.Fd, 02.20.Df
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I. INTRODUCTION

Linear systems of differential equations are frequently
countered in theoretical physics. Such equations indeed
pear when dealing with the Schro¨dinger equation in quantum
mechanics or with the Maxwell equations in electromag
tism. A useful property that appears in these situations is
additivity of solutions. When an analytic solution is not o
tainable, several numerical techniques exist to deal w
these equations in the energy or frequency continuum.

The Green’s-function formalism is one of these tec
niques. In addition to many other applications, this re
space approach provided excellent simulations of the s
ning tunneling microscope~STM! @1#, calculations of field
intensity maps around fullerene molecules trapped in a S
junction @2# and more recently simulations of the Fresn
projection microscope@3#. Although the application of this
formalism is not sensitive to the orientation and relative p
sition of the constitutive parts of the physical system, exc
sive storage requirements are encountered when they ca
be kept localized in space.

The transfer-matrix methodology@4–9# comes as a usefu
alternative to the Green’s-function formalism, since the st
age space requirements are significantly reduced. To a
this methodology, the physical system considered should
located between two separate boundaries. Given basic s
used for the wave function expansion, the transfer matr
contain, for each state incident on one boundary of the s
tem, the amplitudes of the corresponding transmitted and
flected states. The method basically depends on the addit
property of solutions, and requires~in its basic formulation!
the numerical propagation of basic states from one bound
to the other. Since the main part of the computation time
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spent in this propagation step, any way to reduce the num
of basic states to treat simultaneously or bypass the prop
tion step should be considered.

By applying group theory, any symmetry assumed in
problem can be exploited to split the basic states used for
expansion of the solutions into independent sets. This se
ration enables the scattering problem to be solved by con
ering these sets separately, thus drastically reducing both
required storage space and computation time~also see Ref.
@10# for taking advantage ofCn symmetry within the
Green’s-function formalism!. Depending on the peculia
symmetry in the problem, the basic states can present p
of so-called ‘‘conjugate sets,’’ whose associated charac
are complex conjugates of each other. When the poten
energy is real valued, the complex conjugate of the soluti
computed with a given set of basic states provides new
lutions in its conjugate set. The transfer matrices correspo
ing to this conjugate set can be derived from these new
lutions, thus enabling one to bypass the construction
intermediate solutions by a time-consuming numeri
propagation. Since a single propagation step is require
derive the transfer matrices of two sets of basic states, c
sidering these conjugate sets results in a reduction of u
50% of the total computation time.

The objective of this paper is to show how group theo
can be used systematically to improve the efficiency o
transfer-matrix computation, by enabling a reduction of t
basic states to consider them simultaneously, and taking
vantage of conjugate sets. The subdivision of the basic st
into independent sets by application of group theory is p
sented in Sec. II. The technique, enabling the computatio
the corresponding transfer matrices by a numerical propa
tion step or by consideration of conjugate sets, is presen
in Sec. III. In Sec. IV, the theory is illustrated by a simul
tion of electronic diffraction by a C60 molecule in a projec-
tion configuration.
ic
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II. CONSTRUCTION OF INDEPENDENT SETS OF BASIC
STATES

Let us consider scattering in a physical system made
three adjacent regions, and let us assume the interme
region to be the only diffusive part. The scanning tunnel
microscope@6,11# and the Fresnel projection microscop
@12# provide examples of such situations. Let us refer to
intermediate region as ‘‘region II,’’ and the two other regio
as ‘‘region I’’ and ‘‘region III.’’ Let z be a coordinate axis
oriented from region I to region III, so that region II corre
sponds to the interval 0<z<D. This situation is depicted in
Fig. 1.

At this point, we should make the choice of simple ba
states to expand the wave function in all regions. Let us w
these basic states$C j%. In the context of a transfer-matri
computation, they usually take the form

C j~r !5^r uC j&5F j~z!c j~r!, ~1!

wherer5(r,z).
Any symmetry in the physical problem can be used

separate these states$C j% into independent sets$C j [k]%,
wherek stands for the set of basic states associated wi
given representation of the symmetry. These independ
sets are obtained by projection of the basic states$C j% on the
various inequivalent irreducible representations of the sy
metry. If g is the order of the symmetry group,R̂ the sym-
metry operator, andxk(R̂) the character associated with th
operatorR̂ in thekth inequivalent irreducible representatio
the projection is achieved according to

C j [k]5@Pk#C j

5
1

g (
R̂

@xk* ~R̂!R̂#C j . ~2!

Due to the orthogonality of the lines in the character tab
these projections represent the symmetry in the follow
sense:

^r uR̂uC j [k]&5xk~R̂!^r uC j [k]&, ~3!

FIG. 1. Configuration of the three regions involved with scatt
ing. These regions are referred to as region I (z<0), region II (0
<z<D), and region III (z>D). Region II is the only diffusive part
of the system.
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and the initial set of basic states$C j% is split into indepen-
dent sets that are representative of the symmetry.

Table I gives the character table relevant to aCn symme-
try (z being ann-fold axis!. When the physical system i
characterized by this symmetry, the projection is achiev
according to

C j [k]5
1

n (
i

@vk
2 i Ĉn

i #C j , ~4!

with vk5eik(2p/n) and Ĉn
0[Ê.

A set of basic states is ‘‘conjugate’’ to a given set$C j [k]%
if the characters associated with these two sets are com
conjugates of each other. In the case ofCn symmetry, this
situation is encountered with the sets numbered byk and n
2k. Sincevn2k5v2k , we refer conventionally to the two
conjugate sets by$C j [k]% and $C j [ 2k]%. Except for the set
characterized byk50 ~for which the notationA is relevant!
and the set characterized byk5n/2 ~for which the notationB
is relevant whenn is even!, each set is conjugate to anoth
set and all pairs of conjugate sets are gathered in the cha
ter table under the notationE.

III. COMPUTATION OF THE TRANSFER MATRICES

A. Objective

Let us now distinguish the basic states by writing the
C j [k]

I,6 or C j [k]
III, 6 according to whether they describe the wa

function in region I or III. The sign6 stands for the direc-
tion of propagation relative to thez axis. In the context of a
scattering problem, we are interested in computing the tra
mitted and reflected parts of the wave functions correspo
ing to a single incoming basic stateC j [k]

I,1 in region I or
C j [k]

III, 2 in region III. Since the basic states are separated
cording to the symmetry of the Hamiltonian, the expans
of these solutions will imply a single setk of basic states.
The coefficients of this expansion corresponding to the tra
mitted and reflected parts of the solutions are stored, res
tively, in the two transfer matricest[k]

11 and t[k]
21 when the

incident stateC j [k]
I,1 belongs to region I and the two transfe

matricest[k]
22 andt[k]

12 when the incident stateC j [k]
III, 2 belongs

to region III.
The solutions we aim to construct can be written in t

following forms:

-

TABLE I. Character table corresponding to aCn symmetry. The
notationsk andvk stand for the number of then inequivalent irre-
ducible representations andvk5eik(2p/n), respectively.

k E Cn Cn
2 . . . Cn

n21

0 1 1 1 . . . 1
1 1 v1

1 v1
2 . . . v1

n21

A
n21 1 vn21

1 vn21
2 . . . vn21

n21



PRE 60 7535GROUP THEORY USED TO IMPROVE THE EFFICIENCY . . .
~ . . . ,C j [k]
1 , . . . !5H ~ . . . ,C j [k]

I,1 , . . . !1~ . . . ,C i [k]
I,2 , . . . !t[k]

21 for z<0

~ . . . ,C i [k]
III, 1 , . . . !t[k]

11 for z.D,
~5!

~ . . . ,C j [k]
2 , . . . !5H ~ . . . ,C i [k]

I,2 , . . . !t[k]
22 for z<0

~ . . . ,C j [k]
III, 2 , . . . !1~ . . . ,C i [k]

III, 1 , . . . !t[k]
12 for z>D.

~6!
n
s

tate

ion
t of
B. Construction from solutions provided by numerical
propagation

The usual way to derive the solutions given in Eqs.~5!
and ~6! consists of constructing intermediate solutions a
operating an appropriate combination. The intermediate
th
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lutions are obtained by considering a single outgoing s
(C j [k]

III, 1 in region III or C j [k]
I,2 in region I!, propagating it to

the opposite side of region II, and expanding the solut
along incident and reflected basic states. The following se
solutions is then obtained:
~ . . . ,C̄ j [k]
1 , . . . !5H ~ . . . ,C i [k]

I,1 , . . . !A[k]
1 1~ . . . ,C i [k]

I,2 , . . . !B[k]
1 for z<0

~ . . . ,C j [k]
III, 1 , . . . ! for z>D,

~7!

~ . . . ,C̄ j [k]
2 , . . . !5H ~ . . . ,C j [k]

I,2 , . . . ! for z<0

~ . . . ,C i [k]
III, 2 , . . . !A[k]

2 1~ . . . ,C i [k]
III, 1 , . . . !B[k]

2 for z>D,
~8!
riv-
set
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where the two matricesA[k]
1 andA[k]

2 contain the coefficients
of the expansion corresponding to the incident part of
solutions, andB[k]

1 and B[k]
2 contain those corresponding t

the reflected part.
Once the construction of these intermediate solution

completed, it is straightforward to derive those given in E
~5! and~6!. The four transfer matrices describing these so
tions are indeed given by

t[k]
115A[k]

1 21, ~9!

t[k]
215B[k]

1 A[k]
1 21, ~10!

t[k]
225A[k]

2 21, ~11!

t[k]
125B[k]

2 A[k]
2 21. ~12!

An efficient technique to control the numerical instabi
ties encountered in the computation of these transfer m
ces is presented in Refs.@13–15#. A generalization of this
formalism to deal with nonsquare transfer matrices is giv
in Ref. @16#. While this way of computing the transfer ma
trices reveals efficient~with the extensions of Refs.@13,16#!,
the derivation of the intermediate solutions~7! and~8! is by
far the most time-consuming part of the technique. It is
reason for now presenting an alternative method.

C. Construction from solutions provided by a conjugate set

Let us assume the scattering problem to be solved fo
given setk of basic states~by the previously given method!.
The idea we are going to develop is the following: when
potential energy takes strict real values, taking the comp
conjugate of these solutions provides another set of s
e

is
.
-

ri-

n

e

a

e
x

u-

tions, which can be used as intermediate solutions for de
ing transfer matrices corresponding to the conjugate
2k. This enables to bypass the time-consuming construc
of the intermediate solutions given in Eqs.~7! and~8!. When
the potential energy takes strict real values, the wave fu
tion C(r ) is the only complex-valued quantity in the Schr¨-
dinger equation2(\2/2m)¹2C(r )1V(r )C(r )5EC(r ), so
its complex conjugateC* (r ) is also a solution of this equa
tion.

The key point is that the complex conjugate of a soluti
described in a given setk of basic states belongs to its con
jugate set2k. In fact, by considering the complex conjuga
of Eq. ~3!, one finds

^r uR̂uC j @k#
* &5xk* ~R̂!^r uC j @k#

* &, ~13!

with ^r uC j @k#
* & standing forC j @k#

* (r ). So by considering the
complex conjugate of the solutions obtained in a given se
basic states, we straightforwardly obtain solutions in its c
jugate set, which can be used for deriving the correspond
transfer matrices.

To establish the relations enabling the derivation of th
transfer matrices, let us first relate the basic states in the
conjugate sets by writing

~ . . . ,C j [k]
I,1 * , . . . ,C j [k]

I,2 * , . . . !

5~ . . . ,C j [ 2k]
I,1 , . . . ,C j [ 2k]

I,2 , . . . !S UI
11 UI

21

UI
12 UI

22D ,

~14!
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~ . . . ,C j [k]
III, 1* , . . . ,C j [k]

III, 2* , . . . !5~ . . . ,C j [ 2k]
III, 1 , . . . ,C j [ 2k]

III, 2 , . . . !S UIII
11 UIII

21

UIII
12 UIII

22D . ~15!

When the basic states are orthonormal, these two relations imply a unitary transformation matrix.
Considering these relations, the complex conjugate of the solutions given in Eqs.~5! and ~6! takes the forms

~ . . . ,C j [k]
1 * , . . . !55 ~ . . . ,C j [ 2k]

I,1 , . . . ,C j [ 2k]
I,2 , . . . ! S UI

11 UI
21

UI
12 UI

22D S I

t[k]
21D for z<0

~ . . . ,C j [ 2k]
III, 1 , . . . ,C j [ 2k]

III, 2 , . . . ! S UIII
11 UIII

21

UIII
12 UIII

22D S t[k]
11

0
D for z>D,

~16!

~ . . . ,C j [k]
2 * , . . . !55 ~ . . . ,C j [ 2k]

I,1 , . . . ,C j [ 2k]
I,2 , . . . ! S UI

11 UI
21

UI
12 UI

22D S 0

t[k]
22D for z<0

~ . . . ,C j [ 2k]
III, 1 , . . . ,C j [ 2k]

III, 2 , . . . ! S UIII
11 UIII

21

UIII
12 UIII

22D S t[k]
12

I
D for z>D,

~17!

where the notationst[k]
66 refer to the complex conjugate of the matricest[k]

66 .
We can now make combinations of these solutions, i.e., consider the expressions

~ . . . ,C j [ 2k]
1 , . . . !5~ . . . ,C j [k]

1 * , . . . !M111~ . . . ,C j [k]
2 * , . . . !M21, ~18!

~ . . . ,C j [ 2k]
2 , . . . !5~ . . . ,C j [k]

1 * , . . . !M121~ . . . ,C j [k]
2 * , . . . !M22, ~19!

and choose the four matricesM66 in order to obtain the appropriate form:

~ . . . ,C j [ 2k]
1 , . . . !55 ~ . . . ,C j [ 2k]

I,1 , . . . ,C j [ 2k]
I,2 , . . . !S I

t[ 2k]
21 D for z<0

~ . . . ,C j [ 2k]
III, 1 , . . . ,C j [ 2k]

III, 2 , . . . !S t[ 2k]
11

0 D for z>D,

~20!

~ . . . ,C j [ 2k]
2 , . . . !55 ~ . . . ,C j [ 2k]

I,1 , . . . ,C j [ 2k]
I,2 , . . . !S 0

t[ 2k]
22 D for z<0

~ . . . ,C j [ 2k]
III, 1 , . . . ,C j [ 2k]

III, 2 , . . . !S t[ 2k]
12

I D for z>D.

~21!
r

n
se
Solving for M66 provides the results

M115$@UI
21t[k]

211UI
11#2@UI

21t[k]
22#@UIII

22

1UIII
12t[k]

12#21@UIII
12t[k]

11#%21, ~22!

M2152@UIII
221UIII

12t[k]
12#21@UIII

12t[k]
11#M11, ~23!

M225$@UIII
12t[k]

121UIII
22#2@UIII

12t[k]
11#@UI

11

1UI
21t[k]

21#21@UI
21t[k]

22#%21, ~24!

M1252@UI
111UI

21t[k]
21#21@UI

21t[k]
22#M22. ~25!
The coefficientsM66 of the combinations to conside
being known, the transfer matricest[ 2k]

66 corresponding to the
conjugate set2k of basic states are obtained from

t[ 2k]
11 5@UIII

11t[k]
11#M111@UIII

11t[k]
121UIII

21#M21,
~26!

t[ 2k]
21 5@UI

121UI
22t[k]

21#M111@UI
22t[k]

22#M21,
~27!

t[ 2k]
22 5@UI

22t[k]
22#M221@UI

22t[k]
211UI

12#M12,
~28!

t[ 2k]
12 5@UIII

211UIII
11t[k]

12#M221@UIII
11t[k]

11#M12.
~29!

Equations~22!–~25! are formulated so that the inversio
of matrices with bad condition numbers is avoided. The
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matrices are those expressing transmission, i.e.,t[k]
11 and

t[k]
22 . In fact, the range of their eigenvalues grows expon

tially with the distanceD ~see Ref.@13#!. On the other hand
the eigenvalues of the transfer matrices expressing reflec
i.e., t[k]

21 and t[k]
12 , remain close to unity, and therefore ha

better condition numbers. Furthermore, since the eigenva
of the transfer matrices expressing transmission all decr
exponentially with the distanceD, the terms that contain
these matrices tend to become negligible compared to
others. These considerations explain for the efficiency of
lations ~22!–~25!.

Computing the transfer matrices of a given set of ba
states from those corresponding to its conjugate set requ
negligible time, compared to that needed for construct
intermediate solutions like those given in Eqs.~7! and~8! by
numerical propagation. In the case ofCn symmetry, there are
(n21)/2 pairs of conjugate sets ifn is odd and (n22)/2
pairs in the other case. Since a single propagation ste
required for two conjugate sets, the computation time tu
out to be reduced nearly by a factor 2 whenn is large.

IV. APPLICATION TO DIFFRACTION BY A C 60

MOLECULE

A. Preliminaries

To illustrate this theoretical material, let us simulate ele
tronic field emission from a small conical tip@17# and the
scattering of the extracted beam by a C60 molecule centered
on the tip axis. The extraction field results from a poten
biasV established between the metallic support of the tip a
a conducting grid located at a distanceD. This grid supports
the C60 molecule, which stands on a pentagonal ring.

Let us assume region I~i.e., the metallic support of the
tip! to be a Sommerfeld metal, delimited by the planez50
and characterized by empirical values ofW ~work function!
andEF ~Fermi energy!. If we conventionally set the potentia
energy in region III~i.e., the region beyond the conductin
grid z>D) to the constant value 0, the potential energy
region I is thenVmet5eV2W2EF . With these assump
tions, region II is the only diffusive part of the problem an
the Schro¨dinger equation being linear, the problem can
solved within the transfer-matrix methodology.

Due to the conical shape of the tip and the C60 molecule
standing on a pentagon, the symmetry of the problem isC5v
~with z the corresponding symmetry axis!. However, since
the associated character table only enables the constru
of four independent sets of basic states and does not co
any pair of lines with values that are complex conjugates
each other, we take account only of theC5 symmetry. This
symmetry indeed predicts five independent sets of b
states with two pairs of conjugate sets.

B. Wave function expansion

In the general case ofCn symmetry, it is useful to use
polar coordinates in the plane normal to the symmetry axz
~i.e., f for the azimuthal angle andr for the radial distance
to thez axis!. By assuming the scattering electron to rema
localized inside a cylinder with radiusR @18#, the wave func-
-

n,

es
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he
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is
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f
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tion can be expanded along a discrete set of basic sta
whose specific forms in regions I and III are given by

C (m, j )
I,6 ~r !5e6 iA[2m(E2Vmet)/\

2] 2km, j
2 zc (m, j )~r,f!, ~30!

C (m, j )
III, 6 ~r !5e6 iA(2mE/\2)2km, j

2 zc (m, j )~r,f!, ~31!

with

c (m, j )~r,f!55
Jm~km, jr!eimf

A2pE
0

R

r@Jm~km, jr!#2dr
if r<R

0 otherwise,
~32!

where all functions involved in these expressions have a
of subscripts (m, j ). The radial wave vectorskm, j are solu-
tion of Jm8 (km, jR)50.

C. Consideration of group theory

By application of Eq.~4!, the basic states are split inton
independent sets of functionsC (m, j )[k]

I,6 andC (m, j )[k]
III, 6 associ-

ated withm subscripts given bym5k1 in, with i an integer
andk ranging from 0 ton21. The conjugate sets are thos
numbered byk andn2k, respectively.

The matricesUI
66 andUIII

66 introduced in Sec. III C take
the specific forms

S UI
11 UI

21

UI
12 UI

22D 5S S~ I2PI! SPI

SPI S~ I2PI!
D , ~33!

S UIII
11 UIII

21

UIII
12 UIII

22D 5S S~ I2PIII ! SPIII

SPIII S~ I2PIII !
D , ~34!

whereS, PI, andPIII are diagonal matrices defined by

S(m8, j 8),(m, j )5H ~21!m if ~m8, j 8!5~m, j !

0 otherwise,
~35!
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P(m8, j 8),(m, j )
I

5H 1 if ~m8, j 8!5~m, j ! and km, j<A2m

\2
~E2Vmet!

0 otherwise,

~36!

P(m8, j 8),(m, j )
III

5H 1 if ~m8, j 8!5~m, j ! and km, j<A2m

\2
E

0 otherwise.

~37!

The matrixS characterizes the transformation of the factorc (m, j )(r,f) that appears in the basic states. Its peculiar form is
to the propertyJ2m(x)5(21)mJm(x) of Bessel functions. The two matricesPI andPIII characterize the transformation of th
other factorF (m, j )(z), by indicating the basic states whose propagation direction is changed in the complex con
operation. In this context, the wave vectorskm, j are restricted by the conditionkm, j<A(2m/\2)E, so one hasPIII 5I .

D. Propagation equations

To propagate the solutionsC̄ (m, j )[k]
1 andC̄ (m, j )[k]

2 through region II, we use the expression:

C̄ (m, j )[k]
6 5 (

m[k], j
F (m, j )~z!c (m, j )~r,f!, ~38!

where the unknownz dependence of the wave function is contained in the coefficientsF (m, j )(z) of the expansion, and the sum
is restricted to them subscripts defined bym5k1 in.

When this expression is substituted in the stationary Schro¨dinger equation, the wave function expansion coefficie
F (m, j )(z) turn out to verify the exact set of coupled equations@19,20#:

d2F (m, j )~z!

dz2
1F2m

\2
E2km, j

2 2
2m

\2
V0~z!GF (m, j )~z!5(

q
(
j 8

Mm, j
q, j 8~z!F (m2q.n, j 8)~z!, ~39!

whereE is the electron energy, and the coupling coefficientsMm, j
q, j 8(z) are defined by the expression

Mm, j
q, j 8~z!5

2m

\2

E
0

R

rV̄q~r,z!Jm~km, jr!Jm2q.n~km2q.n, j 8r!dr

AE
0

R

r@Jm~km, jr!#2drAE
0

R

r@Jm2q.n~km2q.n, j 8r!#2dr

. ~40!
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In these expressions,V0(z) and V̄q(r,z) are the coeffi-
cients used in then-fold symmetric potential energy,

V~r,f,z!5V0~z!1 (
q52`

1`

V̄q~r,z!eiqnf, ~41!

where the choice ofV0(z) is arbitrary but should correspon
to the main part of the potential energy for better efficien
Inspection of Eq.~39! confirms the fact that coupling is re
stricted to a single setk of basic states, since only basic stat
with m subscripts separated by an integer multiple of
symmetry axis ordern are involved by the sum in the right
hand side.

E. Characterization of the physical system

An electric bias of 40 V and a metal-grid distance of 4 n
are considered. The bulk of the metal is characterized b
Fermi energy of 19.1 eV and a work function of 4.5 e
~values for tungsten!. The conical tip has a height and bas
.

s
e

a

radius of 1 nm, and is represented by a continuous med
with infinite dielectric constant. The atoms of the C60 mol-
ecule are described by Gaussian electronic distributions
move rigidly around the positive nuclei as the result of t
local electric field. The dynamic polarizability of the carbo
atoms is chosen according to Ref.@21#. A vertical section of
the potential energy distribution in region II is illustrated
Fig. 2. The details of this computation are given in Ref.@22#.

F. Results

The current density on the conducting gridz5D was
computed by considering a cancelation radiusR of 4 nm, and
m values ranging from220 to 20. The number of basi
states corresponding to these parameters is 1403. By ta
account of theC5 symmetry, these basic states are split in
five independent sets whose associatedm values and numbe
of basic states are given in Table II. The two pairs of con
gate sets correspond tok51 and 4, respectively, for the firs
pair andk52 and 3, respectively, for the second pair, a
differ only by the sign of the associatedm subscripts.
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The result of the scattering computation is presented
Fig. 3. This figure shows the electronic beam that res
from the field-emission process. The variations of intens
in the central part of the figure are related to the atom
structure of the C60 molecule, and can be interpreted as
projection of the carbon atoms from the tip apex on the c
ducting grid. The fivefold symmetry is clearly visible.

The results obtained by considering all basic states sim
taneously, the five sets of basic states separately, or ta
account of the two pairs of conjugate sets are identical~in
short-precision representation!. However, there is a signifi
cant difference in the storage and time requirements.
quantify this difference, let us refer to the number of ba
states to consider simultaneously bynb. To be efficient, the
computation of the coupling coefficients requires the stor
of an array whose size is typically proportional tonb3. The
time needed to compute the coupling coefficients and p
form all matrix inversions along the distanceD is propor-
tional to DE1/2nb3. Since the numbernb of basic states to
consider simultaneously is reduced approximately by a fa
5 when the independent sets are considered, the storag
time requirements turn out to be reduced by a factor3

FIG. 2. Potential energy distribution~in eV! in the XZ vertical
plane. A 40-V bias is applied over the 4-nm separation between
metallic tip holder surface and the sample supporting grid. This g
supports a C60 molecule standing on a pentagonal ring.

TABLE II. List of the m values and number of elements in th
five independent setsk of basic states corresponding to a cance
tion radiusR of 4 nm and an energyE5eV2W of 35.5 eV.

k m values Number of basic state

0 220, 215, 210, 25, 0, 5, 10, 15, 20 305
1 219, 214, 29, 24, 1, 6, 11, 16 274
2 218, 213, 28, 23, 2, 7, 12, 17 275
3 217, 212, 27, 22, 3, 8, 13, 18 275
4 216, 211, 26, 21, 4, 9, 14, 19 274
in
ts
y
c

-

l-
ng

o
c

e

r-

or
and

5125. Since there are two pairs of conjugate sets and
potential energy is exclusively real valued, the numeri
propagation step can be bypassed for two sets among the
independent sets of basic states. This results in a furthe
duction of the time requirement by a factor 5/3.

V. CONCLUSION

Group theory can be used systematically to improve
efficiency of transfer-matrix computations in situatio
where a given symmetry can be assumed, by enabling a
duction of the basic states to consider simultaneously
taking advantage of conjugate sets. The number of poss
subdivisions in the initial set of basic states is given by
number of irreducible inequivalent representations of
symmetry. Since the storage and time requirements are
portional to the cube of the number of basic states to c
sider simultaneously, the efficiency of the technique is
creased approximately by the cube of the achiev
subdivisions.

Conjugate sets of basic states appear when the char
table contains pairs of lines whose values are complex c
jugates of each other. In general, symmetry operators
volved with rotations have to be encountered for this sit
tion to occur. When the potential energy is real value
computing the transfer matrices corresponding to a pair
conjugate sets requires a single propagation step. Since
step is the most time-consuming part of the whole proce
the time requirement for this pair of conjugate sets is th
reduced by a factor 2. The time needed to solve the scatte
problem can therefore be reduced by another factor close
when the main parts of the independent sets are in pair
conjugate sets.

This theoretical material was illustrated by a simulation

e
d

-

FIG. 3. Current density~in A/cm2) on the conducting grid. A
40-V bias is applied over the 4-nm separation between the met
tip holder surface and the sample supporting grid. This grid s
ports a C60 molecule standing on a pentagonal ring.
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electronic diffraction by a C60 molecule in a projection con
figuration. The presence of a fivefold symmetry axis w
exploited to split the basic states into five independent s
among which two pairs of conjugate sets are present. Ta
advantage of all techniques presented in this paper ena
the scattering problem to be solved with 535125 less storage
space and 54/3.208 less time.
.
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