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Chapter 3. Interpolation and

Extrapolation

3.0 Introduction

We sometimes know the value of a functionf(x) at a set of pointsx1, x2, . . . , xN

(say, withx1 < . . . < xN ), but we don’t have an analytic expression forf(x) that lets
us calculate its value at an arbitrary point. For example, thef(x i)’s might result from
some physical measurement or from long numerical calculation that cannot be cast
into a simple functional form. Often thexi’s are equally spaced, but not necessarily.

The task now is to estimatef(x) for arbitraryx by, in some sense, drawing a
smooth curve through (and perhaps beyond) thex i. If the desiredx is in between the
largest and smallest of thexi’s, the problem is calledinterpolation; if x is outside
that range, it is calledextrapolation, which is considerably more hazardous (as many
former stock-market analysts can attest).

Interpolation and extrapolation schemes must model the function, between or
beyond the known points, by some plausible functional form. The form should
be sufficiently general so as to be able to approximate large classes of functions
which might arise in practice. By far most common among the functional forms
used are polynomials (§3.1). Rational functions (quotients of polynomials) also turn
out to be extremely useful (§3.2). Trigonometric functions, sines and cosines, give
rise to trigonometric interpolation and related Fourier methods, which we defer to
Chapters 12 and 13.

There is an extensive mathematical literature devoted to theorems about what
sort of functions can be well approximated by which interpolating functions. These
theorems are, alas, almost completely useless in day-to-day work: If we know
enough about our function to apply a theorem of any power, we are usually not in
the pitiful state of having to interpolate on a table of its values!

Interpolation is related to, but distinct from,function approximation. That task
consists of finding an approximate (but easily computable) function to use in place
of a more complicated one. In the case of interpolation, you are given the functionf
at pointsnot of your own choosing. For the case of function approximation, you are
allowed to compute the functionf atany desired points for the purpose of developing
your approximation. We deal with function approximation in Chapter 5.

One can easily find pathological functions that make a mockery of any interpo-
lation scheme. Consider, for example, the function

f(x) = 3x2 +
1
π4

ln
[
(π − x)2

]
+ 1 (3.0.1)

99
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which is well-behaved everywhere except atx = π, very mildly singular atx = π,
and otherwise takes on all positive and negative values. Any interpolation based on
the valuesx = 3.13, 3.14, 3.15, 3.16, will assuredly get a very wrong answer for
the valuex = 3.1416, even though a graph plotting those five points looks really
quite smooth! (Try it on your calculator.)

Because pathologies can lurk anywhere, it is highly desirable that an interpo-
lation and extrapolation routine should return an estimate of its own error. Such an
error estimate can never be foolproof, of course. We could have a function that,
for reasons known only to its maker, takes off wildly and unexpectedly between
two tabulated points. Interpolation always presumes some degree of smoothness
for the function interpolated, but within this framework of presumption, deviations
from smoothness can be detected.

Conceptually, the interpolation process has two stages: (1) Fit an interpolating
function to the data points provided. (2) Evaluate that interpolating function at
the target pointx.

However, this two-stage method is generally not the best way to proceed in
practice. Typically it is computationally less efficient, and more susceptible to
roundoff error, than methods which construct a functional estimatef(x) directly
from theN tabulated values every time one is desired. Most practical schemes start
at a nearby pointf(xi), then add a sequence of (hopefully) decreasing corrections,
as information from otherf(xi)’s is incorporated. The procedure typically takes
O(N2) operations. If everything is well behaved, the last correction will be the
smallest, and it can be used as an informal (though not rigorous) bound on the error.

In the case of polynomial interpolation, it sometimes does happen that the
coefficients of the interpolating polynomial are of interest, even though their use
in evaluating the interpolating function should be frowned on. We deal with this
eventuality in §3.5.

Local interpolation, using a finite number of “nearest-neighbor” points, gives
interpolated valuesf(x) that do not, in general, have continuous first or higher
derivatives. That happens because, asx crosses the tabulated valuesx i, the
interpolation scheme switches which tabulated points are the “local” ones. (If such
a switch is allowed to occur anywhereelse, then there will be a discontinuity in the
interpolated function itself at that point. Bad idea!)

In situations where continuity of derivatives is a concern, one must use
the “stiffer” interpolation provided by a so-calledspline function. A spline is
a polynomial between each pair of table points, but one whose coefficients are
determined “slightly” nonlocally. The nonlocality is designed to guarantee global
smoothness in the interpolated function up to some order of derivative. Cubic splines
(§3.3) are the most popular. They produce an interpolated function that is continuous
through the second derivative. Splines tend to be stabler than polynomials, with less
possibility of wild oscillation between the tabulated points.

The number of points (minus one) used in an interpolation scheme is called
the order of the interpolation. Increasing the order does not necessarily increase
the accuracy, especially in polynomial interpolation. If the added points are distant
from the point of interestx, the resulting higher-order polynomial, with its additional
constrained points, tends to oscillate wildly between the tabulated values. This
oscillation may have no relation at all to the behavior of the “true” function (see
Figure 3.0.1). Of course, adding pointsclose to the desired point usually does help,
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(a)

(b)

Figure 3.0.1. (a) A smooth function (solid line) is more accurately interpolated by a high-order
polynomial (shown schematically as dotted line) than by a low-order polynomial (shown as a piecewise
linear dashed line). (b) A function with sharp corners or rapidly changing higher derivatives is less
accurately approximated by a high-order polynomial (dotted line), which is too “stiff,” than by a low-order
polynomial (dashed lines). Even some smooth functions, such as exponentials or rational functions, can
be badly approximated by high-order polynomials.

but a finer mesh implies a larger table of values, not always available.
Unless there is solid evidence that the interpolating function is close in form to

the true function f , it is a good idea to be cautious about high-order interpolation.
We enthusiastically endorse interpolations with 3 or 4 points, we are perhaps tolerant
of 5 or 6; but we rarely go higher than that unless there is quite rigorous monitoring
of estimated errors.

When your table of values contains many more points than the desirable order
of interpolation, you must begin each interpolation with a search for the right “ local”
place in the table. While not strictly a part of the subject of interpolation, this task is
important enough (and often enough botched) that we devote §3.4 to its discussion.

The routines given for interpolation are also routines for extrapolation. An
important application, in Chapter 16, is their use in the integration of ordinary
differential equations. There, considerable care is taken with the monitoring of
errors. Otherwise, the dangers of extrapolation cannot be overemphasized: An
interpolating function, which is perforce an extrapolating function, will typically go
berserk when the argument x is outside the range of tabulated values by more than
the typical spacing of tabulated points.

Interpolation can be done in more than one dimension, e.g., for a function
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f(x, y, z). Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations. We discuss this in §3.6.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 2.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 3.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 4.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 5.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 3.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 6.

3.1 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points, a
unique quadratic. Et cetera. The interpolating polynomial of degree N − 1 through
the N points y1 = f(x1), y2 = f(x2), . . . , yN = f(xN ) is given explicitly by
Lagrange’s classical formula,

P (x) =
(x − x2)(x − x3)...(x − xN )

(x1 − x2)(x1 − x3)...(x1 − xN )
y1 +

(x − x1)(x − x3)...(x − xN )
(x2 − x1)(x2 − x3)...(x2 − xN )

y2

+ · · · + (x − x1)(x − x2)...(x − xN−1)
(xN − x1)(xN − x2)...(xN − xN−1)

yN

(3.1.1)
There are N terms, each a polynomial of degree N − 1 and each constructed to be
zero at all of the xi except one, at which it is constructed to be yi.

It is not terribly wrong to implement the Lagrange formula straightforwardly,
but it is not terribly right either. The resulting algorithm gives no error estimate, and
it is also somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomial) is Neville’s algorithm, closely related to
and sometimes confused with Aitken’s algorithm, the latter now considered obsolete.

Let P1 be the value at x of the unique polynomial of degree zero (i.e.,
a constant) passing through the point (x1, y1); so P1 = y1. Likewise define
P2, P3, . . . , PN . Now let P12 be the value at x of the unique polynomial of
degree one passing through both (x1, y1) and (x2, y2). Likewise P23, P34, . . . ,
P(N−1)N . Similarly, for higher-order polynomials, up to P 123...N , which is the value
of the unique interpolating polynomial through all N points, i.e., the desired answer.
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The variousP ’s form a “tableau” with “ancestors” on the left leading to a single
“descendant” at the extreme right. For example, withN = 4,

x1 : y1 = P1

P12

x2 : y2 = P2 P123

P23 P1234

x3 : y3 = P3 P234

P34

x4 : y4 = P4

(3.1.2)

Neville’s algorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationship between a
“daughter” P and its two “parents,”

Pi(i+1)...(i+m) =
(x − xi+m)Pi(i+1)...(i+m−1) + (xi − x)P(i+1)(i+2)...(i+m)

xi − xi+m

(3.1.3)

This recurrence works because the two parents already agree at pointsx i+1 . . .
xi+m−1.

An improvement on the recurrence (3.1.3) is to keep track of the small
differences between parents and daughters, namely to define (form = 1, 2, . . . ,
N − 1),

Cm,i ≡ Pi...(i+m) − Pi...(i+m−1)

Dm,i ≡ Pi...(i+m) − P(i+1)...(i+m).
(3.1.4)

Then one can easily derive from (3.1.3) the relations

Dm+1,i =
(xi+m+1 − x)(Cm,i+1 − Dm,i)

xi − xi+m+1

Cm+1,i =
(xi − x)(Cm,i+1 − Dm,i)

xi − xi+m+1

(3.1.5)

At each levelm, theC ’s andD’s are the corrections that make the interpolation one
order higher. The final answerP1...N is equal to the sum ofany yi plus a set ofC ’s
and/orD’s that form a path through the family tree to the rightmost daughter.

Here is a routine for polynomial interpolation or extrapolation:

SUBROUTINE polint(xa,ya,n,x,y,dy)
INTEGER n,NMAX
REAL dy,x,y,xa(n),ya(n)
PARAMETER (NMAX=10) Largest anticipated value of n.

Given arrays xa and ya, each of length n, and given a value x, this routine returns a
value y, and an error estimate dy. If P (x) is the polynomial of degree N − 1 such that
P (xai) = yai, i = 1, . . . , n, then the returned value y = P (x).

INTEGER i,m,ns
REAL den,dif,dift,ho,hp,w,c(NMAX),d(NMAX)
ns=1
dif=abs(x-xa(1))
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do 11 i=1,n Here we find the index ns of the closest table entry,
dift=abs(x-xa(i))
if (dift.lt.dif) then

ns=i
dif=dift

endif
c(i)=ya(i) and initialize the tableau of c’s and d’s.
d(i)=ya(i)

enddo 11

y=ya(ns) This is the initial approximation to y.
ns=ns-1
do 13 m=1,n-1 For each column of the tableau,

do 12 i=1,n-m we loop over the current c’s and d’s and update them.
ho=xa(i)-x
hp=xa(i+m)-x
w=c(i+1)-d(i)
den=ho-hp
if(den.eq.0.)pause ’failure in polint’
This error can occur only if two input xa’s are (to within roundoff) identical.

den=w/den
d(i)=hp*den Here the c’s and d’s are updated.
c(i)=ho*den

enddo 12

if (2*ns.lt.n-m)then After each column in the tableau is completed, we decide
which correction, c or d, we want to add to our accu-
mulating value of y, i.e., which path to take through
the tableau—forking up or down. We do this in such a
way as to take the most “straight line” route through the
tableau to its apex, updating ns accordingly to keep track
of where we are. This route keeps the partial approxima-
tions centered (insofar as possible) on the target x. The
last dy added is thus the error indication.

dy=c(ns+1)
else

dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

Quite often you will want to callpolint with the dummy argumentsxa
and ya replaced by actual arrayswith offsets. For example, the construction
call polint(xx(15),yy(15),4,x,y,dy) performs 4-point interpolation on the
tabulated valuesxx(15:18), yy(15:18). For more on this, see the end of§3.4.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.

3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, butare well
approximated by rational functions, that is quotients of polynomials. We de-
note by Ri(i+1)...(i+m) a rational function passing through them + 1 points
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(xi, yi) . . . (xi+m, yi+m). More explicitly, suppose

Ri(i+1)...(i+m) =
Pµ(x)
Qν(x)

=
p0 + p1x + · · · + pµxµ

q0 + q1x + · · · + qνxν
(3.2.1)

Since there areµ + ν + 1 unknownp’s andq’s (q0 being arbitrary), we must have

m + 1 = µ + ν + 1 (3.2.2)

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability to model functions with poles, that is, zeros of the denominator
of equation (3.2.1). These poles might occur for real values ofx, if the function
to be interpolated itself has poles. More often, the functionf(x) is finite for all
finite real x, but has an analytic continuation with poles in the complexx-plane.
Such poles can themselves ruin a polynomial approximation, even one restricted to
real values ofx, just as they can ruin the convergence of an infinite power series
in x. If you draw a circle in the complex plane around yourm tabulated points,
then you should not expect polynomial interpolation to be good unless the nearest
pole is rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powers ofx in its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should also
mention in passing that rational function approximations can be used in analytic
work. One sometimes constructs a rational function approximation by the criterion
that the rational function of equation (3.2.1) itself have a power series expansion
that agrees with the firstm + 1 terms of the power series expansion of the desired
functionf(x). This is calledPadé approximation, and is discussed in§5.12.

Bulirsch and Stoer found an algorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of equation
(3.1.2) is constructed column by column, leading to a result and an error estimate.
The Bulirsch-Stoer algorithm produces the so-calleddiagonal rational function, with
the degrees of numerator and denominator equal (ifm is even) or with the degree
of the denominator larger by one (ifm is odd, cf. equation 3.2.2 above). For the
derivation of the algorithm, refer to[1]. The algorithm is summarized by a recurrence
relation exactly analogous to equation (3.1.3) for polynomial approximation:

Ri(i+1)...(i+m) = R(i+1)...(i+m)

+
R(i+1)...(i+m) − Ri...(i+m−1)(

x−xi

x−xi+m

) (
1 − R(i+1)...(i+m)−Ri...(i+m−1)

R(i+1)...(i+m)−R(i+1)...(i+m−1)

)
− 1
(3.2.3)

This recurrence generates the rational functions throughm + 1 points from the
ones throughm and (the termR(i+1)...(i+m−1) in equation 3.2.3)m − 1 points.
It is started with

Ri = yi (3.2.4)
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and with
R ≡ [Ri(i+1)...(i+m) with m = −1] = 0 (3.2.5)

Now, exactly as in equations (3.1.4) and (3.1.5) above, we can convert the
recurrence (3.2.3) to one involving only the small differences

Cm,i ≡ Ri...(i+m) − Ri...(i+m−1)

Dm,i ≡ Ri...(i+m) − R(i+1)...(i+m)

(3.2.6)

Note that these satisfy the relation

Cm+1,i − Dm+1,i = Cm,i+1 − Dm,i (3.2.7)

which is useful in proving the recurrences

Dm+1,i =
Cm,i+1(Cm,i+1 − Dm,i)(

x−xi

x−xi+m+1

)
Dm,i − Cm,i+1

Cm+1,i =

(
x−xi

x−xi+m+1

)
Dm,i(Cm,i+1 − Dm,i)(

x−xi

x−xi+m+1

)
Dm,i − Cm,i+1

(3.2.8)

This recurrence is implemented in the following subroutine, whose use is analogous
in every way topolint in §3.1.

SUBROUTINE ratint(xa,ya,n,x,y,dy)
INTEGER n,NMAX
REAL dy,x,y,xa(n),ya(n),TINY
PARAMETER (NMAX=10,TINY=1.e-25) Largest expected value of n, and a small number.

Given arrays xa and ya, each of length n, and given a value of x, this routine returns a
value of y and an accuracy estimate dy. The value returned is that of the diagonal rational
function, evaluated at x, which passes through the n points (xai,yai), i = 1...n.

INTEGER i,m,ns
REAL dd,h,hh,t,w,c(NMAX),d(NMAX)
ns=1
hh=abs(x-xa(1))
do 11 i=1,n

h=abs(x-xa(i))
if (h.eq.0.)then

y=ya(i)
dy=0.0
return

else if (h.lt.hh) then
ns=i
hh=h

endif
c(i)=ya(i)
d(i)=ya(i)+TINY The TINY part is needed to prevent a rare zero-over-

zero condition.enddo 11

y=ya(ns)
ns=ns-1
do 13 m=1,n-1

do 12 i=1,n-m
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w=c(i+1)-d(i)
h=xa(i+m)-x h will never be zero, since this was tested in the ini-

tializing loop.t=(xa(i)-x)*d(i)/h
dd=t-c(i+1)
if(dd.eq.0.)pause ’failure in ratint’

This error condition indicates that the interpolating function has a pole at the re-
quested value of x.

dd=w/dd
d(i)=c(i+1)*dd
c(i)=t*dd

enddo 12

if (2*ns.lt.n-m)then
dy=c(ns+1)

else
dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated functionyi = y(xi), i = 1...N , focus attention on one
particular interval, betweenxj andxj+1. Linear interpolation in that interval gives
the interpolation formula

y = Ayj + Byj+1 (3.3.1)
where

A ≡ xj+1 − x

xj+1 − xj
B ≡ 1 − A =

x − xj

xj+1 − xj
(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and an undefined, or infinite, second derivative at the
abscissasxj . The goal of cubic spline interpolation is to get an interpolation formula
that is smooth in the first derivative, and continuous in the second derivative, both
within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values ofy i, we
also have tabulated values for the function’s second derivatives,y ′′, that is, a set
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of numbers y ′′
i . Then, within each interval, we can add to the right-hand side of

equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y′′

j on the left to a value y ′′
j+1 on the right. Doing so, we will have the desired

continuous second derivative. If we also construct the cubic polynomial to have
zero values at xj and xj+1, then adding it in will not spoil the agreement with the
tabulated functional values yj and yj+1 at the endpoints xj and xj+1.

A little side calculation shows that there is only one way to arrange this
construction, namely replacing (3.3.1) by

y = Ayj + Byj+1 + Cy′′
j + Dy′′

j+1 (3.3.3)

where A and B are defined in (3.3.2) and

C ≡ 1
6
(A3 − A)(xj+1 − xj)2 D ≡ 1

6
(B3 − B)(xj+1 − xj)2 (3.3.4)

Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B, and (through A and
B) the cubic x-dependence of C and D.

We can readily check that y ′′ is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect to x,
using the definitions of A, B, C, D to compute dA/dx, dB/dx, dC/dx, and dD/dx.
The result is

dy

dx
=

yj+1 − yj

xj+1 − xj
− 3A2 − 1

6
(xj+1 − xj)y′′

j +
3B2 − 1

6
(xj+1 − xj)y′′

j+1 (3.3.5)

for the first derivative, and

d2y

dx2
= Ay′′

j + By′′
j+1 (3.3.6)

for the second derivative. Since A = 1 at xj , A = 0 at xj+1, while B is just the
other way around, (3.3.6) shows that y ′′ is just the tabulated second derivative, and
also that the second derivative will be continuous across (e.g.) the boundary between
the two intervals (xj−1, xj) and (xj , xj+1).

The only problem now is that we supposed the y ′′
i ’s to be known, when, actually,

they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y ′′

i .
The required equations are obtained by setting equation (3.3.5) evaluated for

x = xj in the interval (xj−1, xj) equal to the same equation evaluated for x = xj but
in the interval (xj , xj+1). With some rearrangement, this gives (for j = 2, . . . , N−1)

xj − xj−1

6
y′′

j−1 +
xj+1 − xj−1

3
y′′

j +
xj+1 − xj

6
y′′

j+1 =
yj+1 − yj

xj+1 − xj
− yj − yj−1

xj − xj−1

(3.3.7)

These are N − 2 linear equations in the N unknowns y ′′
i , i = 1, . . . , N . Therefore

there is a two-parameter family of possible solutions.
For a unique solution, we need to specify two further conditions, typically taken

as boundary conditions at x1 and xN . The most common ways of doing this are either
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• set one or both of y ′′
1 and y′′

N equal to zero, giving the so-called natural
cubic spline, which has zero second derivative on one or both of its
boundaries, or

• set either of y′′
1 and y′′

N to values calculated from equation (3.3.5) so as
to make the first derivative of the interpolating function have a specified
value on either or both boundaries.

One reason that cubic splines are especially practical is that the set of equations
(3.3.7), along with the two additional boundary conditions, are not only linear, but
also tridiagonal. Each y ′′

j is coupled only to its nearest neighbors at j±1. Therefore,
the equations can be solved in O(N) operations by the tridiagonal algorithm (§2.4).
That algorithm is concise enough to build right into the spline calculational routine.
This makes the routine not completely transparent as an implementation of (3.3.7),
so we encourage you to study it carefully, comparing with tridag (§2.4).

SUBROUTINE spline(x,y,n,yp1,ypn,y2)
INTEGER n,NMAX
REAL yp1,ypn,x(n),y(n),y2(n)
PARAMETER (NMAX=500)

Given arrays x(1:n) and y(1:n) containing a tabulated function, i.e., yi = f(xi), with
x1 < x2 < . . . < xN , and given values yp1 and ypn for the first derivative of the inter-
polating function at points 1 and n, respectively, this routine returns an array y2(1:n) of
length n which contains the second derivatives of the interpolating function at the tabulated
points xi. If yp1 and/or ypn are equal to 1 × 1030 or larger, the routine is signaled to set
the corresponding boundary condition for a natural spline, with zero second derivative on
that boundary.
Parameter: NMAX is the largest anticipated value of n.

INTEGER i,k
REAL p,qn,sig,un,u(NMAX)
if (yp1.gt..99e30) then The lower boundary condition is set either to be

“natural”y2(1)=0.
u(1)=0.

else or else to have a specified first derivative.
y2(1)=-0.5
u(1)=(3./(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1)

endif
do 11 i=2,n-1 This is the decomposition loop of the tridiagonal

algorithm. y2 and u are used for temporary
storage of the decomposed factors.

sig=(x(i)-x(i-1))/(x(i+1)-x(i-1))
p=sig*y2(i-1)+2.
y2(i)=(sig-1.)/p
u(i)=(6.*((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))

* /(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*u(i-1))/p
enddo 11

if (ypn.gt..99e30) then The upper boundary condition is set either to be
“natural”qn=0.

un=0.
else or else to have a specified first derivative.

qn=0.5
un=(3./(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1)))

endif
y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.)
do 12 k=n-1,1,-1 This is the backsubstitution loop of the tridiago-

nal algorithm.y2(k)=y2(k)*y2(k+1)+u(k)
enddo 12

return
END

It is important to understand that the program spline is called only once to
process an entire tabulated function in arrays x i and yi. Once this has been done,
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values of the interpolated function for any value of x are obtained by calls (as many
as desired) to a separate routine splint (for “spline interpolation”):

SUBROUTINE splint(xa,ya,y2a,n,x,y)
INTEGER n
REAL x,y,xa(n),y2a(n),ya(n)

Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (with the
xai’s in order), and given the array y2a(1:n), which is the output from spline above,
and given a value of x, this routine returns a cubic-spline interpolated value y.

INTEGER k,khi,klo
REAL a,b,h
klo=1 We will find the right place in the table by means of bisection.

This is optimal if sequential calls to this routine are at random
values of x. If sequential calls are in order, and closely
spaced, one would do better to store previous values of
klo and khi and test if they remain appropriate on the
next call.

khi=n
1 if (khi-klo.gt.1) then

k=(khi+klo)/2
if(xa(k).gt.x)then

khi=k
else

klo=k
endif

goto 1
endif klo and khi now bracket the input value of x.
h=xa(khi)-xa(klo)
if (h.eq.0.) pause ’bad xa input in splint’ The xa’s must be distinct.
a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
y=a*ya(klo)+b*ya(khi)+

* ((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2)/6.
return
END

CITED REFERENCES AND FURTHER READING:

De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §§4.4–4.5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomial interpolation, to compute a function f(x) from a
set of tabulated xi’s and fi’s. Then you will need a fast way of finding your place
in the table of xi’s, given some particular value x at which the function evaluation
is desired. This problem is not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, the problem is this: Given an array of abscissas xx(j), j=1, 2, . . . ,n,
with the elements either monotonically increasing or monotonically decreasing, and
given a number x, find an integer j such that x lies between xx(j) and xx(j+1). For
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this task, let us define fictitious array elementsxx(0) andxx(n+1) equal to plus or
minus infinity (in whichever order is consistent with the monotonicity of the table).
Thenj will always be between 0 andn, inclusive; a returned value of 0 indicates
“off-scale” at one end of the table,n indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do better thanbisection,
which will find the right place in the table in aboutlog2n tries. We already did use
bisection in the spline evaluation routinesplint of the preceding section, so you
might glance back at that. Standing by itself, a bisection routine looks like this:

SUBROUTINE locate(xx,n,x,j)
INTEGER j,n
REAL x,xx(n)

Given an array xx(1:n), and given a value x, returns a value j such that x is between
xx(j) and xx(j+1). xx(1:n) must be monotonic, either increasing or decreasing. j=0
or j=n is returned to indicate that x is out of range.

INTEGER jl,jm,ju
jl=0 Initialize lower
ju=n+1 and upper limits.

10 if(ju-jl.gt.1)then If we are not yet done,
jm=(ju+jl)/2 compute a midpoint,
if((xx(n).ge.xx(1)).eqv.(x.ge.xx(jm)))then

jl=jm and replace either the lower limit
else

ju=jm or the upper limit, as appropriate.
endif

goto 10 Repeat until
endif the test condition 10 is satisfied.
if(x.eq.xx(1))then Then set the output

j=1
else if(x.eq.xx(n))then

j=n-1
else

j=jl
endif
return and return.
END

Note the use of the logical equality relation.eqv., which is true when its
two logical operands are either both true or both false. This relation allows the
routine to work for both monotonically increasing and monotonically decreasing
orders ofxx(1:n).

Search with Correlated Values
Sometimes you will be in the situation of searching a large table many times,

and with nearly identical abscissas on consecutive searches. For example, you
may be generating a function that is used on the right-hand side of a differential
equation: Most differential-equation integrators, as we shall see in Chapter 16, call
for right-hand side evaluations at points that hop back and forth a bit, but whose
trend moves slowly in the direction of the integration.

In such cases it is wasteful to do a full bisection,ab initio, on each call. The
following routine instead starts with a guessed position in the table. It first “hunts,”
either up or down, in increments of 1, then 2, then 4, etc., until the desired value is
bracketed. Second, it then bisects in the bracketed interval. At worst, this routine is
about a factor of 2 slower thanlocate above (if the hunt phase expands to include
the whole table). At best, it can be a factor oflog2n faster thanlocate, if the desired
point is usually quite close to the input guess. Figure 3.4.1 compares the two routines.
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hunt phase

bisection phase

1 7 10

8

14 22

32

38

321
(a)

(b)

51

64

Figure 3.4.1. (a) The routine locate finds a table entry by bisection. Shown here is the sequence
of steps that converge to element 51 in a table of length 64. (b) The routine hunt searches from a
previous known position in the table by increasing steps, then converges by bisection. Shown here is a
particularly unfavorable example, converging to element 32 from element 7. A favorable example would
be convergence to an element near 7, such as 9, which would require just three “hops.”

SUBROUTINE hunt(xx,n,x,jlo)
INTEGER jlo,n
REAL x,xx(n)

Given an array xx(1:n), and given a value x, returns a value jlo such that x is between
xx(jlo) and xx(jlo+1). xx(1:n) must be monotonic, either increasing or decreasing.
jlo=0 or jlo=n is returned to indicate that x is out of range. jlo on input is taken as
the initial guess for jlo on output.

INTEGER inc,jhi,jm
LOGICAL ascnd
ascnd=xx(n).ge.xx(1) True if ascending order of table, false otherwise.
if(jlo.le.0.or.jlo.gt.n)then Input guess not useful. Go immediately to bisection.

jlo=0
jhi=n+1
goto 3

endif
inc=1 Set the hunting increment.
if(x.ge.xx(jlo).eqv.ascnd)then Hunt up:

1 jhi=jlo+inc
if(jhi.gt.n)then Done hunting, since off end of table.

jhi=n+1
else if(x.ge.xx(jhi).eqv.ascnd)then Not done hunting,

jlo=jhi
inc=inc+inc so double the increment
goto 1 and try again.

endif Done hunting, value bracketed.
else Hunt down:

jhi=jlo
2 jlo=jhi-inc

if(jlo.lt.1)then Done hunting, since off end of table.
jlo=0

else if(x.lt.xx(jlo).eqv.ascnd)then Not done hunting,
jhi=jlo
inc=inc+inc so double the increment
goto 2 and try again.

endif Done hunting, value bracketed.
endif Hunt is done, so begin the final bisection phase:

3 if(jhi-jlo.eq.1)then
if(x.eq.xx(n))jlo=n-1
if(x.eq.xx(1))jlo=1



3.5 Coefficients of the Interpolating Polynomial 113

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

return
endif
jm=(jhi+jlo)/2
if(x.ge.xx(jm).eqv.ascnd)then

jlo=jm
else

jhi=jm
endif
goto 3
END

After the Hunt

The problem: Routines locate and hunt return an index j such that your
desired value lies between table entries xx(j) and xx(j+1), where xx(1:n) is the
full length of the table. But, to obtain an m-point interpolated value using a routine
like polint (§3.1) or ratint (§3.2), you need to supply much shorter xx and yy
arrays, of length m. How do you make the connection?

The solution: Calculate

k = min(max(j-(m-1)/2,1),n+1-m)

This expression produces the index of the leftmost member of an m-point set of
points centered (insofar as possible) between j and j+1, but bounded by 1 at the
left and n at the right. FORTRAN then lets you call the interpolation routine with
array addresses offset by k, e.g.,

call polint(xx(k),yy(k),m, . . . )

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §6.2.1.

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not the value of the interpolating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneous interpolated values of the function and of several of its derivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e., its convolution with powers of x)
are known analytically.

However, please be certain that the coefficients are what you need. Generally the
coefficients of the interpolating polynomial can be determined much less accurately
than its value at a desired abscissa. Therefore it is not a good idea to determine the
coefficients only for use in calculating interpolating values. Values thus calculated
will not pass exactly through the tabulated points, for example, while values computed
by the routines in §3.1–§3.3 will pass exactly through such points.
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Also, you should not mistake the interpolating polynomial (and its coefficients)
for its cousin, the best fit polynomial through a data set. Fitting is a smoothing
process, since the number of fitted coefficients is typically much less than the
number of data points. Therefore, fitted coefficients can be accurately and stably
determined even in the presence of statistical errors in the tabulated values. (See
§14.8.) Interpolation, where the number of coefficients and number of tabulated
points are equal, takes the tabulated values as perfect. If they in fact contain statistical
errors, these can be magnified into oscillations of the interpolating polynomial in
between the tabulated points.

As before, we take the tabulated points to be y i ≡ y(xi). If the interpolating
polynomial is written as

y = c1 + c2x + c3x
2 + · · · + cNxN−1 (3.5.1)

then the ci’s are required to satisfy the linear equation




1 x1 x2
1 · · · xN−1

1

1 x2 x2
2 · · · xN−1

2
...

...
...

...
1 xN x2

N · · · xN−1
N



·




c1

c2

...
cN




=




y1

y2

...
yN




(3.5.2)

This is a Vandermonde matrix, as described in §2.8. One could in principle solve
equation (3.5.2) by standard techniques for linear equations generally (§2.3); however
the special method that was derived in §2.8 is more efficient by a large factor, of
order N , so it is much better.

Remember that Vandermonde systems can be quite ill-conditioned. In such a
case, no numerical method is going to give a very accurate answer. Such cases do
not, please note, imply any difficulty in finding interpolated values by the methods
of §3.1, but only difficulty in finding coefficients.

Like the routine in §2.8, the following is due to G.B. Rybicki.

SUBROUTINE polcoe(x,y,n,cof)
INTEGER n,NMAX
REAL cof(n),x(n),y(n)
PARAMETER (NMAX=15) Largest anticipated value of n.
Given arrays x(1:n) and y(1:n) containing a tabulated function yi = f(xi), this routine

returns an array of coefficients cof(1:n), such that yi =
∑

j cofjx
j−1
i .

INTEGER i,j,k
REAL b,ff,phi,s(NMAX)
do 11 i=1,n

s(i)=0.
cof(i)=0.

enddo 11

s(n)=-x(1)
do 13 i=2,n Coefficients si of the master polynomial P (x) are found

by recurrence.do 12 j=n+1-i,n-1
s(j)=s(j)-x(i)*s(j+1)

enddo 12

s(n)=s(n)-x(i)
enddo 13

do 16 j=1,n
phi=n
do 14 k=n-1,1,-1 The quantity phi =

∏
j �=k(xj −xk) is found as a deriva-

tive of P (xj).
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phi=k*s(k+1)+x(j)*phi
enddo 14

ff=y(j)/phi
b=1. Coefficients of polynomials in each term of the Lagrange

formula are found by synthetic division of P (x) by
(x − xj). The solution ck is accumulated.

do 15 k=n,1,-1
cof(k)=cof(k)+b*ff
b=s(k)+x(j)*b

enddo 15

enddo 16

return
END

Another Method

Another technique is to make use of the function value interpolation routine
already given (polint §3.1). If we interpolate (or extrapolate) to find the value of
the interpolating polynomial at x = 0, then this value will evidently be c 1. Now
we can subtract c1 from the yi’s and divide each by its corresponding x i. Throwing
out one point (the one with smallest xi is a good candidate), we can repeat the
procedure to find c2, and so on.

It is not instantly obvious that this procedure is stable, but we have generally
found it to be somewhat more stable than the routine immediately preceding. This
method is of order N 3, while the preceding one was of order N 2. You will
find, however, that neither works very well for large N , because of the intrinsic
ill-condition of the Vandermonde problem. In single precision, N up to 8 or 10 is
satisfactory; about double this in double precision.

SUBROUTINE polcof(xa,ya,n,cof)
INTEGER n,NMAX
REAL cof(n),xa(n),ya(n)
PARAMETER (NMAX=15) Largest anticipated value of n.

C USES polint
Given arrays xa(1:n) and ya(1:n) of length n containing a tabulated function yai =
f(xai), this routine returns an array of coefficients cof(1:n), also of length n, such that

yai =
∑

j cofjxa
j−1
i .

INTEGER i,j,k
REAL dy,xmin,x(NMAX),y(NMAX)
do 11 j=1,n

x(j)=xa(j)
y(j)=ya(j)

enddo 11

do 14 j=1,n
call polint(x,y,n+1-j,0.,cof(j),dy) This is the polynomial interpolation rou-

tine of §3.1. We extrapolate to x =
0.

xmin=1.e38
k=0
do 12 i=1,n+1-j Find the remaining xi of smallest abso-

lute value,if (abs(x(i)).lt.xmin)then
xmin=abs(x(i))
k=i

endif
if(x(i).ne.0.)y(i)=(y(i)-cof(j))/x(i) (meanwhile reducing all the terms)

enddo 12

do 13 i=k+1,n+1-j and eliminate it.
y(i-1)=y(i)
x(i-1)=x(i)

enddo 13

enddo 14

return
END
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If the point x = 0 is not in (or at least close to) the range of the tabulated x i’s,
then the coefficients of the interpolating polynomial will in general become very large.
However, the real “information content” of the coefficients is in small differences
from the “translation-induced” large values. This is one cause of ill-conditioning,
resulting in loss of significance and poorly determined coefficients. You should
consider redefining the origin of the problem, to put x = 0 in a sensible place.

Another pathology is that, if too high a degree of interpolation is attempted on
a smooth function, the interpolating polynomial will attempt to use its high-degree
coefficients, in combinations with large and almost precisely canceling combinations,
to match the tabulated values down to the last possible epsilon of accuracy. This
effect is the same as the intrinsic tendency of the interpolating polynomial values to
oscillate (wildly) between its constrained points, and would be present even if the
machine’s floating precision were infinitely good. The above routines polcoe and
polcof have slightly different sensitivities to the pathologies that can occur.

Are you still quite certain that using the coefficients is a good idea?

CITED REFERENCES AND FURTHER READING:

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §5.2.

3.6 Interpolation in Two or More Dimensions

In multidimensional interpolation, we seek an estimate of y(x1, x2, . . . , xn)
from an n-dimensional grid of tabulated values y and n one-dimensional vec-
tors giving the tabulated values of each of the independent variables x 1, x2, . . . ,
xn. We will not here consider the problem of interpolating on a mesh that is not
Cartesian, i.e., has tabulated function values at “random” points in n-dimensional
space rather than at the vertices of a rectangular array. For clarity, we will consider
explicitly only the case of two dimensions, the cases of three or more dimensions
being analogous in every way.

In two dimensions, we imagine that we are given a matrix of functional values
ya(j,k), where j varies from 1 to m, and k varies from 1 to n. We are also given
an array x1a of length m, and an array x2a of length n. The relation of these input
quantities to an underlying function y(x1, x2) is

ya(j,k) = y(x1a(j), x2a(k)) (3.6.1)

We want to estimate, by interpolation, the function y at some untabulated point
(x1, x2).

An important concept is that of the grid square in which the point (x 1, x2)
falls, that is, the four tabulated points that surround the desired interior point. For
convenience, we will number these points from 1 to 4, counterclockwise starting
from the lower left (see Figure 3.6.1). More precisely, if

x1a(j) ≤ x1 ≤ x1a(j+1)

x2a(k) ≤ x2 ≤ x2a(k+1)
(3.6.2)
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Figure 3.6.1. (a) Labeling of points used in the two-dimensional interpolation routines bcuint and
bcucof. (b) For each of the four points in (a), the user supplies one function value, two first derivatives,
and one cross-derivative, a total of 16 numbers.

defines j and k, then

y1 ≡ ya(j,k)

y2 ≡ ya(j+1,k)

y3 ≡ ya(j+1,k+1)

y4 ≡ ya(j,k+1)

(3.6.3)

The simplest interpolation in two dimensions is bilinear interpolation on the
grid square. Its formulas are:

t ≡ (x1 − x1a(j))/(x1a(j+1)− x1a(j))

u ≡ (x2 − x2a(k))/(x2a(k+1)− x2a(k))
(3.6.4)

(so that t and u each lie between 0 and 1), and

y(x1, x2) = (1 − t)(1 − u)y1 + t(1 − u)y2 + tuy3 + (1 − t)uy4 (3.6.5)

Bilinear interpolation is frequently “close enough for government work.” As
the interpolating point wanders from grid square to grid square, the interpolated
function value changes continuously. However, the gradient of the interpolated
function changes discontinuously at the boundaries of each grid square.

There are two distinctly different directions that one can take in going beyond
bilinear interpolation to higher-order methods: One can use higher order to obtain
increased accuracy for the interpolated function (for sufficiently smooth functions!),
without necessarily trying to fix up the continuity of the gradient and higher
derivatives. Or, one can make use of higher order to enforce smoothness of some of
these derivatives as the interpolating point crosses grid-square boundaries. We will
now consider each of these two directions in turn.
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Higher Order for Accuracy

The basic idea is to break up the problem into a succession of one-dimensional
interpolations. If we want to do m-1 order interpolation in the x 1 direction, and n-1
order in the x2 direction, we first locate an m× n sub-block of the tabulated function
matrix that contains our desired point (x1, x2). We then do m one-dimensional
interpolations in the x2 direction, i.e., on the rows of the sub-block, to get function
values at the points (x1a(j), x2), j = 1, . . . , m. Finally, we do a last interpolation
in the x1 direction to get the answer. If we use the polynomial interpolation routine
polint of §3.1, and a sub-block which is presumed to be already located (and copied
into an m by n array ya), the procedure looks like this:

SUBROUTINE polin2(x1a,x2a,ya,m,n,x1,x2,y,dy)
INTEGER m,n,NMAX,MMAX
REAL dy,x1,x2,y,x1a(m),x2a(n),ya(m,n)
PARAMETER (NMAX=20,MMAX=20) Maximum expected values of n and m.

C USES polint
Given arrays x1a(1:m) and x2a(1:n) of independent variables, and an m by n array of
function values ya(1:m,1:n), tabulated at the grid points defined by x1a and x2a; and
given values x1 and x2 of the independent variables; this routine returns an interpolated
function value y, and an accuracy indication dy (based only on the interpolation in the x1
direction, however).

INTEGER j,k
REAL ymtmp(MMAX),yntmp(NMAX)
do 12 j=1,m Loop over rows.

do 11 k=1,n Copy the row into temporary storage.
yntmp(k)=ya(j,k)

enddo 11

call polint(x2a,yntmp,n,x2,ymtmp(j),dy) Interpolate answer into temporary stor-
age.enddo 12

call polint(x1a,ymtmp,m,x1,y,dy) Do the final interpolation.
return
END

Higher Order for Smoothness: Bicubic Interpolation

We will give two methods that are in common use, and which are themselves
not unrelated. The first is usually called bicubic interpolation.

Bicubic interpolation requires the user to specify at each grid point not just
the function y(x1, x2), but also the gradients ∂y/∂x1 ≡ y,1, ∂y/∂x2 ≡ y,2 and
the cross derivative ∂2y/∂x1∂x2 ≡ y,12. Then an interpolating function that is
cubic in the scaled coordinates t and u (equation 3.6.4) can be found, with the
following properties: (i) The values of the function and the specified derivatives
are reproduced exactly on the grid points, and (ii) the values of the function and
the specified derivatives change continuously as the interpolating point crosses from
one grid square to another.

It is important to understand that nothing in the equations of bicubic interpolation
requires you to specify the extra derivatives correctly! The smoothness properties are
tautologically “ forced,” and have nothing to do with the “accuracy” of the specified
derivatives. It is a separate problem for you to decide how to obtain the values that
are specified. The better you do, the more accurate the interpolation will be. But
it will be smooth no matter what you do.
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Best of all is to know the derivatives analytically, or to be able to compute them
accurately by numerical means, at the grid points. Next best is to determine them by
numerical differencing from the functional values already tabulated on the grid. The
relevant code would be something like this (using centered differencing):

y1a(j,k)=(ya(j+1,k)-ya(j-1,k))/(x1a(j+1)-x1a(j-1))
y2a(j,k)=(ya(j,k+1)-ya(j,k-1))/(x2a(k+1)-x2a(k-1))
y12a(j,k)=(ya(j+1,k+1)-ya(j+1,k-1)-ya(j-1,k+1)+ya(j-1,k-1))

/((x1a(j+1)-x1a(j-1))*(x2a(k+1)-x2a(k-1)))

To do a bicubic interpolation within a grid square, given the function y and the
derivatives y1, y2, y12 at each of the four corners of the square, there are two steps:
First obtain the sixteen quantities cij , i, j = 1, . . . , 4 using the routine bcucof
below. (The formulas that obtain the c’s from the function and derivative values
are just a complicated linear transformation, with coefficients which, having been
determined once in the mists of numerical history, can be tabulated and forgotten.)
Next, substitute the c’s into any or all of the following bicubic formulas for function
and derivatives, as desired:

y(x1, x2) =
4∑

i=1

4∑

j=1

cijt
i−1uj−1

y,1(x1, x2) =
4∑

i=1

4∑

j=1

(i − 1)cijt
i−2uj−1(dt/dx1)

y,2(x1, x2) =
4∑

i=1

4∑

j=1

(j − 1)cijt
i−1uj−2(du/dx2)

y,12(x1, x2) =
4∑

i=1

4∑

j=1

(i − 1)(j − 1)cijt
i−2uj−2(dt/dx1)(du/dx2)

(3.6.6)

where t and u are again given by equation (3.6.4).

SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c)
REAL d1,d2,c(4,4),y(4),y1(4),y12(4),y2(4)

Given arrays y,y1,y2, and y12, each of length 4, containing the function, gradients, and
cross derivative at the four grid points of a rectangular grid cell (numbered counterclockwise
from the lower left), and given d1 and d2, the length of the grid cell in the 1- and 2-
directions, this routine returns the table c(1:4,1:4) that is used by routine bcuint for
bicubic interpolation.

INTEGER i,j,k,l
REAL d1d2,xx,cl(16),wt(16,16),x(16)
SAVE wt
DATA wt/1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,8*0,3,0,-9,6,-2,0,6,-4

* ,10*0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,2*0,6,-4
* ,4*0,1,0,-3,2,-2,0,6,-4,1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,2
* ,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0,-6,4,2*0,3,-2
* ,0,1,-2,1,5*0,-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2
* ,10*0,-3,3,2*0,2,-2,2*0,-1,1,6*0,3,-3,2*0,-2,2
* ,5*0,1,-2,1,0,-2,4,-2,0,1,-2,1,9*0,-1,2,-1,0,1,-2,1
* ,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0,2,-2,2*0,-1,1/

d1d2=d1*d2
do 11 i=1,4 Pack a temporary vector x.

x(i)=y(i)
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x(i+4)=y1(i)*d1
x(i+8)=y2(i)*d2
x(i+12)=y12(i)*d1d2

enddo 11

do 13 i=1,16 Matrix multiply by the stored table.
xx=0.
do 12 k=1,16

xx=xx+wt(i,k)*x(k)
enddo 12

cl(i)=xx
enddo 13

l=0
do 15 i=1,4 Unpack the result into the output table.

do 14 j=1,4
l=l+1
c(i,j)=cl(l)

enddo 14

enddo 15

return
END

The implementation of equation (3.6.6), which performs a bicubic interpolation,
returns the interpolated function value and the two gradient values, and uses the
above routine bcucof, is simply:

SUBROUTINE bcuint(y,y1,y2,y12,x1l,x1u,x2l,x2u,x1,x2,ansy,
* ansy1,ansy2)

REAL ansy,ansy1,ansy2,x1,x1l,x1u,x2,x2l,x2u,y(4),y1(4),
* y12(4),y2(4)
C USES bcucof

Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described
in bcucof); x1l and x1u, the lower and upper coordinates of the grid square in the 1-
direction; x2l and x2u likewise for the 2-direction; and x1,x2, the coordinates of the
desired point for the interpolation. The interpolated function value is returned as ansy,
and the interpolated gradient values as ansy1 and ansy2. This routine calls bcucof.

INTEGER i
REAL t,u,c(4,4)
call bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) Get the c’s.
if(x1u.eq.x1l.or.x2u.eq.x2l)pause ’bad input in bcuint’
t=(x1-x1l)/(x1u-x1l) Equation (3.6.4).
u=(x2-x2l)/(x2u-x2l)
ansy=0.
ansy2=0.
ansy1=0.
do 11 i=4,1,-1 Equation (3.6.6).

ansy=t*ansy+((c(i,4)*u+c(i,3))*u+c(i,2))*u+c(i,1)
ansy2=t*ansy2+(3.*c(i,4)*u+2.*c(i,3))*u+c(i,2)
ansy1=u*ansy1+(3.*c(4,i)*t+2.*c(3,i))*t+c(2,i)

enddo 11

ansy1=ansy1/(x1u-x1l)
ansy2=ansy2/(x2u-x2l)
return
END

Higher Order for Smoothness: Bicubic Spline

The other common technique for obtaining smoothness in two-dimensional
interpolation is the bicubic spline. Actually, this is equivalent to a special case
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of bicubic interpolation: The interpolating function is of the same functional
form as equation (3.6.6); the values of the derivatives at the grid points are,
however, determined “globally” by one-dimensional splines. However, bicubic
splines are usually implemented in a form that looks rather different from the
above bicubic interpolation routines, instead looking much closer in form to the
routine polin2 above: To interpolate one functional value, one performs m one-
dimensional splines across the rows of the table, followed by one additional
one-dimensional spline down the newly created column. It is a matter of taste
(and trade-off between time and memory) as to how much of this process one
wants to precompute and store. Instead of precomputing and storing all the
derivative information (as in bicubic interpolation), spline users typically precom-
pute and store only one auxiliary table, of second derivatives in one direction
only. Then one need only do spline evaluations (not constructions) for the m
row splines; one must still do a construction and an evaluation for the final col-
umn spline. (Recall that a spline construction is a process of order N , while a
spline evaluation is only of order log N — and that is just to find the place in
the table!)

Here is a routine to precompute the auxiliary second-derivative table:

SUBROUTINE splie2(x1a,x2a,ya,m,n,y2a)
INTEGER m,n,NN
REAL x1a(m),x2a(n),y2a(m,n),ya(m,n)
PARAMETER (NN=100) Maximum expected value of n and m.

C USES spline
Given an m by n tabulated function ya(1:m,1:n), and tabulated independent variables
x2a(1:n), this routine constructs one-dimensional natural cubic splines of the rows of ya
and returns the second-derivatives in the array y2a(1:m,1:n). (The array x1a is included
in the argument list merely for consistency with routine splin2.)

INTEGER j,k
REAL y2tmp(NN),ytmp(NN)
do 13 j=1,m

do 11 k=1,n
ytmp(k)=ya(j,k)

enddo 11

call spline(x2a,ytmp,n,1.e30,1.e30,y2tmp) Values 1×1030 signal a natural spline.
do 12 k=1,n

y2a(j,k)=y2tmp(k)
enddo 12

enddo 13

return
END

After the above routine has been executed once, any number of bicubic spline
interpolations can be performed by successive calls of the following routine:

SUBROUTINE splin2(x1a,x2a,ya,y2a,m,n,x1,x2,y)
INTEGER m,n,NN
REAL x1,x2,y,x1a(m),x2a(n),y2a(m,n),ya(m,n)
PARAMETER (NN=100) Maximum expected value of n and m.

C USES spline,splint
Given x1a, x2a, ya, m, n as described in splie2 and y2a as produced by that routine;
and given a desired interpolating point x1,x2; this routine returns an interpolated function
value y by bicubic spline interpolation.

INTEGER j,k
REAL y2tmp(NN),ytmp(NN),yytmp(NN)
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do 12 j=1,m Perform m evaluations of the row splines
constructed by splie2, using the one-
dimensional spline evaluator splint.

do 11 k=1,n
ytmp(k)=ya(j,k)
y2tmp(k)=y2a(j,k)

enddo 11

call splint(x2a,ytmp,y2tmp,n,x2,yytmp(j))
enddo 12

call spline(x1a,yytmp,m,1.e30,1.e30,y2tmp) Construct the one-dimensional column spline
and evaluate it.call splint(x1a,yytmp,y2tmp,m,x1,y)

return
END
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