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Chapter 2. Solution of Linear

Algebraic Equations

2.0 Introduction

A set of linear algebraic equations looks like this:

a11x1 + a12x2 + a13x3 + · · · + a1NxN = b1

a21x1 + a22x2 + a23x3 + · · · + a2NxN = b2

a31x1 + a32x2 + a33x3 + · · · + a3NxN = b3

· · · · · ·
aM1x1 + aM2x2 + aM3x3 + · · · + aMNxN = bM

(2.0.1)

Here the N unknowns xj , j = 1, 2, . . . , N are related by M equations. The
coefficients aij with i = 1, 2, . . . , M and j = 1, 2, . . . , N are known numbers, as
are the right-hand side quantities bi, i = 1, 2, . . . , M .

Nonsingular versus Singular Sets of Equations

If N = M then there are as many equations as unknowns, and there is a good
chance of solving for a unique solution set of x j ’s. Analytically, there can fail to
be a unique solution if one or more of the M equations is a linear combination of
the others, a condition called row degeneracy, or if all equations contain certain
variables only in exactly the same linear combination, called column degeneracy.
(For square matrices, a row degeneracy implies a column degeneracy, and vice
versa.) A set of equations that is degenerate is called singular. We will consider
singular matrices in some detail in §2.6.

Numerically, at least two additional things can go wrong:
• While not exact linear combinations of each other, some of the equations

may be so close to linearly dependent that roundoff errors in the machine
render them linearly dependent at some stage in the solution process. In
this case your numerical procedure will fail, and it can tell you that it
has failed.

22
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• Accumulated roundoff errors in the solution process can swamp the true
solution. This problem particularly emerges if N is too large. The
numerical procedure does not fail algorithmically. However, it returns a
set of x’s that are wrong, as can be discovered by direct substitution back
into the original equations. The closer a set of equations is to being singular,
the more likely this is to happen, since increasingly close cancellations
will occur during the solution. In fact, the preceding item can be viewed
as the special case where the loss of significance is unfortunately total.

Much of the sophistication of complicated “linear equation-solving packages”
is devoted to the detection and/or correction of these two pathologies. As you
work with large linear sets of equations, you will develop a feeling for when such
sophistication is needed. It is difficult to give any firm guidelines, since there is no
such thing as a “typical” linear problem. But here is a rough idea: Linear sets with
N as large as 20 or 50 can be routinely solved in single precision (32 bit floating
representations) without resorting to sophisticated methods, if the equations are not
close to singular. With double precision (60 or 64 bits), this number can readily
be extended to N as large as several hundred, after which point the limiting factor
is generally machine time, not accuracy.

Even larger linear sets, N in the thousands or greater, can be solved when the
coefficients are sparse (that is, mostly zero), by methods that take advantage of the
sparseness. We discuss this further in §2.7.

At the other end of the spectrum, one seems just as often to encounter linear
problems which, by their underlying nature, are close to singular. In this case, you
might need to resort to sophisticated methods even for the case of N = 10 (though
rarely for N = 5). Singular value decomposition (§2.6) is a technique that can
sometimes turn singular problems into nonsingular ones, in which case additional
sophistication becomes unnecessary.

Matrices

Equation (2.0.1) can be written in matrix form as

A · x = b (2.0.2)

Here the raised dot denotes matrix multiplication, A is the matrix of coefficients, and
b is the right-hand side written as a column vector,

A =




a11 a12 . . . a1N

a21 a22 . . . a2N

· · ·
aM1 aM2 . . . aMN


 b =




b1

b2

· · ·
bM


 (2.0.3)

By convention, the first index on an element a ij denotes its row, the second
index its column. A computer will store the matrix A as a two-dimensional array.
However, computer memory is numbered sequentially by its address, and so is
intrinsically one-dimensional. Therefore the two-dimensional array A will, at the
hardware level, either be stored by columns in the order

a11, a21, . . . , aM1, a12, a22, . . . , aM2, . . . , a1N , a2N , . . . aMN
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Figure 2.0.1. A matrix of logical dimension m by n is stored in an array of physical dimension mp by np.
Locations marked by “x” contain extraneous information which may be left over from some previous use of
the physical array. Circled numbers show the actual ordering of the array in computer memory, not usually
relevant to the programmer. Note, however, that the logical array does not occupy consecutive memory
locations. To locate an (i,j) element correctly, a subroutine must be told mp and np, not just i and j.

or else stored by rows in the order

a11, a12, . . . , a1N , a21, a22, . . . , a2N , . . . , aM1, aM2, . . . aMN

FORTRAN always stores by columns, and user programs are generally allowed
to exploit this fact to their advantage. By contrast, C, Pascal, and other languages
generally store by rows. Note one confusing point in the terminology, that a matrix
which is stored by columns (as in FORTRAN) has its row (i.e., first) index changing
most rapidly as one goes linearly through memory, the opposite of a car’s odometer!

For most purposes you don’t need to know what the order of storage is, since
you reference an element by its two-dimensional address: a 34 = a(3,4). It is,
however, essential that you understand the difference between an array’s physical
dimensions and its logical dimensions. When you pass an array to a subroutine,
you must, in general, tell the subroutine both of these dimensions. The distinction
between them is this: It may happen that you have a 4 × 4 matrix stored in an array
dimensioned as 10 × 10. This occurs most frequently in practice when you have
dimensioned to the largest expected value of N , but are at the moment considering
a value of N smaller than that largest possible one. In the example posed, the 16
elements of the matrix do not occupy 16 consecutive memory locations. Rather they
are spread out among the 100 dimensioned locations of the array as if the whole
10 × 10 matrix were filled. Figure 2.0.1 shows an additional example.

If you have a subroutine to invert a matrix, its call might typically look like this:

call matinv(a,ai,n,np)
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Here the subroutine has to be told both the logical size of the matrix that
you want to invert (here n = 4), and the physical size of the array in which it is
stored (here np = 10).

This seems like a trivial point, and we are sorry to belabor it. But it turns out that
most reported failures of standard linear equation and matrix manipulation packages
are due to user errors in passing inappropriate logical or physical dimensions!

Tasks of Computational Linear Algebra

We will consider the following tasks as falling in the general purview of this
chapter:

• Solution of the matrix equation A ·x = b for an unknown vector x, where A
is a square matrix of coefficients, raised dot denotes matrix multiplication,
and b is a known right-hand side vector (§2.1–§2.10).

• Solution of more than one matrix equation A · x j = bj , for a set of vectors
xj , j = 1, 2, . . . , each corresponding to a different, known right-hand side
vector bj . In this task the key simplification is that the matrix A is held
constant, while the right-hand sides, the b’s, are changed (§2.1–§2.10).

• Calculation of the matrix A−1 which is the matrix inverse of a square matrix
A, i.e., A · A−1 = A−1 · A = 1, where 1 is the identity matrix (all zeros
except for ones on the diagonal). This task is equivalent, for an N × N
matrix A, to the previous task with N different bj’s (j = 1, 2, . . . , N),
namely the unit vectors (bj = all zero elements except for 1 in the jth
component). The corresponding x’s are then the columns of the matrix
inverse of A (§2.1 and §2.3).

• Calculation of the determinant of a square matrix A (§2.3).

If M < N , or if M = N but the equations are degenerate, then there
are effectively fewer equations than unknowns. In this case there can be either no
solution, or else more than one solution vector x. In the latter event, the solution space
consists of a particular solution xp added to any linear combination of (typically)
N − M vectors (which are said to be in the nullspace of the matrix A). The task
of finding the solution space of A involves

• Singular value decomposition of a matrix A.

This subject is treated in §2.6.
In the opposite case there are more equations than unknowns, M > N . When

this occurs there is, in general, no solution vector x to equation (2.0.1), and the
set of equations is said to be overdetermined. It happens frequently, however, that
the best “compromise” solution is sought, the one that comes closest to satisfying
all equations simultaneously. If closeness is defined in the least-squares sense, i.e.,
that the sum of the squares of the differences between the left- and right-hand sides
of equation (2.0.1) be minimized, then the overdetermined linear problem reduces to a
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(usually) solvable linear problem, called the

• Linear least-squares problem.

The reduced set of equations to be solved can be written as the N×N set of equations

(AT · A) · x = (AT · b) (2.0.4)

where AT denotes the transpose of the matrix A. Equations (2.0.4) are called the
normal equations of the linear least-squares problem. There is a close connection
between singular value decomposition and the linear least-squares problem, and the
latter is also discussed in §2.6. You should be warned that direct solution of the
normal equations (2.0.4) is not generally the best way to find least-squares solutions.

Some other topics in this chapter include

• Iterative improvement of a solution (§2.5)
• Various special forms: symmetric positive-definite (§2.9), tridiagonal

(§2.4), band diagonal (§2.4), Toeplitz (§2.8), Vandermonde (§2.8), sparse
(§2.7)

• Strassen’s “fast matrix inversion” (§2.11).

Standard Subroutine Packages

We cannot hope, in this chapter or in this book, to tell you everything there is
to know about the tasks that have been defined above. In many cases you will have
no alternative but to use sophisticated black-box program packages. Several good
ones are available. LINPACK was developed at Argonne National Laboratories and
deserves particular mention because it is published, documented, and available for
free use. A successor to LINPACK, LAPACK, is now becoming available. Packages
available commercially include those in the IMSL and NAG libraries.

You should keep in mind that the sophisticated packages are designed with very
large linear systems in mind. They therefore go to great effort to minimize not only
the number of operations, but also the required storage. Routines for the various
tasks are usually provided in several versions, corresponding to several possible
simplifications in the form of the input coefficient matrix: symmetric, triangular,
banded, positive definite, etc. If you have a large matrix in one of these forms,
you should certainly take advantage of the increased efficiency provided by these
different routines, and not just use the form provided for general matrices.

There is also a great watershed dividing routines that are direct (i.e., execute
in a predictable number of operations) from routines that are iterative (i.e., attempt
to converge to the desired answer in however many steps are necessary). Iterative
methods become preferable when the battle against loss of significance is in danger
of being lost, either due to large N or because the problem is close to singular. We
will treat iterative methods only incompletely in this book, in §2.7 and in Chapters
18 and 19. These methods are important, but mostly beyond our scope. We will,
however, discuss in detail a technique which is on the borderline between direct
and iterative methods, namely the iterative improvement of a solution that has been
obtained by direct methods (§2.5).
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2.1 Gauss-Jordan Elimination

For inverting a matrix, Gauss-Jordan elimination is about as efficient as any
other method. For solving sets of linear equations, Gauss-Jordan elimination
produces both the solution of the equations for one or more right-hand side vectors
b, and also the matrix inverse A−1. However, its principal weaknesses are (i) that it
requires all the right-hand sides to be stored and manipulated at the same time, and
(ii) that when the inverse matrix is not desired, Gauss-Jordan is three times slower
than the best alternative technique for solving a single linear set (§2.3). The method’s
principal strength is that it is as stable as any other direct method, perhaps even a
bit more stable when full pivoting is used (see below).

If you come along later with an additional right-hand side vector, you can
multiply it by the inverse matrix, of course. This does give an answer, but one that is
quite susceptible to roundoff error, not nearly as good as if the new vector had been
included with the set of right-hand side vectors in the first instance.

For these reasons, Gauss-Jordan elimination should usually not be your method
of first choice, either for solving linear equations or for matrix inversion. The
decomposition methods in §2.3 are better. Why do we give you Gauss-Jordan at all?
Because it is straightforward, understandable, solid as a rock, and an exceptionally
good “psychological” backup for those times that something is going wrong and you
think it might be your linear-equation solver.

Some people believe that the backup is more than psychological, that Gauss-
Jordan elimination is an “independent” numerical method. This turns out to be
mostly myth. Except for the relatively minor differences in pivoting, described
below, the actual sequence of operations performed in Gauss-Jordan elimination is
very closely related to that performed by the routines in the next two sections.
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For clarity, and to avoid writing endless ellipses (· · ·) we will write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N × N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below is,
of course, general.

Elimination on Column-Augmented Matrices

Consider the linear matrix equation




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


 ·






x11

x21

x31

x41


 �




x12

x22

x32

x42


 �




x13

x23

x33

x43


 �




y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44







=






b11
b21
b31
b41


 �




b12
b22
b32
b42


 �




b13
b23
b33
b43


 �




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





 (2.1.1)

Here the raised dot (·) signifies matrix multiplication, while the operator � just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the � operator.

It should not take you long to write out equation (2.1.1) and to see that it simply
states that xij is the ith component (i = 1, 2, 3, 4) of the vector solution of the jth
right-hand side (j = 1, 2, 3), the one whose coefficients are b ij , i = 1, 2, 3, 4; and
that the matrix of unknown coefficients y ij is the inverse matrix of aij . In other
words, the matrix solution of

[A] · [x1 � x2 � x3 � Y] = [b1 � b2 � b3 � 1] (2.1.2)

where A and Y are square matrices, the bi’s and xi’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A · x1 = b1 A · x2 = b2 A · x3 = b3 (2.1.3)
and

A · Y = 1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):
• Interchanging any two rows of A and the corresponding rows of the b’s

and of 1, does not change (or scramble in any way) the solution x’s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.

• Likewise, the solution set is unchanged and in no way scrambled if we
replace any row in A by a linear combination of itself and any other row,
as long as we do the same linear combination of the rows of the b’s and 1
(which then is no longer the identity matrix, of course).
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• Interchanging any two columns of A gives the same solution set only
if we simultaneously interchange corresponding rows of the x’s and of
Y. In other words, this interchange scrambles the order of the rows in
the solution. If we do this, we will need to unscramble the solution by
restoring the rows to their original order.

Gauss-Jordan elimination uses one or more of the above operations to reduce
the matrix A to the identity matrix. When this is accomplished, the right-hand side
becomes the solution set, as one sees instantly from (2.1.2).

Pivoting

In “Gauss-Jordan elimination with no pivoting,” only the second operation in
the above list is used. The first row is divided by the element a11 (this being a
trivial linear combination of the first row with any other row — zero coefficient for
the other row). Then the right amount of the first row is subtracted from each other
row to make all the remaining ai1’s zero. The first column of A now agrees with
the identity matrix. We move to the second column and divide the second row by
a22, then subtract the right amount of the second row from rows 1, 3, and 4, so as to
make their entries in the second column zero. The second column is now reduced
to the identity form. And so on for the third and fourth columns. As we do these
operations to A, we of course also do the corresponding operations to the b’s and to
1 (which by now no longer resembles the identity matrix in any way!).

Obviously we will run into trouble if we ever encounter a zero element on the
(then current) diagonal when we are going to divide by the diagonal element. (The
element that we divide by, incidentally, is called the pivot element or pivot.) Not so
obvious, but true, is the fact that Gauss-Jordan elimination with no pivoting (no use of
the first or third procedures in the above list) is numerically unstable in the presence
of any roundoff error, even when a zero pivot is not encountered. You must never do
Gauss-Jordan elimination (or Gaussian elimination, see below) without pivoting!

So what is this magic pivoting? Nothing more than interchanging rows (partial
pivoting) or rows and columns (full pivoting), so as to put a particularly desirable
element in the diagonal position from which the pivot is about to be selected. Since
we don’t want to mess up the part of the identity matrix that we have already built up,
we can choose among elements that are both (i) on rows below (or on) the one that
is about to be normalized, and also (ii) on columns to the right (or on) the column
we are about to eliminate. Partial pivoting is easier than full pivoting, because we
don’t have to keep track of the permutation of the solution vector. Partial pivoting
makes available as pivots only the elements already in the correct column. It turns
out that partial pivoting is “almost” as good as full pivoting, in a sense that can be
made mathematically precise, but which need not concern us here (for discussion
and references, see [1]). To show you both variants, we do full pivoting in the routine
in this section, partial pivoting in §2.3.

We have to state how to recognize a particularly desirable pivot when we see
one. The answer to this is not completely known theoretically. It is known, both
theoretically and in practice, that simply picking the largest (in magnitude) available
element as the pivot is a very good choice. A curiosity of this procedure, however, is
that the choice of pivot will depend on the original scaling of the equations. If we take
the third linear equation in our original set and multiply it by a factor of a million, it
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is almost guaranteed that it will contribute the first pivot; yet the underlying solution
of the equations is not changed by this multiplication! One therefore sometimes sees
routines which choose as pivot that element which would have been largest if the
original equations had all been scaled to have their largest coefficient normalized to
unity. This is called implicit pivoting. There is some extra bookkeeping to keep track
of the scale factors by which the rows would have been multiplied. (The routines in
§2.3 include implicit pivoting, but the routine in this section does not.)

Finally, let us consider the storage requirements of the method. With a little
reflection you will see that at every stage of the algorithm, either an element of A is
predictably a one or zero (if it is already in a part of the matrix that has been reduced
to identity form) or else the exactly corresponding element of the matrix that started
as 1 is predictably a one or zero (if its mate in A has not been reduced to the identity
form). Therefore the matrix 1 does not have to exist as separate storage: The matrix
inverse of A is gradually built up in A as the original A is destroyed. Likewise,
the solution vectors x can gradually replace the right-hand side vectors b and share
the same storage, since after each column in A is reduced, the corresponding row
entry in the b’s is never again used.

Here is the routine for Gauss-Jordan elimination with full pivoting:

SUBROUTINE gaussj(a,n,np,b,m,mp)
INTEGER m,mp,n,np,NMAX
REAL a(np,np),b(np,mp)
PARAMETER (NMAX=50)

Linear equation solution by Gauss-Jordan elimination, equation (2.1.1) above. a(1:n,1:n)
is an input matrix stored in an array of physical dimensions np by np. b(1:n,1:m) is an in-
put matrix containing the m right-hand side vectors, stored in an array of physical dimensions
np by mp. On output, a(1:n,1:n) is replaced by its matrix inverse, and b(1:n,1:m) is
replaced by the corresponding set of solution vectors.
Parameter: NMAX is the largest anticipated value of n.

INTEGER i,icol,irow,j,k,l,ll,indxc(NMAX),indxr(NMAX),
* ipiv(NMAX) The integer arrays ipiv, indxr, and indxc are used

for bookkeeping on the pivoting.REAL big,dum,pivinv
do 11 j=1,n

ipiv(j)=0
enddo 11

do 22 i=1,n This is the main loop over the columns to be re-
duced.big=0.

do 13 j=1,n This is the outer loop of the search for a pivot ele-
ment.if(ipiv(j).ne.1)then

do 12 k=1,n
if (ipiv(k).eq.0) then

if (abs(a(j,k)).ge.big)then
big=abs(a(j,k))
irow=j
icol=k

endif
endif

enddo 12

endif
enddo 13

ipiv(icol)=ipiv(icol)+1
We now have the pivot element, so we interchange rows, if needed, to put the pivot
element on the diagonal. The columns are not physically interchanged, only relabeled:
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indxc(i), the column of the ith pivot element, is the ith column that is reduced, while
indxr(i) is the row in which that pivot element was originally located. If indxr(i) �=
indxc(i) there is an implied column interchange. With this form of bookkeeping, the
solution b’s will end up in the correct order, and the inverse matrix will be scrambled
by columns.

if (irow.ne.icol) then
do 14 l=1,n

dum=a(irow,l)
a(irow,l)=a(icol,l)
a(icol,l)=dum

enddo 14

do 15 l=1,m
dum=b(irow,l)
b(irow,l)=b(icol,l)
b(icol,l)=dum

enddo 15

endif
indxr(i)=irow We are now ready to divide the pivot row by the pivot

element, located at irow and icol.indxc(i)=icol
if (a(icol,icol).eq.0.) pause ’singular matrix in gaussj’
pivinv=1./a(icol,icol)
a(icol,icol)=1.
do 16 l=1,n

a(icol,l)=a(icol,l)*pivinv
enddo 16

do 17 l=1,m
b(icol,l)=b(icol,l)*pivinv

enddo 17

do 21 ll=1,n Next, we reduce the rows...
if(ll.ne.icol)then ...except for the pivot one, of course.

dum=a(ll,icol)
a(ll,icol)=0.
do 18 l=1,n

a(ll,l)=a(ll,l)-a(icol,l)*dum
enddo 18

do 19 l=1,m
b(ll,l)=b(ll,l)-b(icol,l)*dum

enddo 19

endif
enddo 21

enddo 22 This is the end of the main loop over columns of the reduction.
do 24 l=n,1,-1 It only remains to unscramble the solution in view

of the column interchanges. We do this by in-
terchanging pairs of columns in the reverse order
that the permutation was built up.

if(indxr(l).ne.indxc(l))then
do 23 k=1,n

dum=a(k,indxr(l))
a(k,indxr(l))=a(k,indxc(l))
a(k,indxc(l))=dum

enddo 23

endif
enddo 24

return And we are done.
END

Row versus Column Elimination Strategies

The above discussion can be amplified by a modest amount of formalism. Row
operations on a matrix A correspond to pre- (that is, left-) multiplication by some simple
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matrix R. For example, the matrix R with components

Rij =




1 if i = j and i �= 2, 4
1 if i = 2, j = 4
1 if i = 4, j = 2
0 otherwise

(2.1.5)

effects the interchange of rows 2 and 4. Gauss-Jordan elimination by row operations alone
(including the possibility of partial pivoting) consists of a series of such left-multiplications,
yielding successively

A · x = b

(· · ·R3 · R2 · R1 · A) · x = · · ·R3 · R2 · R1 · b

(1) · x = · · ·R3 · R2 · R1 · b

x = · · ·R3 · R2 · R1 · b

(2.1.6)

The key point is that since the R’s build from right to left, the right-hand side is simply
transformed at each stage from one vector to another.

Column operations, on the other hand, correspond to post-, or right-, multiplications
by simple matrices, call them C. The matrix in equation (2.1.5), if right-multiplied onto a
matrix A, will interchange A’s second and fourth columns. Elimination by column operations
involves (conceptually) inserting a column operator, and also its inverse, between the matrix
A and the unknown vector x:

A · x = b

A · C1 · C−1
1 · x = b

A · C1 · C2 · C−1
2 · C−1

1 · x = b

(A · C1 · C2 · C3 · · ·) · · ·C−1
3 · C−1

2 · C−1
1 · x = b

(1) · · ·C−1
3 · C−1

2 · C−1
1 · x = b

(2.1.7)

which (peeling of the C−1’s one at a time) implies a solution

x = C1 · C2 · C3 · · · b (2.1.8)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C’s must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press). [1]

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Example 5.2, p. 282.

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Program B-2, p. 298.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3–1.
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2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When a 22

is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only a32 and a42, not a12 (see equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):




a′
11 a′

12 a′
13 a′

14

0 a′
22 a′

23 a′
24

0 0 a′
33 a′

34

0 0 0 a′
44


 ·




x1

x2

x3

x4


 =




b′1
b′2
b′3
b′4


 (2.2.1)

Here the primes signify that the a’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

Backsubstitution

But how do we solve for the x’s? The last x (x4 in this example) is already
isolated, namely

x4 = b′4/a′
44 (2.2.2)

With the last x known we can move to the penultimate x,

x3 =
1

a′
33

[b′3 − x4a
′
34] (2.2.3)

and then proceed with the x before that one. The typical step is

xi =
1
a′

ii


b′i −

N∑
j=i+1

a′
ijxj


 (2.2.4)

The procedure defined by equation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.
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The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The
innermost loops of Gauss-Jordan elimination, each containing one subtraction and
one multiplication, are executed N 3 and N 2M times (where there are N equations
and M unknowns). The corresponding loops in Gaussian elimination are executed
only 1

3N3 times (only half the matrix is reduced, and the increasing numbers of
predictable zeros reduce the count to one-third), and 1

2N2M times, respectively.
Each backsubstitution of a right-hand side is 1

2N2 executions of a similar loop (one
multiplication plus one subtraction). For M � N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jordan.
(We could reduce this advantage to a factor 1.5 by not computing the inverse matrix
as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view as the case of M = N
right-hand sides, namely the N unit vectors which are the columns of the identity
matrix), Gaussian elimination and backsubstitution at first glance require 1

3N3 (matrix
reduction) + 1

2N3 (right-hand side manipulations) + 1
2N3 (N backsubstitutions)

= 4
3N3 loop executions, which is more than the N 3 for Gauss-Jordan. However, the

unit vectors are quite special in containing all zeros except for one element. If this
is taken into account, the right-side manipulations can be reduced to only 1

6N3 loop
executions, and, for matrix inversion, the two methods have identical efficiencies.

Both Gaussian elimination and Gauss-Jordan elimination share the disadvantage
that all right-hand sides must be known in advance. The LU decomposition method
in the next section does not share that deficiency, and also has an equally small
operations count, both for solution with any number of right-hand sides, and for
matrix inversion. For this reason we will not implement the method of Gaussian
elimination as a routine.

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3–1.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §2.1.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.2.1.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,

L · U = A (2.3.1)

where L is lower triangular (has elements only on the diagonal and below) and U
is upper triangular (has elements only on the diagonal and above). For the case of
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a 4 × 4 matrix A, for example, equation (2.3.1) would look like this:


 α11 0 0 0

α21 α22 0 0
α31 α32 α33 0
α41 α42 α43 α44


 ·

 β11 β12 β13 β14

0 β22 β23 β24

0 0 β33 β34

0 0 0 β44


 =


 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



(2.3.2)

We can use a decomposition such as (2.3.1) to solve the linear set

A · x = (L · U) · x = L · (U · x) = b (2.3.3)

by first solving for the vector y such that

L · y = b (2.3.4)
and then solving

U · x = y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equations is quite trivial, as
we have already seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

y1 =
b1

α11

yi =
1

αii


bi −

i−1∑
j=1

αijyj


 i = 2, 3, . . . , N

(2.3.6)

while (2.3.5) can then be solved by backsubstitution exactly as in equations (2.2.2)–
(2.2.4),

xN =
yN

βNN

xi =
1

βii


yi −

N∑
j=i+1

βijxj


 i = N − 1, N − 2, . . . , 1

(2.3.7)

Equations (2.3.6) and (2.3.7) total (for each right-hand side b) N 2 executions
of an inner loop containing one multiply and one add. If we have N right-hand
sides which are the unit column vectors (which is the case when we are inverting a
matrix), then taking into account the leading zeros reduces the total execution count
of (2.3.6) from 1

2N3 to 1
6N3, while (2.3.7) is unchanged at 1

2N3.
Notice that, once we have the LU decomposition of A, we can solve with as

many right-hand sides as we then care to, one at a time. This is a distinct advantage
over the methods of §2.1 and §2.2.
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Performing the LU Decomposition

How then can we solve for L and U, given A? First, we write out the
i, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with

αi1β1j + · · · = aij

The number of terms in the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

i < j : αi1β1j + αi2β2j + · · · + αiiβij = aij (2.3.8)
i = j : αi1β1j + αi2β2j + · · · + αiiβjj = aij (2.3.9)
i > j : αi1β1j + αi2β2j + · · · + αijβjj = aij (2.3.10)

Equations (2.3.8)–(2.3.10) total N 2 equations for the N 2 +N unknown α’s and
β’s (the diagonal being represented twice). Since the number of unknowns is greater
than the number of equations, we are invited to specify N of the unknowns arbitrarily
and then try to solve for the others. In fact, as we shall see, it is always possible to take

αii ≡ 1 i = 1, . . . , N (2.3.11)

A surprising procedure, now, is Crout’s algorithm, which quite trivially solves
the set of N 2 + N equations (2.3.8)–(2.3.11) for all the α’s and β’s by just arranging
the equations in a certain order! That order is as follows:

• Set αii = 1, i = 1, . . . , N (equation 2.3.11).
• For each j = 1, 2, 3, . . . , N do these two procedures: First, for i =

1, 2, . . . , j, use (2.3.8), (2.3.9), and (2.3.11) to solve for β ij , namely

βij = aij −
i−1∑
k=1

αikβkj . (2.3.12)

(When i = 1 in 2.3.12 the summation term is taken to mean zero.) Second,
for i = j + 1, j + 2, . . . , N use (2.3.10) to solve for αij , namely

αij =
1

βjj

(
aij −

j−1∑
k=1

αikβkj

)
. (2.3.13)

Be sure to do both procedures before going on to the next j.

If you work through a few iterations of the above procedure, you will see that
the α’s and β’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every a ij

is used only once and never again. This means that the corresponding α ij or βij can
be stored in the location that the a used to occupy: the decomposition is “in place.”
[The diagonal unity elements αii (equation 2.3.11) are not stored at all.] In brief,
Crout’s method fills in the combined matrix of α’s and β’s,


β11 β12 β13 β14

α21 β22 β23 β24

α31 α32 β33 β34

α41 α42 α43 β44


 (2.3.14)

by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).
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c

g
i

b
d

f
h

j

diagonal elements

subdiagonal elements
etc.

etc.

x

x

a

e

Figure 2.3.1. Crout’s algorithm for LU decomposition of a matrix. Elements of the original matrix are
modified in the order indicated by lower case letters: a, b, c, etc. Shaded boxes show the previously
modified elements that are used in modifying two typical elements, each indicated by an “x”.

What about pivoting? Pivoting (i.e., selection of a salubrious pivot element for
the division in equation 2.3.13) is absolutely essential for the stability of Crout’s
method. Only partial pivoting (interchange of rows) can be implemented efficiently.
However this is enough to make the method stable. This means, incidentally, that
we don’t actually decompose the matrix A into LU form, but rather we decompose
a rowwise permutation of A. (If we keep track of what that permutation is, this
decomposition is just as useful as the original one would have been.)

Pivoting is slightly subtle in Crout’s algorithm. The key point to notice is that
equation (2.3.12) in the case of i = j (its final application) is exactly the same as
equation (2.3.13) except for the division in the latter equation; in both cases the
upper limit of the sum is k = j − 1 (= i − 1). This means that we don’t have to
commit ourselves as to whether the diagonal element β jj is the one that happens
to fall on the diagonal in the first instance, or whether one of the (undivided) α ij’s
below it in the column, i = j +1, . . . , N , is to be “promoted” to become the diagonal
β. This can be decided after all the candidates in the column are in hand. As you
should be able to guess by now, we will choose the largest one as the diagonal β
(pivot element), then do all the divisions by that element en masse. This is Crout’s
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method with partial pivoting. Our implementation has one additional wrinkle: It
initially finds the largest element in each row, and subsequently (when it is looking
for the maximal pivot element) scales the comparison as if we had initially scaled all
the equations to make their maximum coefficient equal to unity; this is the implicit
pivoting mentioned in §2.1.

SUBROUTINE ludcmp(a,n,np,indx,d)
INTEGER n,np,indx(n),NMAX
REAL d,a(np,np),TINY
PARAMETER (NMAX=500,TINY=1.0e-20) Largest expected n, and a small number.

Given a matrix a(1:n,1:n), with physical dimension np by np, this routine replaces it by
the LU decomposition of a rowwise permutation of itself. a and n are input. a is output,
arranged as in equation (2.3.14) above; indx(1:n) is an output vector that records the
row permutation effected by the partial pivoting; d is output as ±1 depending on whether
the number of row interchanges was even or odd, respectively. This routine is used in
combination with lubksb to solve linear equations or invert a matrix.

INTEGER i,imax,j,k
REAL aamax,dum,sum,vv(NMAX) vv stores the implicit scaling of each row.
d=1. No row interchanges yet.
do 12 i=1,n Loop over rows to get the implicit scaling informa-

tion.aamax=0.
do 11 j=1,n

if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))
enddo 11

if (aamax.eq.0.) pause ’singular matrix in ludcmp’ No nonzero largest element.
vv(i)=1./aamax Save the scaling.

enddo 12

do 19 j=1,n This is the loop over columns of Crout’s method.
do 14 i=1,j-1 This is equation (2.3.12) except for i = j.

sum=a(i,j)
do 13 k=1,i-1

sum=sum-a(i,k)*a(k,j)
enddo 13

a(i,j)=sum
enddo 14

aamax=0. Initialize for the search for largest pivot element.
do 16 i=j,n This is i = j of equation (2.3.12) and i = j +1 . . . N

of equation (2.3.13).sum=a(i,j)
do 15 k=1,j-1

sum=sum-a(i,k)*a(k,j)
enddo 15

a(i,j)=sum
dum=vv(i)*abs(sum) Figure of merit for the pivot.
if (dum.ge.aamax) then Is it better than the best so far?

imax=i
aamax=dum

endif
enddo 16

if (j.ne.imax)then Do we need to interchange rows?
do 17 k=1,n Yes, do so...

dum=a(imax,k)
a(imax,k)=a(j,k)
a(j,k)=dum

enddo 17

d=-d ...and change the parity of d.
vv(imax)=vv(j) Also interchange the scale factor.

endif
indx(j)=imax
if(a(j,j).eq.0.)a(j,j)=TINY
If the pivot element is zero the matrix is singular (at least to the precision of the al-
gorithm). For some applications on singular matrices, it is desirable to substitute TINY
for zero.
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if(j.ne.n)then Now, finally, divide by the pivot element.
dum=1./a(j,j)
do 18 i=j+1,n

a(i,j)=a(i,j)*dum
enddo 18

endif
enddo 19 Go back for the next column in the reduction.
return
END

Here is the routine for forward substitution and backsubstitution, implementing
equations (2.3.6) and (2.3.7).

SUBROUTINE lubksb(a,n,np,indx,b)
INTEGER n,np,indx(n)
REAL a(np,np),b(n)

Solves the set of n linear equations A · X = B. Here a is input, not as the matrix A but
rather as its LU decomposition, determined by the routine ludcmp. indx is input as the
permutation vector returned by ludcmp. b(1:n) is input as the right-hand side vector B,
and returns with the solution vector X. a, n, np, and indx are not modified by this routine
and can be left in place for successive calls with different right-hand sides b. This routine
takes into account the possibility that b will begin with many zero elements, so it is efficient
for use in matrix inversion.

INTEGER i,ii,j,ll
REAL sum
ii=0 When ii is set to a positive value, it will become the in-

dex of the first nonvanishing element of b. We now do
the forward substitution, equation (2.3.6). The only new
wrinkle is to unscramble the permutation as we go.

do 12 i=1,n
ll=indx(i)
sum=b(ll)
b(ll)=b(i)
if (ii.ne.0)then

do 11 j=ii,i-1
sum=sum-a(i,j)*b(j)

enddo 11

else if (sum.ne.0.) then
ii=i A nonzero element was encountered, so from now on we will

have to do the sums in the loop above.endif
b(i)=sum

enddo 12

do 14 i=n,1,-1 Now we do the backsubstitution, equation (2.3.7).
sum=b(i)
do 13 j=i+1,n

sum=sum-a(i,j)*b(j)
enddo 13

b(i)=sum/a(i,i) Store a component of the solution vector X.
enddo 14

return All done!
END

The LU decomposition in ludcmp requires about 1
3N3 executions of the inner

loops (each with one multiply and one add). This is thus the operation count
for solving one (or a few) right-hand sides, and is a factor of 3 better than the
Gauss-Jordan routine gaussj which was given in §2.1, and a factor of 1.5 better
than a Gauss-Jordan routine (not given) that does not compute the inverse matrix.
For inverting a matrix, the total count (including the forward and backsubstitution
as discussed following equation 2.3.7 above) is ( 1

3 + 1
6 + 1

2 )N3 = N3, the same
as gaussj.
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To summarize, this is the preferred way to solve the linear set of equations
A · x = b:

call ludcmp(a,n,np,indx,d)
call lubksb(a,n,np,indx,b)

The answer x will be returned in b. Your original matrix A will have been
destroyed.

If you subsequently want to solve a set of equations with the same A but a
different right-hand side b, you repeat only

call lubksb(a,n,np,indx,b)

not, of course, with the original matrix A, but with a and indx as were already
returned from ludcmp.

Inverse of a Matrix

Using the above LU decomposition and backsubstitution routines, it is com-
pletely straightforward to find the inverse of a matrix column by column.

INTEGER np,indx(np)
REAL a(np,np),y(np,np)
...
do 12 i=1,n Set up identity matrix.

do 11 j=1,n
y(i,j)=0.

enddo 11

y(i,i)=1.
enddo 12

call ludcmp(a,n,np,indx,d) Decompose the matrix just once.
do 13 j=1,n Find inverse by columns.

call lubksb(a,n,np,indx,y(1,j))
Note that FORTRAN stores two-dimensional matrices by column, so y(1,j) is the
address of the jth column of y.

enddo 13

The matrix y will now contain the inverse of the original matrix a, which will have
been destroyed. Alternatively, there is nothing wrong with using a Gauss-Jordan
routine like gaussj (§2.1) to invert a matrix in place, again destroying the original.
Both methods have practically the same operations count.

Incidentally, if you ever have the need to compute A−1 · B from matrices A
and B, you should LU decompose A and then backsubstitute with the columns of
B instead of with the unit vectors that would give A’s inverse. This saves a whole
matrix multiplication, and is also more accurate.
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Determinant of a Matrix

The determinant of an LU decomposed matrix is just the product of the
diagonal elements,

det =
N∏

j=1

βjj (2.3.15)

We don’t, recall, compute the decomposition of the original matrix, but rather a
decomposition of a rowwise permutation of it. Luckily, we have kept track of
whether the number of row interchanges was even or odd, so we just preface the
product by the corresponding sign. (You now finally know the purpose of returning
d in the routine ludcmp.)

Calculation of a determinant thus requires one call to ludcmp, with no subse-
quent backsubstitutions by lubksb.

INTEGER np,indx(np)
REAL a(np,np)
...
call ludcmp(a,n,np,indx,d) This returns d as ±1.
do 11 j=1,n

d=d*a(j,j)
enddo 11

The variable d now contains the determinant of the original matrix a, which will
have been destroyed.

For a matrix of any substantial size, it is quite likely that the determinant will
overflow or underflow your computer’s floating-point dynamic range. In this case
you can modify the loop of the above fragment and (e.g.) divide by powers of ten,
to keep track of the scale separately, or (e.g.) accumulate the sum of logarithms of
the absolute values of the factors and the sign separately.

Complex Systems of Equations

If your matrix A is real, but the right-hand side vector is complex, say b + id, then (i)
LU decompose A in the usual way, (ii) backsubstitute b to get the real part of the solution
vector, and (iii) backsubstitute d to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

(A + iC) · (x + iy) = (b + id) (2.3.16)

then there are two possible ways to proceed. The best way is to rewrite ludcmp and lubksb
as complex routines. Complex modulus substitutes for absolute value in the construction of
the scaling vector vv and in the search for the largest pivot elements. Everything else goes
through in the obvious way, with complex arithmetic used as needed.

A quick-and-dirty way to solve complex systems is to take the real and imaginary
parts of (2.3.16), giving

A · x − C · y = b

C · x + A · y = d
(2.3.17)

which can be written as a 2N × 2N set of real equations,(
A −C
C A

)
·
(

x
y

)
=

(
b
d

)
(2.3.18)
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and then solved with ludcmp and lubksb in their present forms. This scheme is a factor of
2 inefficient in storage, since A and C are stored twice. It is also a factor of 2 inefficient
in time, since the complex multiplies in a complexified version of the routines would each
use 4 real multiplies, while the solution of a 2N × 2N problem involves 8 times the work of
an N × N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.
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2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that is tridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systems that are band diagonal, with nonzero elements
only along a few diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take only O(N) operations, and the whole solution can be encoded
very concisely. The resulting routine tridag is one that we will use in later chapters.

Naturally, one does not reserve storage for the full N × N matrix, but only for
the nonzero components, stored as three vectors. The set of equations to be solved is




b1 c1 0 · · ·
a2 b2 c2 · · ·

· · ·
· · · aN−1 bN−1 cN−1

· · · 0 aN bN


 ·




u1

u2

· · ·
uN−1

uN


 =




r1

r2

· · ·
rN−1

rN


 (2.4.1)

Notice that a1 and cN are undefined and are not referenced by the routine that follows.
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SUBROUTINE tridag(a,b,c,r,u,n)
INTEGER n,NMAX
REAL a(n),b(n),c(n),r(n),u(n)
PARAMETER (NMAX=500)

Solves for a vector u(1:n) of length n the tridiagonal linear set given by equation (2.4.1).
a(1:n), b(1:n), c(1:n), and r(1:n) are input vectors and are not modified.
Parameter: NMAX is the maximum expected value of n.

INTEGER j
REAL bet,gam(NMAX) One vector of workspace, gam is needed.
if(b(1).eq.0.)pause ’tridag: rewrite equations’

If this happens then you should rewrite your equations as a set of order N − 1, with u2

trivially eliminated.
bet=b(1)
u(1)=r(1)/bet
do 11 j=2,n Decomposition and forward substitution.

gam(j)=c(j-1)/bet
bet=b(j)-a(j)*gam(j)
if(bet.eq.0.)pause ’tridag failed’ Algorithm fails; see below.
u(j)=(r(j)-a(j)*u(j-1))/bet

enddo 11

do 12 j=n-1,1,-1 Backsubstitution.
u(j)=u(j)-gam(j+1)*u(j+1)

enddo 12

return
END

There is no pivoting in tridag. It is for this reason that tridag can fail
(pause) even when the underlying matrix is nonsingular: A zero pivot can be
encountered even for a nonsingular matrix. In practice, this is not something to lose
sleep about. The kinds of problems that lead to tridiagonal linear sets usually have
additional properties which guarantee that the algorithm in tridag will succeed.
For example, if

|bj| > |aj | + |cj | j = 1, . . . , N (2.4.2)

(called diagonal dominance) then it can be shown that the algorithm cannot encounter
a zero pivot.

It is possible to construct special examples in which the lack of pivoting in the
algorithm causes numerical instability. In practice, however, such instability is almost
never encountered — unlike the general matrix problem where pivoting is essential.

The tridiagonal algorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for which tridag fails, you can instead use the more general method for
band diagonal systems, now described (routines bandec and banbks).

Some other matrix forms consisting of tridiagonal with a small number of
additional elements (e.g., upper right and lower left corners) also allow rapid
solution; see §2.7.

Band Diagonal Systems

Where tridiagonal systems have nonzero elements only on the diagonal plus or minus
one, band diagonal systems are slightly more general and have (say) m1 ≥ 0 nonzero elements
immediately to the left of (below) the diagonal and m2 ≥ 0 nonzero elements immediately to
its right (above it). Of course, this is only a useful classification if m1 and m2 are both � N .
In that case, the solution of the linear system by LU decomposition can be accomplished
much faster, and in much less storage, than for the general N × N case.
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The precise definition of a band diagonal matrix with elements aij is that

aij = 0 when j > i + m2 or i > j + m1 (2.4.3)

Band diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45◦ clockwise, so that its nonzero elements lie in a long, narrow
matrix with m1 + 1 + m2 columns and N rows. This is best illustrated by an example:
The band diagonal matrix




3 1 0 0 0 0 0
4 1 5 0 0 0 0
9 2 6 5 0 0 0
0 3 5 8 9 0 0
0 0 7 9 3 2 0
0 0 0 3 8 4 6
0 0 0 0 2 4 4




(2.4.4)

which has N = 7, m1 = 2, and m2 = 1, is stored compactly as the 7 × 4 matrix,




x x 3 1
x 4 1 5
9 2 6 5
3 5 8 9
7 9 3 2
3 8 4 6
2 4 4 x




(2.4.5)

Here x denotes elements that are wasted space in the compact format; these will not be
referenced by any manipulations and can have arbitrary values. Notice that the diagonal
of the original matrix appears in column m1 + 1, with subdiagonal elements to its left,
superdiagonal elements to its right.

The simplest manipulation of a band diagonal matrix, stored compactly, is to multiply
it by a vector to its right. Although this is algorithmically trivial, you might want to study
the following routine carefully, as an example of how to pull nonzero elements aij out of the
compact storage format in an orderly fashion. Notice that, as always, the logical and physical
dimensions of a two-dimensional array can be different. Our convention is to pass N , m1,
m2, and the physical dimensions np≥ N and mp≥ m1 + 1 + m2.

SUBROUTINE banmul(a,n,m1,m2,np,mp,x,b)
INTEGER m1,m2,mp,n,np
REAL a(np,mp),b(n),x(n)

Matrix multiply b = A · x, where A is band diagonal with m1 rows below the diagonal
and m2 rows above. The input vector x and output vector b are stored as x(1:n) and
b(1:n), respectively. The array a(1:n,1:m1+m2+1) stores A as follows: The diagonal
elements are in a(1:n,m1+1). Subdiagonal elements are in a(j:n,1:m1) (with j > 1
appropriate to the number of elements on each subdiagonal). Superdiagonal elements are
in a(1:j,m1+2:m1+m2+1) with j < n appropriate to the number of elements on each
superdiagonal.

INTEGER i,j,k
do 12 i=1,n

b(i)=0.
k=i-m1-1
do 11 j=max(1,1-k),min(m1+m2+1,n-k)

b(i)=b(i)+a(i,j)*x(j+k)
enddo 11

enddo 12

return
END
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It is not possible to store the LU decomposition of a band diagonal matrix A quite
as compactly as the compact form of A itself. The decomposition (essentially by Crout’s
method, see §2.3) produces additional nonzero “fill-ins.” One straightforward storage scheme
is to return the upper triangular factor (U ) in the same space that A previously occupied, and
to return the lower triangular factor (L) in a separate compact matrix of size N × m1. The
diagonal elements of U (whose product, times d= ±1, gives the determinant) are returned
in the first column of A’s storage space.

The following routine, bandec, is the band-diagonal analog of ludcmp in §2.3:

SUBROUTINE bandec(a,n,m1,m2,np,mp,al,mpl,indx,d)
INTEGER m1,m2,mp,mpl,n,np,indx(n)
REAL d,a(np,mp),al(np,mpl),TINY
PARAMETER (TINY=1.e-20)

Given an n × n band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal
rows, compactly stored in the array a(1:n,1:m1+m2+1) as described in the comment for
routine banmul, this routine constructs an LU decomposition of a rowwise permutation
of A. The upper triangular matrix replaces a, while the lower triangular matrix is returned
in al(1:n,1:m1). indx(1:n) is an output vector which records the row permutation
effected by the partial pivoting; d is output as ±1 depending on whether the number of
row interchanges was even or odd, respectively. This routine is used in combination with
banbks to solve band-diagonal sets of equations.

INTEGER i,j,k,l,mm
REAL dum
mm=m1+m2+1
if(mm.gt.mp.or.m1.gt.mpl.or.n.gt.np) pause ’bad args in bandec’
l=m1
do 13 i=1,m1 Rearrange the storage a bit.

do 11 j=m1+2-i,mm
a(i,j-l)=a(i,j)

enddo 11

l=l-1
do 12 j=mm-l,mm

a(i,j)=0.
enddo 12

enddo 13

d=1.
l=m1
do 18 k=1,n For each row...

dum=a(k,1)
i=k
if(l.lt.n)l=l+1
do 14 j=k+1,l Find the pivot element.

if(abs(a(j,1)).gt.abs(dum))then
dum=a(j,1)
i=j

endif
enddo 14

indx(k)=i
if(dum.eq.0.) a(k,1)=TINY

Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in some
applications).

if(i.ne.k)then Interchange rows.
d=-d
do 15 j=1,mm

dum=a(k,j)
a(k,j)=a(i,j)
a(i,j)=dum

enddo 15

endif
do 17 i=k+1,l Do the elimination.

dum=a(i,1)/a(k,1)
al(k,i-k)=dum
do 16 j=2,mm
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a(i,j-1)=a(i,j)-dum*a(k,j)
enddo 16

a(i,mm)=0.
enddo 17

enddo 18

return
END

Some pivoting is possible within the storage limitations of bandec, and the above
routine does take advantage of the opportunity. In general, when TINY is returned as a
diagonal element of U , then the original matrix (perhaps as modified by roundoff error)
is in fact singular. In this regard, bandec is somewhat more robust than tridag above,
which can fail algorithmically even for nonsingular matrices; bandec is thus also useful (with
m1 = m2 = 1) for some ill-behaved tridiagonal systems.

Once the matrix A has been decomposed, any number of right-hand sides can be solved in
turn by repeated calls to banbks, the backsubstitution routine whose analog in §2.3 is lubksb.

SUBROUTINE banbks(a,n,m1,m2,np,mp,al,mpl,indx,b)
INTEGER m1,m2,mp,mpl,n,np,indx(n)
REAL a(np,mp),al(np,mpl),b(n)

Given the arrays a, al, and indx as returned from bandec, and given a right-hand side
vector b(1:n), solves the band diagonal linear equations A · x = b. The solution vector x
overwrites b(1:n). The other input arrays are not modified, and can be left in place for
successive calls with different right-hand sides.

INTEGER i,k,l,mm
REAL dum
mm=m1+m2+1
if(mm.gt.mp.or.m1.gt.mpl.or.n.gt.np) pause ’bad args in banbks’
l=m1
do 12 k=1,n Forward substitution, unscrambling the permuted rows as we

go.i=indx(k)
if(i.ne.k)then

dum=b(k)
b(k)=b(i)
b(i)=dum

endif
if(l.lt.n)l=l+1
do 11 i=k+1,l

b(i)=b(i)-al(k,i-k)*b(k)
enddo 11

enddo 12

l=1
do 14 i=n,1,-1 Backsubstitution.

dum=b(i)
do 13 k=2,l

dum=dum-a(i,k)*b(k+i-1)
enddo 13

b(i)=dum/a(i,1)
if(l.lt.mm) l=l+1

enddo 14

return
END

The routines bandec and banbks are based on the Handbook routines bandet1 and
bansol1 in [1].
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2.5 Iterative Improvement of a Solution to
Linear Equations

Obviously it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If this happens to you, there is a neat trick to restore the full machine precision,
called iterative improvement of the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A · x = b (2.5.1)

You don’t, however, know x. You only know some slightly wrong solution x + δx,
where δx is the unknown error. When multiplied by the matrix A, your slightly wrong
solution gives a product slightly discrepant from the desired right-hand side b, namely

A · (x + δx) = b + δb (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives

A · δx = δb (2.5.3)

But (2.5.2) can also be solved, trivially, for δb. Substituting this into (2.5.3) gives

A · δx = A · (x + δx) − b (2.5.4)

In this equation, the whole right-hand side is known, since x + δx is the wrong
solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtraction of b.
Then, we need only solve (2.5.4) for the error δx, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution by LU
decomposition. In this case we already have the LU decomposed form of A, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do all this is concise and straightforward:
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A

A−1

δx

x +
 δx

x b
b + δb

δb

Figure 2.5.1. Iterative improvement of the solution to A · x = b. The first guess x + δx is multiplied by
A to produce b + δb. The known vector b is subtracted, giving δb. The linear set with this right-hand
side is inverted, giving δx. This is subtracted from the first guess giving an improved solution x.

SUBROUTINE mprove(a,alud,n,np,indx,b,x)
INTEGER n,np,indx(n),NMAX
REAL a(np,np),alud(np,np),b(n),x(n)
PARAMETER (NMAX=500) Maximum anticipated value of n.

C USES lubksb
Improves a solution vector x(1:n) of the linear set of equations A · X = B. The matrix
a(1:n,1:n), and the vectors b(1:n) and x(1:n) are input, as is the dimension n. Also
input is alud, the LU decomposition of a as returned by ludcmp, and the vector indx also
returned by that routine. On output, only x(1:n) is modified, to an improved set of values.

INTEGER i,j
REAL r(NMAX)
DOUBLE PRECISION sdp
do 12 i=1,n Calculate the right-hand side, accumulating the resid-

ual in double precision.sdp=-b(i)
do 11 j=1,n

sdp=sdp+dble(a(i,j))*dble(x(j))
enddo 11

r(i)=sdp
enddo 12

call lubksb(alud,n,np,indx,r) Solve for the error term,
do 13 i=1,n and subtract it from the old solution.

x(i)=x(i)-r(i)
enddo 13

return
END

You should note that the routine ludcmp in §2.3 destroys the input matrix as
it LU decomposes it. Since iterative improvement requires both the original matrix
and its LU decomposition, you will need to copy A before calling ludcmp. Likewise
lubksb destroys b in obtaining x, so make a copy of b also. If you don’ t mind
this extra storage, iterative improvement is highly recommended: It is a process
of order only N 2 operations (multiply vector by matrix, and backsubstitute — see
discussion following equation 2.3.7); it never hurts; and it can really give you your
money’s worth if it saves an otherwise ruined solution on which you have already
spent of order N 3 operations.
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You can call mprove several times in succession if you want. Unless you are
starting quite far from the true solution, one call is generally enough; but a second
call to verify convergence can be reassuring.

More on Iterative Improvement

It is illuminating (and will be useful later in the book) to give a somewhat more solid
analytical foundation for equation (2.5.4), and also to give some additional results. Implicit in
the previous discussion was the notion that the solution vector x + δx has an error term; but
we neglected the fact that the LU decomposition of A is itself not exact.

A different analytical approach starts with some matrix B0 that is assumed to be an
approximate inverse of the matrix A, so that B0 · A is approximately the identity matrix 1.
Define the residual matrix R of B0 as

R ≡ 1 − B0 · A (2.5.5)

which is supposed to be “small” (we will be more precise below). Note that therefore

B0 · A = 1 − R (2.5.6)

Next consider the following formal manipulation:

A−1 = A−1 · (B−1
0 · B0) = (A−1 · B−1

0 ) · B0 = (B0 · A)−1 · B0

= (1 − R)−1 · B0 = (1 + R + R2 + R3 + · · ·) · B0

(2.5.7)

We can define the nth partial sum of the last expression by

Bn ≡ (1 + R + · · · + Rn) · B0 (2.5.8)

so that B∞ → A−1, if the limit exists.
It now is straightforward to verify that equation (2.5.8) satisfies some interesting

recurrence relations. As regards solving A · x = b, where x and b are vectors, define

xn ≡ Bn · b (2.5.9)

Then it is easy to show that

xn+1 = xn + B0 · (b − A · xn) (2.5.10)

This is immediately recognizable as equation (2.5.4), with −δx = xn+1 − xn, and with B0

taking the role of A−1. We see, therefore, that equation (2.5.4) does not require that the LU
decomposition of A be exact, but only that the implied residual R be small. In rough terms, if
the residual is smaller than the square root of your computer’s roundoff error, then after one
application of equation (2.5.10) (that is, going from x0 ≡ B0 ·b to x1) the first neglected term,
of order R2, will be smaller than the roundoff error. Equation (2.5.10), like equation (2.5.4),
moreover, can be applied more than once, since it uses only B0, and not any of the higher B’s.

A much more surprising recurrence which follows from equation (2.5.8) is one that more
than doubles the order n at each stage:

B2n+1 = 2Bn − Bn · A · Bn n = 0, 1, 3, 7, . . . (2.5.11)

Repeated application of equation (2.5.11), from a suitable starting matrix B0, converges
quadratically to the unknown inverse matrix A−1 (see §9.4 for the definition of “quadrati-
cally” ). Equation (2.5.11) goes by various names, including Schultz’s Method and Hotelling’s
Method; see Pan and Reif [1] for references. In fact, equation (2.5.11) is simply the iterative
Newton-Raphson method of root-finding (§9.4) applied to matrix inversion.

Before you get too excited about equation (2.5.11), however, you should notice that it
involves two full matrix multiplications at each iteration. Each matrix multiplication involves
N3 adds and multiplies. But we already saw in §§2.1–2.3 that direct inversion of A requires
only N3 adds and N3 multiplies in toto. Equation (2.5.11) is therefore practical only when
special circumstances allow it to be evaluated much more rapidly than is the case for general
matrices. We will meet such circumstances later, in §13.10.
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In the spirit of delayed gratification, let us nevertheless pursue the two related issues:
When does the series in equation (2.5.7) converge; and what is a suitable initial guess B0 (if,
for example, an initial LU decomposition is not feasible)?

We can define the norm of a matrix as the largest amplification of length that it is
able to induce on a vector,

‖R‖ ≡ max
v �=0

|R · v|
|v| (2.5.12)

If we let equation (2.5.7) act on some arbitrary right-hand side b, as one wants a matrix inverse
to do, it is obvious that a sufficient condition for convergence is

‖R‖ < 1 (2.5.13)

Pan and Reif [1] point out that a suitable initial guess for B0 is any sufficiently small constant
ε times the matrix transpose of A, that is,

B0 = εAT or R = 1 − εAT · A (2.5.14)

To see why this is so involves concepts from Chapter 11; we give here only the briefest sketch:
AT · A is a symmetric, positive definite matrix, so it has real, positive eigenvalues. In its
diagonal representation, R takes the form

R = diag(1 − ελ1, 1 − ελ2, . . . , 1 − ελN) (2.5.15)

where all the λi’s are positive. Evidently any ε satisfying 0 < ε < 2/(maxi λi) will give
‖R‖ < 1. It is not difficult to show that the optimal choice for ε, giving the most rapid
convergence for equation (2.5.11), is

ε = 2/(max
i

λi + min
i

λi) (2.5.16)

Rarely does one know the eigenvalues of AT · A in equation (2.5.16). Pan and Reif
derive several interesting bounds, which are computable directly from A. The following
choices guarantee the convergence of Bn as n → ∞,

ε ≤ 1

/ ∑
j,k

a2
jk or ε ≤ 1

/(
max

i

∑
j

|aij | × max
j

∑
i

|aij |
)

(2.5.17)

The latter expression is truly a remarkable formula, which Pan and Reif derive by noting that
the vector norm in equation (2.5.12) need not be the usual L2 norm, but can instead be either
the L∞ (max) norm, or the L1 (absolute value) norm. See their work for details.

Another approach, with which we have had some success, is to estimate the largest
eigenvalue statistically, by calculating si ≡ |A · vi|2 for several unit vector vi’s with randomly
chosen directions in N -space. The largest eigenvalue λ can then be bounded by the maximum
of 2max si and 2NVar(si)/µ(si), where Var and µ denote the sample variance and mean,
respectively.
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2.6 Singular Value Decomposition

There exists a very powerful set of techniques for dealing with sets of equations
or matrices that are either singular or else numerically very close to singular. In many
cases where Gaussian elimination and LU decomposition fail to give satisfactory
results, this set of techniques, known as singular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “ the” answer
that you thought you should get.

SVD is also the method of choice for solving most linear least-squares problems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data.

SVD methods are based on the following theorem of linear algebra, whose proof
is beyond our scope: Any M ×N matrix A whose number of rows M is greater than
or equal to its number of columns N , can be written as the product of an M × N
column-orthogonal matrix U, an N × N diagonal matrix W with positive or zero
elements (the singular values), and the transpose of an N ×N orthogonal matrix V.
The various shapes of these matrices will be made clearer by the following tableau:




A




=




U




·




w1

w2

· · ·
· · ·

wN


 ·


 VT




(2.6.1)

The matrices U and V are each orthogonal in the sense that their columns are
orthonormal,

M∑
i=1

UikUin = δkn
1 ≤ k ≤ N

1 ≤ n ≤ N
(2.6.2)

N∑
j=1

VjkVjn = δkn
1 ≤ k ≤ N

1 ≤ n ≤ N
(2.6.3)



52 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

or as a tableau,


 UT




·




U




=


 VT




·


 V




=


 1




(2.6.4)

SinceV is square, it is also row-orthonormal,V · VT = 1.
The SVD decomposition can also be carried out whenM < N . In this case

the singular valueswj for j = M + 1, . . . , N are all zero, and the corresponding
columns ofU are also zero. Equation (2.6.2) then holds only fork, n ≤ M .

The decomposition (2.6.1) can always be done, no matter how singular the
matrix is, and it is “almost” unique. That is to say, it is unique up to (i) making
the same permutation of the columns ofU, elements ofW, and columns ofV (or
rows ofVT ), or (ii) forming linear combinations of any columns ofU andV whose
corresponding elements ofW happen to be exactly equal. An important consequence
of the permutation freedom is that for the caseM < N , a numerical algorithm for
the decomposition need not return zerowj ’s for j = M + 1, . . . , N ; the N − M
zero singular values can be scattered among all positionsj = 1, 2, . . . , N .

At the end of this section, we give a routine,svdcmp, that performs SVD on
an arbitrary matrixA, replacing it byU (they are the same shape) and returning
W and V separately. The routinesvdcmp is based on a routine by Forsythe et
al. [1], which is in turn based on the original routine of Golub and Reinsch, found, in
various forms, in[2-4] and elsewhere. These references include extensive discussion
of the algorithm used. As much as we dislike the use of black-box routines, we are
going to ask you to accept this one, since it would take us too far afield to cover
its necessary background material here. Suffice it to say that the algorithm is very
stable, and that it is very unusual for it ever to misbehave. Most of the concepts that
enter the algorithm (Householder reduction to bidiagonal form, diagonalization by
QR procedure with shifts) will be discussed further in Chapter 11.

If you are as suspicious of black boxes as we are, you will want to verify yourself
thatsvdcmp does what we say it does. That is very easy to do: Generate an arbitrary
matrix A, call the routine, and then verify by matrix multiplication that (2.6.1) and
(2.6.4) are satisfied. Since these two equations are the only defining requirements
for SVD, this procedure is (for the chosenA) a complete end-to-end check.

Now let us find out what SVD is good for.
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SVD of a Square Matrix

If the matrixA is square,N × N say, thenU, V, andW are all square matrices
of the same size. Their inverses are also trivial to compute:U andV are orthogonal,
so their inverses are equal to their transposes;W is diagonal, so its inverse is the
diagonal matrix whose elements are the reciprocals of the elementsw j . From (2.6.1)
it now follows immediately that the inverse ofA is

A−1 = V · [diag(1/wj)] · UT (2.6.5)

The only thing that can go wrong with this construction is for one of thew j ’s
to be zero, or (numerically) for it to be so small that its value is dominated by
roundoff error and therefore unknowable. If more than one of thew j ’s have this
problem, then the matrix is even more singular. So, first of all, SVD gives you a
clear diagnosis of the situation.

Formally, thecondition number of a matrix is defined as the ratio of the largest
(in magnitude) of thewj ’s to the smallest of thewj ’s. A matrix is singular if its
condition number is infinite, and it isill-conditioned if its condition number is too
large, that is, if its reciprocal approaches the machine’s floating-point precision (for
example, less than10−6 for single precision or10−12 for double).

For singular matrices, the concepts ofnullspace and range are important.
Consider the familiar set of simultaneous equations

A · x = b (2.6.6)

whereA is a square matrix,b andx are vectors. Equation (2.6.6) definesA as a
linear mapping from the vector spacex to the vector spaceb. If A is singular, then
there is some subspace ofx, called the nullspace, that is mapped to zero,A · x = 0.
The dimension of the nullspace (the number of linearly independent vectorsx that
can be found in it) is called thenullity of A.

Now, there is also some subspace ofb that can be “reached” byA, in the sense
that there exists somex which is mapped there. This subspace ofb is called the range
of A. The dimension of the range is called therank of A. If A is nonsingular, then its
range will be all of the vector spaceb, so its rank isN . If A is singular, then the rank
will be less thanN . In fact, the relevant theorem is “rank plus nullity equalsN .”

What has this to do with SVD? SVD explicitly constructs orthonormal bases
for the nullspace and range of a matrix. Specifically, the columns ofU whose
same-numbered elementswj arenonzero are an orthonormal set of basis vectors that
span the range; the columns ofV whose same-numbered elementsw j arezero are
an orthonormal basis for the nullspace.

Now let’s have another look at solving the set of simultaneous linear equations
(2.6.6) in the case thatA is singular. First, the set ofhomogeneous equations, where
b = 0, is solved immediately by SVD: Any column ofV whose correspondingw j

is zero yields a solution.
When the vectorb on the right-hand side is not zero, the important question is

whether it lies in the range ofA or not. If it does, then the singular set of equations
does have a solutionx; in fact it has more than one solution, since any vector in
the nullspace (any column ofV with a corresponding zerow j) can be added tox
in any linear combination.
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If we want to single out one particular member of this solution-set of vectors as
a representative, we might want to pick the one with the smallest length|x| 2. Here is
how to find that vector using SVD: Simplyreplace 1/wj by zero if wj = 0. (It is not
very often that one gets to set∞ = 0 !) Then compute (working from right to left)

x = V · [diag(1/wj)] · (UT · b) (2.6.7)

This will be the solution vector of smallest length; the columns ofV that are in the
nullspace complete the specification of the solution set.

Proof: Consider|x + x′|, wherex′ lies in the nullspace. Then, ifW−1 denotes
the modified inverse ofW with some elements zeroed,

|x + x′| =
∣∣V · W−1 · UT · b + x′∣∣

=
∣∣V · (W−1 · UT · b + VT · x′)

∣∣

=
∣∣W−1 · UT · b + VT · x′

∣∣
(2.6.8)

Here the first equality follows from (2.6.7), the second and third from the orthonor-
mality of V. If you now examine the two terms that make up the sum on the
right-hand side, you will see that the first one has nonzeroj components only where
wj �= 0, while the second one, sincex′ is in the nullspace, has nonzeroj components
only wherewj = 0. Therefore the minimum length obtains forx ′ = 0, q.e.d.

If b is not in the range of the singular matrixA, then the set of equations (2.6.6)
has no solution. But here is some good news: Ifb is not in the range ofA, then
equation (2.6.7) can still be used to construct a “solution” vectorx. This vectorx
will not exactly solveA · x = b. But, among all possible vectorsx, it will do the
closest possible job in the least squares sense. In other words (2.6.7) finds

x which minimizes r ≡ |A · x − b| (2.6.9)

The numberr is called theresidual of the solution.
The proof is similar to (2.6.8): Suppose we modifyx by adding some arbitrary

x′. ThenA · x − b is modified by adding someb ′ ≡ A · x′. Obviouslyb′ is in
the range ofA. We then have

∣∣A · x − b + b′∣∣ =
∣∣(U · W · VT ) · (V · W−1 · UT · b) − b + b′∣∣

=
∣∣(U · W · W−1 · UT − 1) · b + b′∣∣

=
∣∣U · [(W · W−1 − 1) · UT · b + UT · b′]∣∣

=
∣∣(W · W−1 − 1) · UT · b + UT · b′∣∣

(2.6.10)

Now, (W · W−1 − 1) is a diagonal matrix which has nonzeroj components only for
wj = 0, while UT b′ has nonzeroj components only forwj �= 0, sinceb′ lies in the
range ofA. Therefore the minimum obtains forb ′ = 0, q.e.d.

Figure 2.6.1 summarizes our discussion of SVD thus far.
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A ⋅ x = b

SVD “solution”
of A ⋅ x = c

solutions of
A ⋅ x = c′solutions of

A ⋅ x = d

null
space
of A

SVD solution of
A ⋅ x = d

range of A

d
c

(b)

(a)

A

x b

c′

Figure 2.6.1. (a) A nonsingular matrix A maps a vector space into one of the same dimension. The
vector x is mapped into b, so that x satisfies the equation A · x = b. (b) A singular matrix A maps a
vector space into one of lower dimensionality, here a plane into a line, called the “ range” of A. The
“nullspace” of A is mapped to zero. The solutions of A · x = d consist of any one particular solution plus
any vector in the nullspace, here forming a line parallel to the nullspace. Singular value decomposition
(SVD) selects the particular solution closest to zero, as shown. The point c lies outside of the range
of A, so A · x = c has no solution. SVD finds the least-squares best compromise solution, namely a
solution of A · x = c′, as shown.

In the discussion since equation (2.6.6), we have been pretending that a matrix
either is singular or else isn’ t. That is of course true analytically. Numerically,
however, the far more common situation is that some of the w j ’s are very small
but nonzero, so that the matrix is ill-conditioned. In that case, the direct solution
methods of LU decomposition or Gaussian elimination may actually give a formal
solution to the set of equations (that is, a zero pivot may not be encountered); but
the solution vector may have wildly large components whose algebraic cancellation,
when multiplying by the matrix A, may give a very poor approximation to the
right-hand vector b. In such cases, the solution vector x obtained by zeroing the
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small wj ’s and then using equation (2.6.7) is very often better (in the sense of the
residual |A · x − b| being smaller) than both the direct-method solution and the SVD
solution where the small wj ’s are left nonzero.

It may seem paradoxical that this can be so, since zeroing a singular value
corresponds to throwing away one linear combination of the set of equations that
we are trying to solve. The resolution of the paradox is that we are throwing away
precisely a combination of equations that is so corrupted by roundoff error as to be at
best useless; usually it is worse than useless since it “pulls” the solution vector way
off towards infinity along some direction that is almost a nullspace vector. In doing
this, it compounds the roundoff problem and makes the residual |A · x − b| larger.

SVD cannot be applied blindly, then. You have to exercise some discretion in
deciding at what threshold to zero the small wj ’s, and/or you have to have some idea
what size of computed residual |A · x − b| is acceptable.

As an example, here is a “backsubstitution” routine svbksb for evaluating
equation (2.6.7) and obtaining a solution vector x from a right-hand side b, given
that the SVD of a matrix A has already been calculated by a call to svdcmp. Note
that this routine presumes that you have already zeroed the small w j ’s. It does not
do this for you. If you haven’t zeroed the small w j ’s, then this routine is just as
ill-conditioned as any direct method, and you are misusing SVD.

SUBROUTINE svbksb(u,w,v,m,n,mp,np,b,x)
INTEGER m,mp,n,np,NMAX
REAL b(mp),u(mp,np),v(np,np),w(np),x(np)
PARAMETER (NMAX=500) Maximum anticipated value of n.

Solves A · X = B for a vector X, where A is specified by the arrays u, w, v as returned by
svdcmp. m and n are the logical dimensions of a, and will be equal for square matrices. mp
and np are the physical dimensions of a. b(1:m) is the input right-hand side. x(1:n) is
the output solution vector. No input quantities are destroyed, so the routine may be called
sequentially with different b’s.

INTEGER i,j,jj
REAL s,tmp(NMAX)
do 12 j=1,n Calculate UT B.

s=0.
if(w(j).ne.0.)then Nonzero result only if wj is nonzero.

do 11 i=1,m
s=s+u(i,j)*b(i)

enddo 11

s=s/w(j) This is the divide by wj .
endif
tmp(j)=s

enddo 12

do 14 j=1,n Matrix multiply by V to get answer.
s=0.
do 13 jj=1,n

s=s+v(j,jj)*tmp(jj)
enddo 13

x(j)=s
enddo 14

return
END

Note that a typical use of svdcmp and svbksb superficially resembles the
typical use of ludcmp and lubksb: In both cases, you decompose the left-hand
matrix A just once, and then can use the decomposition either once or many times
with different right-hand sides. The crucial difference is the “editing” of the singular
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values before svbksb is called:

REAL a(np,np),u(np,np),w(np),v(np,np),b(np),x(np)
...
do 12 i=1,n Copy a into u if you don’t want it to be destroyed.

do 11 j=1,n
u(i,j)=a(i,j)

enddo 11

enddo 12

call svdcmp(u,n,n,np,np,w,v) SVD the square matrix a.
wmax=0. Will be the maximum singular value obtained.
do 13 j=1,n

if(w(j).gt.wmax)wmax=w(j)
enddo 13

wmin=wmax*1.0e-6 This is where we set the threshold for singular values
allowed to be nonzero. The constant is typical,
but not universal. You have to experiment with
your own application.

do 14 j=1,n
if(w(j).lt.wmin)w(j)=0.

enddo 14

call svbksb(u,w,v,n,n,np,np,b,x) Now we can backsubstitute.

SVD for Fewer Equations than Unknowns

If you have fewer linear equations M than unknowns N , then you are not
expecting a unique solution. Usually there will be an N − M dimensional family
of solutions. If you want to find this whole solution space, then SVD can readily
do the job.

The SVD decomposition will yield N − M zero or negligible wj ’s, since
M < N . There may be additional zero wj ’s from any degeneracies in your M
equations. Be sure that you find this many small wj ’s, and zero them before calling
svbksb, which will give you the particular solution vector x. As before, the columns
of V corresponding to zeroed wj ’s are the basis vectors whose linear combinations,
added to the particular solution, span the solution space.

SVD for More Equations than Unknowns

This situation will occur in Chapter 15, when we wish to find the least-squares
solution to an overdetermined set of linear equations. In tableau, the equations
to be solved are




A




·


x


 =




b




(2.6.11)

The proofs that we gave above for the square case apply without modification
to the case of more equations than unknowns. The least-squares solution vector x is
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given by (2.6.7), which, with nonsquare matrices, looks like this,


x


 =


 V


 ·


diag(1/wj)


 ·


 UT


 ·




b




(2.6.12)

In general, the matrix W will not be singular, and no w j ’s will need to be
set to zero. Occasionally, however, there might be column degeneracies in A. In
this case you will need to zero some small wj values after all. The corresponding
column in V gives the linear combination of x’s that is then ill-determined even by
the supposedly overdetermined set.

Sometimes, although you do not need to zero any w j ’s for computational
reasons, you may nevertheless want to take note of any that are unusually small:
Their correspondingcolumns in V are linear combinations of x’s which are insensitive
to your data. In fact, you may then wish to zero these w j ’s, to reduce the number of
free parameters in the fit. These matters are discussed more fully in Chapter 15.

Constructing an Orthonormal Basis

Suppose that you have N vectors in an M -dimensional vector space, with
N ≤ M . Then the N vectors span some subspace of the full vector space.
Often you want to construct an orthonormal set of N vectors that span the same
subspace. The textbook way to do this is by Gram-Schmidt orthogonalization,
starting with one vector and then expanding the subspace one dimension at a
time. Numerically, however, because of the build-up of roundoff errors, naive
Gram-Schmidt orthogonalization is terrible.

The right way to construct an orthonormal basis for a subspace is by SVD:
Form an M × N matrix A whose N columns are your vectors. Run the matrix
through svdcmp. The columns of the matrix U (which in fact replaces A on output
from svdcmp) are your desired orthonormal basis vectors.

You might also want to check the output wj ’s for zero values. If any occur,
then the spanned subspace was not, in fact, N dimensional; the columns of U
corresponding to zero wj ’s should be discarded from the orthonormal basis set.

(QR factorization, discussed in §2.10, also constructs an orthonormal basis,
see [5].)

Approximation of Matrices

Note that equation (2.6.1) can be rewritten to express any matrix A ij as a sum
of outer products of columns of U and rows of V T , with the “weighting factors”
being the singular values wj ,

Aij =
N∑

k=1

wk UikVjk (2.6.13)
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If you ever encounter a situation where most of the singular values w j of a
matrix A are very small, then A will be well-approximated by only a few terms in the
sum (2.6.13). This means that you have to store only a few columns of U and V (the
same k ones) and you will be able to recover, with good accuracy, the whole matrix.

Note also that it is very efficient to multiply such an approximated matrix by a
vector x: You just dot x with each of the stored columns of V, multiply the resulting
scalar by the corresponding wk, and accumulate that multiple of the corresponding
column of U. If your matrix is approximated by a small number K of singular
values, then this computation of A · x takes only about K(M + N) multiplications,
instead of MN for the full matrix.

SVD Algorithm

Here is the algorithm for constructing the singular value decomposition of any
matrix. See §11.2–§11.3, and also [4-5], for discussion relating to the underlying
method.

SUBROUTINE svdcmp(a,m,n,mp,np,w,v)
INTEGER m,mp,n,np,NMAX
REAL a(mp,np),v(np,np),w(np)
PARAMETER (NMAX=500) Maximum anticipated value of n.

C USES pythag
Given a matrix a(1:m,1:n), with physical dimensions mp by np, this routine computes its
singular value decomposition, A = U · W · V T . The matrix U replaces a on output. The
diagonal matrix of singular values W is output as a vector w(1:n). The matrix V (not the
transpose V T ) is output as v(1:n,1:n).

INTEGER i,its,j,jj,k,l,nm
REAL anorm,c,f,g,h,s,scale,x,y,z,rv1(NMAX),pythag
g=0.0 Householder reduction to bidiagonal form.
scale=0.0
anorm=0.0
do 25 i=1,n

l=i+1
rv1(i)=scale*g
g=0.0
s=0.0
scale=0.0
if(i.le.m)then

do 11 k=i,m
scale=scale+abs(a(k,i))

enddo 11

if(scale.ne.0.0)then
do 12 k=i,m

a(k,i)=a(k,i)/scale
s=s+a(k,i)*a(k,i)

enddo 12

f=a(i,i)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,i)=f-g
do 15 j=l,n

s=0.0
do 13 k=i,m

s=s+a(k,i)*a(k,j)
enddo 13

f=s/h
do 14 k=i,m

a(k,j)=a(k,j)+f*a(k,i)
enddo 14
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enddo 15

do 16 k=i,m
a(k,i)=scale*a(k,i)

enddo 16

endif
endif
w(i)=scale *g
g=0.0
s=0.0
scale=0.0
if((i.le.m).and.(i.ne.n))then

do 17 k=l,n
scale=scale+abs(a(i,k))

enddo 17

if(scale.ne.0.0)then
do 18 k=l,n

a(i,k)=a(i,k)/scale
s=s+a(i,k)*a(i,k)

enddo 18

f=a(i,l)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,l)=f-g
do 19 k=l,n

rv1(k)=a(i,k)/h
enddo 19

do 23 j=l,m
s=0.0
do 21 k=l,n

s=s+a(j,k)*a(i,k)
enddo 21

do 22 k=l,n
a(j,k)=a(j,k)+s*rv1(k)

enddo 22

enddo 23

do 24 k=l,n
a(i,k)=scale*a(i,k)

enddo 24

endif
endif
anorm=max(anorm,(abs(w(i))+abs(rv1(i))))

enddo 25

do 32 i=n,1,-1 Accumulation of right-hand transformations.
if(i.lt.n)then

if(g.ne.0.0)then
do 26 j=l,n Double division to avoid possible underflow.

v(j,i)=(a(i,j)/a(i,l))/g
enddo 26

do 29 j=l,n
s=0.0
do 27 k=l,n

s=s+a(i,k)*v(k,j)
enddo 27

do 28 k=l,n
v(k,j)=v(k,j)+s*v(k,i)

enddo 28

enddo 29

endif
do 31 j=l,n

v(i,j)=0.0
v(j,i)=0.0

enddo 31

endif
v(i,i)=1.0
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g=rv1(i)
l=i

enddo 32

do 39 i=min(m,n),1,-1 Accumulation of left-hand transformations.
l=i+1
g=w(i)
do 33 j=l,n

a(i,j)=0.0
enddo 33

if(g.ne.0.0)then
g=1.0/g
do 36 j=l,n

s=0.0
do 34 k=l,m

s=s+a(k,i)*a(k,j)
enddo 34

f=(s/a(i,i))*g
do 35 k=i,m

a(k,j)=a(k,j)+f*a(k,i)
enddo 35

enddo 36

do 37 j=i,m
a(j,i)=a(j,i)*g

enddo 37

else
do 38 j= i,m

a(j,i)=0.0
enddo 38

endif
a(i,i)=a(i,i)+1.0

enddo 39

do 49 k=n,1,-1 Diagonalization of the bidiagonal form: Loop over
singular values, and over allowed iterations.do 48 its=1,30

do 41 l=k,1,-1 Test for splitting.
nm=l-1 Note that rv1(1) is always zero.
if((abs(rv1(l))+anorm).eq.anorm) goto 2
if((abs(w(nm))+anorm).eq.anorm) goto 1

enddo 41

1 c=0.0 Cancellation of rv1(l), if l > 1.
s=1.0
do 43 i=l,k

f=s*rv1(i)
rv1(i)=c*rv1(i)
if((abs(f)+anorm).eq.anorm) goto 2
g=w(i)
h=pythag(f,g)
w(i)=h
h=1.0/h
c= (g*h)
s=-(f*h)
do 42 j=1,m

y=a(j,nm)
z=a(j,i)
a(j,nm)=(y*c)+(z*s)
a(j,i)=-(y*s)+(z*c)

enddo 42

enddo 43

2 z=w(k)
if(l.eq.k)then Convergence.

if(z.lt.0.0)then Singular value is made nonnegative.
w(k)=-z
do 44 j=1,n

v(j,k)=-v(j,k)
enddo 44
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endif
goto 3

endif
if(its.eq.30) pause ’no convergence in svdcmp’
x=w(l) Shift from bottom 2-by-2 minor.
nm=k-1
y=w(nm)
g=rv1(nm)
h=rv1(k)
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y)
g=pythag(f,1.0)
f=((x-z)*(x+z)+h*((y/(f+sign(g,f)))-h))/x
c=1.0 Next QR transformation:
s=1.0
do 47 j=l,nm

i=j+1
g=rv1(i)
y=w(i)
h=s*g
g=c*g
z=pythag(f,h)
rv1(j)=z
c=f/z
s=h/z
f= (x*c)+(g*s)
g=-(x*s)+(g*c)
h=y*s
y=y*c
do 45 jj=1,n

x=v(jj,j)
z=v(jj,i)
v(jj,j)= (x*c)+(z*s)
v(jj,i)=-(x*s)+(z*c)

enddo 45

z=pythag(f,h)
w(j)=z Rotation can be arbitrary if z = 0.
if(z.ne.0.0)then

z=1.0/z
c=f*z
s=h*z

endif
f= (c*g)+(s*y)
x=-(s*g)+(c*y)
do 46 jj=1,m

y=a(jj,j)
z=a(jj,i)
a(jj,j)= (y*c)+(z*s)
a(jj,i)=-(y*s)+(z*c)

enddo 46

enddo 47

rv1(l)=0.0
rv1(k)=f
w(k)=x

enddo 48

3 continue
enddo 49

return
END

FUNCTION pythag(a,b)
REAL a,b,pythag

Computes (a2 + b2)1/2 without destructive underflow or overflow.
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REAL absa,absb
absa=abs(a)
absb=abs(b)
if(absa.gt.absb)then

pythag=absa*sqrt(1.+(absb/absa)**2)
else

if(absb.eq.0.)then
pythag=0.

else
pythag=absb*sqrt(1.+(absa/absb)**2)

endif
endif
return
END

(Double precision versions of svdcmp, svbksb, and pythag, named dsvdcmp,
dsvbksb, and dpythag, are used by the routine ratlsq in §5.13. You can easily
make the conversions, or else get the converted routines from the Numerical Recipes
diskette.)

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.3 and Chapter 12.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall), Chapter 18.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I.10 by G.H. Golub and C. Reinsch. [2]

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.), Chapter 11. [3]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.7. [4]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §5.2.6. [5]

2.7 Sparse Linear Systems

A system of linear equations is called sparse if only a relatively small number
of its matrix elements aij are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of the O(N 3) arithmetic operations
devoted to solving the set of equations or inverting the matrix involve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not always compatible) goals for any sparse
matrix method: saving time and/or saving space.

We have already considered one archetypal sparse form in §2.4, the band
diagonal matrix. In the tridiagonal case, e.g., we saw that it was possible to save
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both time (orderN instead ofN 3) and space (orderN instead ofN 2). The
method of solution was not different in principle from the general method ofLU
decomposition; it was just applied cleverly, and with due attention to the bookkeeping
of zero elements. Many practical schemes for dealing with sparse problems have this
same character. They are fundamentally decomposition schemes, or else elimination
schemes akin to Gauss-Jordan, but carefully optimized so as to minimize the number
of so-calledfill-ins, initially zero elements which must become nonzero during the
solution process, and for which storage must be reserved.

Direct methods for solving sparse equations, then, depend crucially on the
precise pattern of sparsity of the matrix. Patterns that occur frequently, or that are
useful as way-stations in the reduction of more general forms, already have special
names and special methods of solution. We do not have space here for any detailed
review of these. References listed at the end of this section will furnish you with an
“in” to the specialized literature, and the following list of buzz words (and Figure
2.7.1) will at least let you hold your own at cocktail parties:

• tridiagonal
• band diagonal (or banded) with bandwidthM
• band triangular
• block diagonal
• block tridiagonal
• block triangular
• cyclic banded
• singly (or doubly) bordered block diagonal
• singly (or doubly) bordered block triangular
• singly (or doubly) bordered band diagonal
• singly (or doubly) bordered band triangular
• other (!)

You should also be aware of some of the special sparse forms that occur in the
solution of partial differential equations in two or more dimensions. See Chapter 19.

If your particular pattern of sparsity is not a simple one, then you may wish to
try ananalyze/factorize/operate package, which automates the procedure of figuring
out how fill-ins are to be minimized. Theanalyze stage is done once only for each
pattern of sparsity. Thefactorize stage is done once for each particular matrix that
fits the pattern. Theoperate stage is performed once for each right-hand side to
be used with the particular matrix. Consult[2,3] for references on this. The NAG
library [4] has an analyze/factorize/operate capability. A substantial collection of
routines for sparse matrix calculation is also available from IMSL[5] as theYale
Sparse Matrix Package [6].

You should be aware that the special order of interchanges and eliminations,
prescribed by a sparse matrix method so as to minimize fill-ins and arithmetic
operations, generally acts to decrease the method’s numerical stability as compared
to, e.g., regularLU decomposition with pivoting. Scaling your problem so as to
make its nonzero matrix elements have comparable magnitudes (if you can do it)
will sometimes ameliorate this problem.

In the remainder of this section, we present some concepts which are applicable
to some general classes of sparse matrices, and which do not necessarily depend on
details of the pattern of sparsity.
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(a) (b) (c)

(d) (e) (f ) 

(g) (h) (i)

( j) (k)

zeros

zeros

zeros

Figure 2.7.1. Some standard forms for sparse matrices. (a) Band diagonal; (b) block triangular; (c) block
tridiagonal; (d) singly bordered block diagonal; (e) doubly bordered block diagonal; (f) singly bordered
block triangular; (g) bordered band-triangular; (h) and (i) singly and doubly bordered band diagonal; (j)
and (k) other! (after Tewarson) [1].

Sherman-Morrison Formula

Suppose that you have already obtained, by herculean effort, the inverse matrix
A−1 of a square matrix A. Now you want to make a “small” change in A, for
example change one element aij , or a few elements, or one row, or one column.
Is there any way of calculating the corresponding change in A−1 without repeating
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your difficult labors? Yes, if your change is of the form

A → (A + u ⊗ v) (2.7.1)

for some vectors u and v. If u is a unit vector e i, then (2.7.1) adds the components
of v to the ith row. (Recall that u ⊗ v is a matrix whose i, jth element is the product
of the ith component of u and the jth component of v.) If v is a unit vector e j , then
(2.7.1) adds the components of u to the jth column. If both u and v are proportional
to unit vectors ei and ej respectively, then a term is added only to the element a ij .

The Sherman-Morrison formula gives the inverse (A + u⊗ v)−1, and is derived
briefly as follows:

(A + u ⊗ v)−1 = (1 + A−1 · u ⊗ v)−1 · A−1

= (1 − A−1 · u ⊗ v + A−1 · u ⊗ v · A−1 · u ⊗ v − . . .) · A−1

= A−1 − A−1 · u ⊗ v · A−1 (1 − λ + λ2 − . . .)

= A−1 − (A−1 · u) ⊗ (v · A−1)
1 + λ

(2.7.2)
where

λ ≡ v · A−1 · u (2.7.3)

The second line of (2.7.2) is a formal power series expansion. In the third line, the
associativity of outer and inner products is used to factor out the scalars λ.

The use of (2.7.2) is this: Given A−1 and the vectors u and v, we need only
perform two matrix multiplications and a vector dot product,

z ≡ A−1 · u w ≡ (A−1)T · v λ = v · z (2.7.4)

to get the desired change in the inverse

A−1 → A−1 − z ⊗ w
1 + λ

(2.7.5)

The whole procedure requires only 3N 2 multiplies and a like number of adds (an
even smaller number if u or v is a unit vector).

The Sherman-Morrison formula can be directly applied to a class of sparse
problems. If you already have a fast way of calculating the inverse of A (e.g., a
tridiagonal matrix, or some other standard sparse form), then (2.7.4)–(2.7.5) allow
you to build up to your related but more complicated form, adding for example a
row or column at a time. Notice that you can apply the Sherman-Morrison formula
more than once successively, using at each stage the most recent update of A−1

(equation 2.7.5). Of course, if you have to modify every row, then you are back to
an N 3 method. The constant in front of the N 3 is only a few times worse than the
better direct methods, but you have deprived yourself of the stabilizing advantages
of pivoting — so be careful.

For some other sparse problems, the Sherman-Morrison formula cannot be
directly applied for the simple reason that storage of the whole inverse matrix A −1
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is not feasible. If you want to add only a single correction of the form u ⊗ v,
and solve the linear system

(A + u ⊗ v) · x = b (2.7.6)

then you proceed as follows. Using the fast method that is presumed available for
the matrix A, solve the two auxiliary problems

A · y = b A · z = u (2.7.7)

for the vectors y and z. In terms of these,

x = y −
[

v · y
1 + (v · z)

]
z (2.7.8)

as we see by multiplying (2.7.2) on the right by b.

Cyclic Tridiagonal Systems

So-called cyclic tridiagonal systems occur quite frequently, and are a good
example of how to use the Sherman-Morrison formula in the manner just described.
The equations have the form

b1 c1 0 · · · β
a2 b2 c2 · · ·

· · ·
· · · aN−1 bN−1 cN−1

α · · · 0 aN bN

 ·


x1

x2

· · ·
xN−1

xN

 =


r1

r2

· · ·
rN−1

rN

 (2.7.9)

This is a tridiagonal system, except for the matrix elements α and β in the corners.
Forms like this are typically generated by finite-differencing differential equations
with periodic boundary conditions (§19.4).

We use the Sherman-Morrison formula, treating the system as tridiagonal plus
a correction. In the notation of equation (2.7.6), define vectors u and v to be

u =


γ
0
...
0
α

 v =


1
0
...
0

β/γ

 (2.7.10)

Here γ is arbitrary for the moment. Then the matrix A is the tridiagonal part of the
matrix in (2.7.9), with two terms modified:

b′1 = b1 − γ, b′N = bN − αβ/γ (2.7.11)

We now solve equations (2.7.7) with the standard tridiagonal algorithm, and then
get the solution from equation (2.7.8).

The routine cyclic below implements this algorithm. We choose the arbitrary
parameter γ = −b1 to avoid loss of precision by subtraction in the first of equations
(2.7.11). In the unlikely event that this causes loss of precision in the second of
these equations, you can make a different choice.
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SUBROUTINE cyclic(a,b,c,alpha,beta,r,x,n)
INTEGER n,NMAX
REAL alpha,beta,a(n),b(n),c(n),r(n),x(n)
PARAMETER (NMAX=500)

C USES tridag
Solves for a vector x(1:n) the “cyclic” set of linear equations given by equation (2.7.9).
a, b, c, and r are input vectors, while alpha and beta are the corner entries in the matrix.
The input is not modified.

INTEGER i
REAL fact,gamma,bb(NMAX),u(NMAX),z(NMAX)
if(n.le.2)pause ’n too small in cyclic’
if(n.gt.NMAX)pause ’NMAX too small in cyclic’
gamma=-b(1) Avoid subtraction error in forming bb(1).
bb(1)=b(1)-gamma Set up the diagonal of the modified tridiagonal system.
bb(n)=b(n)-alpha*beta/gamma
do 11 i=2,n-1

bb(i)=b(i)
enddo 11

call tridag(a,bb,c,r,x,n) Solve A · x = r.
u(1)=gamma Set up the vector u.
u(n)=alpha
do 12 i=2,n-1

u(i)=0.
enddo 12

call tridag(a,bb,c,u,z,n) Solve A · z = u.
fact=(x(1)+beta*x(n)/gamma)/(1.+z(1)+beta*z(n)/gamma) Form v · x/(1 + v · z).
do 13 i=1,n Now get the solution vector x.

x(i)=x(i)-fact*z(i)
enddo 13

return
END

Woodbury Formula

If you want to add more than a single correction term, then you cannot use (2.7.8)
repeatedly, since without storing a new A−1 you will not be able to solve the auxiliary
problems (2.7.7) efficiently after the first step. Instead, you need the Woodbury formula, which
is the block-matrix version of the Sherman-Morrison formula,

(A + U · VT )−1

= A−1 −
[
A−1 · U · (1 + VT · A−1 · U)−1 · VT · A−1

] (2.7.12)

Here A is, as usual, an N × N matrix, while U and V are N × P matrices with P < N
and usually P � N . The inner piece of the correction term may become clearer if written
as the tableau,

U


·

1 + VT · A−1 · U


−1

·

 VT

 (2.7.13)

where you can see that the matrix whose inverse is needed is only P × P rather than N ×N .
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The relation between the Woodbury formula and successive applications of the Sherman-
Morrison formula is now clarified by noting that, if U is the matrix formed by columns out of the
P vectors u1, . . . , uP , and V is the matrix formed by columns out of the P vectors v1, . . . , vP ,

U ≡

u1

 · · ·

uP

 V ≡

v1

 · · ·

vP

 (2.7.14)

then two ways of expressing the same correction to A are(
A +

P∑
k=1

uk ⊗ vk

)
= (A + U · VT ) (2.7.15)

(Note that the subscripts on u and v do not denote components, but rather distinguish the
different column vectors.)

Equation (2.7.15) reveals that, if you have A−1 in storage, then you can either make the
P corrections in one fell swoop by using (2.7.12), inverting a P × P matrix, or else make
them by applying (2.7.5) P successive times.

If you don’ t have storage for A−1, then you must use (2.7.12) in the following way:
To solve the linear equation (

A +

P∑
k=1

uk ⊗ vk

)
· x = b (2.7.16)

first solve the P auxiliary problems

A · z1 = u1

A · z2 = u2

· · ·
A · zP = uP

(2.7.17)

and construct the matrix Z by columns from the z’s obtained,

Z ≡

z1

 · · ·

zP

 (2.7.18)

Next, do the P × P matrix inversion

H ≡ (1 + VT · Z)−1 (2.7.19)

Finally, solve the one further auxiliary problem

A · y = b (2.7.20)

In terms of these quantities, the solution is given by

x = y − Z ·
[
H · (VT · y)

]
(2.7.21)
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Inversion by Partitioning

Once in a while, you will encounter a matrix (not even necessarily sparse)
that can be inverted efficiently by partitioning. Suppose that the N × N matrix
A is partitioned into

A =
[

P Q
R S

]
(2.7.22)

where P and S are square matrices of size p× p and s× s respectively (p + s = N ).
The matrices Q and R are not necessarily square, and have sizes p × s and s × p,
respectively.

If the inverse of A is partitioned in the same manner,

A−1 =

[
P̃ Q̃

R̃ S̃

]
(2.7.23)

then P̃, Q̃, R̃, S̃, which have the same sizes as P, Q, R, S, respectively, can be
found by either the formulas

P̃ = (P − Q · S−1 · R)−1

Q̃ = −(P − Q · S−1 · R)−1 · (Q · S−1)

R̃ = −(S−1 · R) · (P − Q · S−1 · R)−1

S̃ = S−1 + (S−1 · R) · (P − Q · S−1 · R)−1 · (Q · S−1)

(2.7.24)

or else by the equivalent formulas

P̃ = P−1 + (P−1 · Q) · (S − R · P−1 · Q)−1 · (R · P−1)

Q̃ = −(P−1 · Q) · (S − R · P−1 · Q)−1

R̃ = −(S − R · P−1 · Q)−1 · (R · P−1)

S̃ = (S − R · P−1 · Q)−1

(2.7.25)

The parentheses in equations (2.7.24) and (2.7.25) highlight repeated factors that
you may wish to compute only once. (Of course, by associativity, you can instead
do the matrix multiplications in any order you like.) The choice between using
equation (2.7.24) and (2.7.25) depends on whether you want P̃ or S̃ to have the
simpler formula; or on whether the repeated expression (S−R ·P−1 ·Q)−1 is easier
to calculate than the expression (P − Q · S−1 · R)−1; or on the relative sizes of P
and S; or on whether P−1 or S−1 is already known.

Another sometimes useful formula is for the determinant of the partitioned
matrix,

det A = det P det(S − R · P−1 · Q) = det S det(P − Q · S−1 · R) (2.7.26)
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Indexed Storage of Sparse Matrices

We have already seen (§2.4) that tri- or band-diagonal matrices can be stored in a compact
format that allocates storage only to elements which can be nonzero, plus perhaps a few wasted
locations to make the bookkeeping easier. What about more general sparse matrices? When a
sparse matrix of logical size N × N contains only a few times N nonzero elements (a typical
case), it is surely inefficient — and often physically impossible — to allocate storage for all
N2 elements. Even if one did allocate such storage, it would be inefficient or prohibitive in
machine time to loop over all of it in search of nonzero elements.

Obviously some kind of indexed storage scheme is required, one that stores only nonzero
matrix elements, along with sufficient auxiliary information to determine where an element
logically belongs and how the various elements can be looped over in common matrix
operations. Unfortunately, there is no one standard scheme in general use. Knuth [7] describes
one method. The Yale Sparse Matrix Package [6] and ITPACK [8] describe several other
methods. For most applications, we favor the storage scheme used by PCGPACK [9], which
is almost the same as that described by Bentley [10], and also similar to one of the Yale Sparse
Matrix Package methods. The advantage of this scheme, which can be called row-indexed
sparse storage mode, is that it requires storage of only about two times the number of nonzero
matrix elements. (Other methods can require as much as three or five times.) For simplicity,
we will treat only the case of square matrices, which occurs most frequently in practice.

To represent a matrix A of logical size N × N , the row-indexed scheme sets up two
one-dimensional arrays, call them sa and ija. The first of these stores matrix element values
in single or double precision as desired; the second stores integer values. The storage rules are:

• The first N locations of sa store A’s diagonal matrix elements, in order. (Note that
diagonal elements are stored even if they are zero; this is at most a slight storage
inefficiency, since diagonal elements are nonzero in most realistic applications.)

• Each of the first N locations of ija stores the index of the array sa that contains
the first off-diagonal element of the corresponding row of the matrix. (If there are
no off-diagonal elements for that row, it is one greater than the index in sa of the
most recently stored element of a previous row.)

• Location 1 of ija is always equal to N + 2. (It can be read to determine N .)
• Location N + 1 of ija is one greater than the index in sa of the last off-diagonal

element of the last row. (It can be read to determine the number of nonzero
elements in the matrix, or the logical length of the arrays sa and ija.) Location
N + 1 of sa is not used and can be set arbitrarily.

• Entries in sa at locations ≥ N + 2 contain A’s off-diagonal values, ordered by
rows and, within each row, ordered by columns.

• Entries in ija at locations≥ N+2 contain the column number of the corresponding
element in sa.

While these rules seem arbitrary at first sight, they result in a rather elegant storage
scheme. As an example, consider the matrix

3. 0. 1. 0. 0.
0. 4. 0. 0. 0.
0. 7. 5. 9. 0.
0. 0. 0. 0. 2.
0. 0. 0. 6. 5.

 (2.7.27)

In row-indexed compact storage, matrix (2.7.27) is represented by the two arrays of length
11, as follows

index k 1 2 3 4 5 6 7 8 9 10 11

ija(k) 7 8 8 10 11 12 3 2 4 5 4

sa(k) 3. 4. 5. 0. 5. x 1. 7. 9. 2. 6.
(2.7.28)

Here x is an arbitrary value. Notice that, according to the storage rules, the value of N
(namely 5) is ija(1)-2, and the length of each array is ija(ija(1)-1)-1, namely 11.
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The diagonal element in row i is sa(i), and the off-diagonal elements in that row are in
sa(k) where k loops from ija(i) to ija(i+1)-1, if the upper limit is greater or equal to
the lower one (as in FORTRAN do loops).

Here is a routine, sprsin, that converts a matrix from full storage mode into row-indexed
sparse storage mode, throwing away any elements that are less than a specified threshold.
Of course, the principal use of sparse storage mode is for matrices whose full storage mode
won’t fit into your machine at all; then you have to generate them directly into sparse format.
Nevertheless sprsin is useful as a precise algorithmic definition of the storage scheme, for
subscale testing of large problems, and for the case where execution time, rather than storage,
furnishes the impetus to sparse storage.

SUBROUTINE sprsin(a,n,np,thresh,nmax,sa,ija)
INTEGER n,nmax,np,ija(nmax)
REAL thresh,a(np,np),sa(nmax)

Converts a square matrix a(1:n,1:n) with physical dimension np into row-indexed sparse
storage mode. Only elements of a with magnitude ≥thresh are retained. Output is in
two linear arrays with physical dimension nmax (an input parameter): sa(1:) contains
array values, indexed by ija(1:). The logical sizes of sa and ija on output are both
ija(ija(1)-1)-1 (see text).

INTEGER i,j,k
do 11 j=1,n Store diagonal elements.

sa(j)=a(j,j)
enddo 11

ija(1)=n+2 Index to 1st row off-diagonal element, if any.
k=n+1
do 13 i=1,n Loop over rows.

do 12 j=1,n Loop over columns.
if(abs(a(i,j)).ge.thresh)then

if(i.ne.j)then Store off-diagonal elements and their columns.
k=k+1
if(k.gt.nmax)pause ’nmax too small in sprsin’
sa(k)=a(i,j)
ija(k)=j

endif
endif

enddo 12

ija(i+1)=k+1 As each row is completed, store index to next.
enddo 13

return
END

The single most important use of a matrix in row-indexed sparse storage mode is to
multiply a vector to its right. In fact, the storage mode is optimized for just this purpose.
The following routine is thus very simple.

SUBROUTINE sprsax(sa,ija,x,b,n)
INTEGER n,ija(*)
REAL b(n),sa(*),x(n)

Multiply a matrix in row-index sparse storage arrays sa and ija by a vector x(1:n), giving
a vector b(1:n).

INTEGER i,k
if (ija(1).ne.n+2) pause ’mismatched vector and matrix in sprsax’
do 12 i=1,n

b(i)=sa(i)*x(i) Start with diagonal term.
do 11 k=ija(i),ija(i+1)-1 Loop over off-diagonal terms.

b(i)=b(i)+sa(k)*x(ija(k))
enddo 11

enddo 12

return
END
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It is also simple to multiply the transpose of a matrix by a vector to its right. (We will use
this operation later in this section.) Note that the transpose matrix is not actually constructed.

SUBROUTINE sprstx(sa,ija,x,b,n)
INTEGER n,ija(*)
REAL b(n),sa(*),x(n)

Multiply the transpose of a matrix in row-index sparse storage arrays sa and ija by a
vector x(1:n), giving a vector b(1:n).

INTEGER i,j,k
if (ija(1).ne.n+2) pause ’mismatched vector and matrix in sprstx’
do 11 i=1,n Start with diagonal terms.

b(i)=sa(i)*x(i)
enddo 11

do 13 i=1,n Loop over off-diagonal terms.
do 12 k=ija(i),ija(i+1)-1

j=ija(k)
b(j)=b(j)+sa(k)*x(i)

enddo 12

enddo 13

return
END

(Double precision versions of sprsax and sprstx, named dsprsax and dsprstx, are used
by the routine atimes later in this section. You can easily make the conversion, or else get
the converted routines from the Numerical Recipes diskettes.)

In fact, because the choice of row-indexed storage treats rows and columns quite
differently, it is quite an involved operation to construct the transpose of a matrix, given the
matrix itself in row-indexed sparse storage mode. When the operation cannot be avoided, it
is done as follows: An index of all off-diagonal elements by their columns is constructed
(see §8.4). The elements are then written to the output array in column order. As each
element is written, its row is determined and stored. Finally, the elements in each column
are sorted by row.

SUBROUTINE sprstp(sa,ija,sb,ijb)
INTEGER ija(*),ijb(*)
REAL sa(*),sb(*)

C USES iindexx Version of indexx with all REAL variables changed to INTEGER.
Construct the transpose of a sparse square matrix, from row-index sparse storage arrays sa
and ija into arrays sb and ijb.

INTEGER j,jl,jm,jp,ju,k,m,n2,noff,inc,iv
REAL v
n2=ija(1) Linear size of matrix plus 2.
do 11 j=1,n2-2 Diagonal elements.

sb(j)=sa(j)
enddo 11

call iindexx(ija(n2-1)-ija(1),ija(n2),ijb(n2))
Index all off-diagonal elements by their columns.

jp=0
do 13 k=ija(1),ija(n2-1)-1 Loop over output off-diagonal elements.

m=ijb(k)+n2-1 Use index table to store by (former) columns.
sb(k)=sa(m)
do 12 j=jp+1,ija(m) Fill in the index to any omitted rows.

ijb(j)=k
enddo 12

jp=ija(m) Use bisection to find which row element m is in and put that
into ijb(k).jl=1

ju=n2-1
5 if (ju-jl.gt.1) then

jm=(ju+jl)/2
if(ija(jm).gt.m)then

ju=jm
else
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jl=jm
endif
goto 5

endif
ijb(k)=jl

enddo 13

do 14 j=jp+1,n2-1
ijb(j)=ija(n2-1)

enddo 14 Make a final pass to sort each row by Shell sort algorithm.
do 16 j=1,n2-2

jl=ijb(j+1)-ijb(j)
noff=ijb(j)-1
inc=1

1 inc=3*inc+1
if(inc.le.jl)goto 1

2 continue
inc=inc/3
do 15 k=noff+inc+1,noff+jl

iv=ijb(k)
v=sb(k)
m=k

3 if(ijb(m-inc).gt.iv)then
ijb(m)=ijb(m-inc)
sb(m)=sb(m-inc)
m=m-inc
if(m-noff.le.inc)goto 4

goto 3
endif

4 ijb(m)=iv
sb(m)=v

enddo 15

if(inc.gt.1)goto 2
enddo 16

return
END

The above routine embeds internally a sorting algorithm from §8.1, but calls the external
routine iindexx to construct the initial column index. This routine is identical to indexx, as
listed in §8.4, except that the latter’s two REAL declarations should be changed to integer.
(The Numerical Recipes diskettes include both indexx and iindexx.) In fact, you can
often use indexx without making these changes, since many computers have the property
that numerical values will sort correctly independently of whether they are interpreted as
floating or integer values.

As final examples of the manipulation of sparse matrices, we give two routines for the
multiplication of two sparse matrices. These are useful for techniques to be described in §13.10.

In general, the product of two sparse matrices is not itself sparse. One therefore wants
to limit the size of the product matrix in one of two ways: either compute only those elements
of the product that are specified in advance by a known pattern of sparsity, or else compute all
nonzero elements, but store only those whose magnitude exceeds some threshold value. The
former technique, when it can be used, is quite efficient. The pattern of sparsity is specified
by furnishing an index array in row-index sparse storage format (e.g., ija). The program
then constructs a corresponding value array (e.g., sa). The latter technique runs the danger of
excessive compute times and unknown output sizes, so it must be used cautiously.

With row-index storage, it is much more natural to multiply a matrix (on the left) by
the transpose of a matrix (on the right), so that one is crunching rows on rows, rather than
rows on columns. Our routines therefore calculate A · BT , rather than A · B. This means
that you have to run your right-hand matrix through the transpose routine sprstp before
sending it to the matrix multiply routine.

The two implementing routines, sprspm for “pattern multiply” and sprstm for “ threshold
multiply” are quite similar in structure. Both are complicated by the logic of the various
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combinations of diagonal or off-diagonal elements for the two input streams and output stream.

SUBROUTINE sprspm(sa,ija,sb,ijb,sc,ijc)
INTEGER ija(*),ijb(*),ijc(*)
REAL sa(*),sb(*),sc(*)

Matrix multiply A · BT where A and B are two sparse matrices in row-index storage mode,
and BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the
matrix B. This routine computes only those components of the matrix product that are pre-
specified by the input index array ijc, which is not modified. On output, the arrays sc and
ijc give the product matrix in row-index storage mode. For sparse matrix multiplication,
this routine will often be preceded by a call to sprstp, so as to construct the transpose
of a known matrix into sb, ijb.

INTEGER i,ijma,ijmb,j,m,ma,mb,mbb,mn
REAL sum
if (ija(1).ne.ijb(1).or.ija(1).ne.ijc(1))

* pause ’sprspm sizes do not match’
do 13 i=1,ijc(1)-2 Loop over rows.

j=i Set up so that first pass through loop does the diag-
onal component.m=i

mn=ijc(i)
sum=sa(i)*sb(i)

1 continue Main loop over each component to be output.
mb=ijb(j)
do 11 ma=ija(i),ija(i+1)-1 Loop through elements in A’s row. Convoluted logic,

following, accounts for the various combinations
of diagonal and off-diagonal elements.

ijma=ija(ma)
if(ijma.eq.j)then

sum=sum+sa(ma)*sb(j)
else

2 if(mb.lt.ijb(j+1))then
ijmb=ijb(mb)
if(ijmb.eq.i)then

sum=sum+sa(i)*sb(mb)
mb=mb+1
goto 2

else if(ijmb.lt.ijma)then
mb=mb+1
goto 2

else if(ijmb.eq.ijma)then
sum=sum+sa(ma)*sb(mb)
mb=mb+1
goto 2

endif
endif

endif
enddo 11

do 12 mbb=mb,ijb(j+1)-1 Exhaust the remainder of B’s row.
if(ijb(mbb).eq.i)then

sum=sum+sa(i)*sb(mbb)
endif

enddo 12

sc(m)=sum
sum=0.e0 Reset indices for next pass through loop.
if(mn.ge.ijc(i+1))goto 3
m=mn
mn=mn+1
j=ijc(m)

goto 1
3 continue

enddo 13

return
END
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SUBROUTINE sprstm(sa,ija,sb,ijb,thresh,nmax,sc,ijc)
INTEGER nmax,ija(*),ijb(*),ijc(nmax)
REAL thresh,sa(*),sb(*),sc(nmax)

Matrix multiply A · BT where A and B are two sparse matrices in row-index storage mode,
and BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the
matrix B. This routine computes all components of the matrix product (which may be non-
sparse!), but stores only those whose magnitude exceeds thresh. On output, the arrays
sc and ijc (whose maximum size is input as nmax) give the product matrix in row-index
storage mode. For sparse matrix multiplication, this routine will often be preceded by a call
to sprstp, so as to construct the transpose of a known matrix into sb, ijb.

INTEGER i,ijma,ijmb,j,k,ma,mb,mbb
REAL sum
if (ija(1).ne.ijb(1)) pause ’sprstm sizes do not match’
k=ija(1)
ijc(1)=k
do 14 i=1,ija(1)-2 Loop over rows of A,

do 13 j=1,ijb(1)-2 and rows of B.
if(i.eq.j)then

sum=sa(i)*sb(j)
else

sum=0.e0
endif
mb=ijb(j)
do 11 ma=ija(i),ija(i+1)-1 Loop through elements in A’s row. Convoluted logic,

following, accounts for the various combinations
of diagonal and off-diagonal elements.

ijma=ija(ma)
if(ijma.eq.j)then

sum=sum+sa(ma)*sb(j)
else

2 if(mb.lt.ijb(j+1))then
ijmb=ijb(mb)
if(ijmb.eq.i)then

sum=sum+sa(i)*sb(mb)
mb=mb+1
goto 2

else if(ijmb.lt.ijma)then
mb=mb+1
goto 2

else if(ijmb.eq.ijma)then
sum=sum+sa(ma)*sb(mb)
mb=mb+1
goto 2

endif
endif

endif
enddo 11

do 12 mbb=mb,ijb(j+1)-1 Exhaust the remainder of B’s row.
if(ijb(mbb).eq.i)then

sum=sum+sa(i)*sb(mbb)
endif

enddo 12

if(i.eq.j)then Where to put the answer...
sc(i)=sum

else if(abs(sum).gt.thresh)then
if(k.gt.nmax)pause ’sprstm: nmax to small’
sc(k)=sum
ijc(k)=j
k=k+1

endif
enddo 13

ijc(i+1)=k
enddo 14

return
END
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Conjugate Gradient Method for a Sparse System

So-called conjugate gradient methods provide a quite general means for solving the
N × N linear system

A · x = b (2.7.29)

The attractiveness of these methods for large sparse systems is that they reference A only
through its multiplication of a vector, or the multiplication of its transpose and a vector. As
we have seen, these operations can be very efficient for a properly stored sparse matrix. You,
the “owner” of the matrix A, can be asked to provide subroutines that perform these sparse
matrix multiplications as efficiently as possible. We, the “grand strategists” supply the general
routine, linbcg below, that solves the set of linear equations, (2.7.29), using your subroutines.

The simplest, “ordinary” conjugate gradient algorithm [11-13] solves (2.7.29) only in the
case that A is symmetric and positive definite. It is based on the idea of minimizing the function

f(x) =
1

2
x · A · x − b · x (2.7.30)

This function is minimized when its gradient

∇f = A · x − b (2.7.31)

is zero, which is equivalent to (2.7.29). The minimization is carried out by generating a
succession of search directions pk and improved minimizers xk. At each stage a quantity αk

is found that minimizes f(xk + αkpk), and xk+1 is set equal to the new point xk + αkpk.
The pk and xk are built up in such a way that xk+1 is also the minimizer of f over the whole
vector space of directions already taken, {p1, p2, . . . , pk}. After N iterations you arrive at
the minimizer over the entire vector space, i.e., the solution to (2.7.29).

Later, in §10.6, we will generalize this “ordinary” conjugate gradient algorithm to the
minimization of arbitrary nonlinear functions. Here, where our interest is in solving linear,
but not necessarily positive definite or symmetric, equations, a different generalization is
important, the biconjugate gradient method. This method does not, in general, have a simple
connection with function minimization. It constructs four sequences of vectors, rk, rk, pk,
pk, k = 1, 2, . . . . You supply the initial vectors r1 and r1, and set p1 = r1, p1 = r1. Then
you carry out the following recurrence:

αk =
rk · rk

pk · A · pk

rk+1 = rk − αkA · pk

rk+1 = rk − αkAT · pk

βk =
rk+1 · rk+1

rk · rk

pk+1 = rk+1 + βkpk

pk+1 = rk+1 + βkpk

(2.7.32)

This sequence of vectors satisfies the biorthogonality condition

ri · rj = ri · rj = 0, j < i (2.7.33)

and the biconjugacy condition

pi · A · pj = pi · AT · pj = 0, j < i (2.7.34)

There is also a mutual orthogonality,

ri · pj = ri · pj = 0, j < i (2.7.35)

The proof of these properties proceeds by straightforward induction [14]. As long as the
recurrence does not break down earlier because one of the denominators is zero, it must
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terminate after m ≤ N steps with rm+1 = rm+1 = 0. This is basically because after at most
N steps you run out of new orthogonal directions to the vectors you’ve already constructed.

To use the algorithm to solve the system (2.7.29), make an initial guess x1 for the
solution. Choose r1 to be the residual

r1 = b − A · x1 (2.7.36)

and choose r1 = r1. Then form the sequence of improved estimates

xk+1 = xk + αkpk (2.7.37)

while carrying out the recurrence (2.7.32). Equation (2.7.37) guarantees that rk+1 from the
recurrence is in fact the residual b − A · xk+1 corresponding to xk+1. Since rm+1 = 0,
xm+1 is the solution to equation (2.7.29).

While there is no guarantee that this whole procedure will not break down or become
unstable for general A, in practice this is rare. More importantly, the exact termination in at
most N iterations occurs only with exact arithmetic. Roundoff error means that you should
regard the process as a genuinely iterative procedure, to be halted when some appropriate
error criterion is met.

The ordinary conjugate gradient algorithm is the special case of the biconjugate gradient
algorithm when A is symmetric, and we choose r1 = r1. Then rk = rk and pk = pk for all
k; you can omit computing them and halve the work of the algorithm. This conjugate gradient
version has the interpretation of minimizing equation (2.7.30). If A is positive definite as
well as symmetric, the algorithm cannot break down (in theory!). The routine linbcg below
indeed reduces to the ordinary conjugate gradient method if you input a symmetric A, but
it does all the redundant computations.

Another variant of the general algorithm corresponds to a symmetric but non-positive
definite A, with the choice r1 = A · r1 instead of r1 = r1. In this case rk = A · rk and
pk = A · pk for all k. This algorithm is thus equivalent to the ordinary conjugate gradient
algorithm, but with all dot products a ·b replaced by a ·A ·b. It is called the minimum residual
algorithm, because it corresponds to successive minimizations of the function

Φ(x) =
1

2
r · r =

1

2
|A · x − b|2 (2.7.38)

where the successive iterates xk minimize Φ over the same set of search directions pk generated
in the conjugate gradient method. This algorithm has been generalized in various ways for
unsymmetric matrices. The generalized minimum residual method (GMRES; see [9,15]) is
probably the most robust of these methods.

Note that equation (2.7.38) gives

∇Φ(x) = AT · (A · x − b) (2.7.39)

For any nonsingular matrix A, AT ·A is symmetric and positive definite. You might therefore
be tempted to solve equation (2.7.29) by applying the ordinary conjugate gradient algorithm
to the problem

(AT · A) · x = AT · b (2.7.40)

Don’t! The condition number of the matrix AT · A is the square of the condition number of
A (see §2.6 for definition of condition number). A large condition number both increases the
number of iterations required, and limits the accuracy to which a solution can be obtained. It
is almost always better to apply the biconjugate gradient method to the original matrix A.

So far we have said nothing about the rate of convergence of these methods. The
ordinary conjugate gradient method works well for matrices that are well-conditioned, i.e.,
“close” to the identity matrix. This suggests applying these methods to the preconditioned
form of equation (2.7.29),

(Ã
−1 · A) · x = Ã

−1 · b (2.7.41)

The idea is that you might already be able to solve your linear system easily for some Ã close
to A, in which case Ã−1 · A ≈ 1, allowing the algorithm to converge in fewer steps. The
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matrix Ã is called a preconditioner [11], and the overall scheme given here is known as the
preconditioned biconjugate gradient method or PBCG.

For efficient implementation, the PBCG algorithm introduces an additional set of vectors
zk and zk defined by

Ã · zk = rk and Ã
T · zk = rk (2.7.42)

and modifies the definitions of αk, βk, pk, and pk in equation (2.7.32):

αk =
rk · zk

pk · A · pk

βk =
rk+1 · zk+1

rk · zk

pk+1 = zk+1 + βkpk

pk+1 = zk+1 + βkpk

(2.7.43)

For linbcg, below, we will ask you to supply routines that solve the auxiliary linear systems
(2.7.42). If you have no idea what to use for the preconditioner Ã, then use the diagonal part
of A, or even the identity matrix, in which case the burden of convergence will be entirely
on the biconjugate gradient method itself.

The routine linbcg, below, is based on a program originally written by Anne Greenbaum.
(See [13] for a different, less sophisticated, implementation.) There are a few wrinkles you
should know about.

What constitutes “good” convergence is rather application dependent. The routine
linbcg therefore provides for four possibilities, selected by setting the flag itol on input.
If itol=1, iteration stops when the quantity |A · x − b|/|b| is less than the input quantity
tol. If itol=2, the required criterion is

|Ã−1 · (A · x − b)|/|Ã−1 · b| < tol (2.7.44)

If itol=3, the routine uses its own estimate of the error in x, and requires its magnitude,
divided by the magnitude of x, to be less than tol. The setting itol=4 is the same as itol=3,
except that the largest (in absolute value) component of the error and largest component of x
are used instead of the vector magnitude (that is, the L∞ norm instead of the L2 norm). You
may need to experiment to find which of these convergence criteria is best for your problem.

On output, err is the tolerance actually achieved. If the returned count iter does
not indicate that the maximum number of allowed iterations itmax was exceeded, then err
should be less than tol. If you want to do further iterations, leave all returned quantities as
they are and call the routine again. The routine loses its memory of the spanned conjugate
gradient subspace between calls, however, so you should not force it to return more often
than about every N iterations.

Finally, note that linbcg is furnished in double precision, since it will be usually be
used when N is quite large.

SUBROUTINE linbcg(n,b,x,itol,tol,itmax,iter,err)
INTEGER iter,itmax,itol,n,NMAX
DOUBLE PRECISION err,tol,b(*),x(*),EPS Double precision is a good idea in this rou-

tine.PARAMETER (NMAX=1024,EPS=1.d-14)
C USES atimes,asolve,snrm

Solves A · x = b for x(1:n), given b(1:n), by the iterative biconjugate gradient method.
On input x(1:n) should be set to an initial guess of the solution (or all zeros); itol is
1,2,3, or 4, specifying which convergence test is applied (see text); itmax is the maximum
number of allowed iterations; and tol is the desired convergence tolerance. On output,
x(1:n) is reset to the improved solution, iter is the number of iterations actually taken,
and err is the estimated error. The matrix A is referenced only through the user-supplied
routines atimes, which computes the product of either A or its transpose on a vector; and

asolve, which solves Ã · x = b or Ã
T · x = b for some preconditioner matrix Ã (possibly

the trivial diagonal part of A).
INTEGER j
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DOUBLE PRECISION ak,akden,bk,bkden,bknum,bnrm,dxnrm,
* xnrm,zm1nrm,znrm,p(NMAX),pp(NMAX),r(NMAX),rr(NMAX),
* z(NMAX),zz(NMAX),snrm

iter=0 Calculate initial residual.
call atimes(n,x,r,0) Input to atimes is x(1:n), output is r(1:n);

the final 0 indicates that the matrix (not
its transpose) is to be used.

do 11 j=1,n
r(j)=b(j)-r(j)
rr(j)=r(j)

enddo 11

C call atimes(n,r,rr,0) Uncomment this line to get the “minimum
residual” variant of the algorithm.if(itol.eq.1) then

bnrm=snrm(n,b,itol)
call asolve(n,r,z,0) Input to asolve is r(1:n), output is z(1:n);

the final 0 indicates that the matrix Ã
(not its transpose) is to be used.

else if (itol.eq.2) then
call asolve(n,b,z,0)
bnrm=snrm(n,z,itol)
call asolve(n,r,z,0)

else if (itol.eq.3.or.itol.eq.4) then
call asolve(n,b,z,0)
bnrm=snrm(n,z,itol)
call asolve(n,r,z,0)
znrm=snrm(n,z,itol)

else
pause ’illegal itol in linbcg’

endif
100 if (iter.le.itmax) then Main loop.

iter=iter+1

call asolve(n,rr,zz,1) Final 1 indicates use of transpose matrix Ã
T
.

bknum=0.d0
do 12 j=1,n Calculate coefficient bk and direction vectors

p and pp.bknum=bknum+z(j)*rr(j)
enddo 12

if(iter.eq.1) then
do 13 j=1,n

p(j)=z(j)
pp(j)=zz(j)

enddo 13

else
bk=bknum/bkden
do 14 j=1,n

p(j)=bk*p(j)+z(j)
pp(j)=bk*pp(j)+zz(j)

enddo 14

endif
bkden=bknum Calculate coefficient ak, new iterate x, and

new residuals r and rr.call atimes(n,p,z,0)
akden=0.d0
do 15 j=1,n

akden=akden+z(j)*pp(j)
enddo 15

ak=bknum/akden
call atimes(n,pp,zz,1)
do 16 j=1,n

x(j)=x(j)+ak*p(j)
r(j)=r(j)-ak*z(j)
rr(j)=rr(j)-ak*zz(j)

enddo 16

call asolve(n,r,z,0) Solve Ã ·z = r and check stopping criterion.
if(itol.eq.1)then

err=snrm(n,r,itol)/bnrm
else if(itol.eq.2)then

err=snrm(n,z,itol)/bnrm
else if(itol.eq.3.or.itol.eq.4)then

zm1nrm=znrm
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znrm=snrm(n,z,itol)
if(abs(zm1nrm-znrm).gt.EPS*znrm) then

dxnrm=abs(ak)*snrm(n,p,itol)
err=znrm/abs(zm1nrm-znrm)*dxnrm

else
err=znrm/bnrm Error may not be accurate, so loop again.
goto 100

endif
xnrm=snrm(n,x,itol)
if(err.le.0.5d0*xnrm) then

err=err/xnrm
else

err=znrm/bnrm Error may not be accurate, so loop again.
goto 100

endif
endif
write (*,*) ’ iter=’,iter,’ err=’,err

if(err.gt.tol) goto 100
endif
return
END

The routine linbcg uses this short utility for computing vector norms:

FUNCTION snrm(n,sx,itol)
INTEGER n,itol,i,isamax
DOUBLE PRECISION sx(n),snrm

Compute one of two norms for a vector sx(1:n), as signaled by itol. Used by linbcg.
if (itol.le.3)then

snrm=0.
do 11 i=1,n Vector magnitude norm.

snrm=snrm+sx(i)**2
enddo 11

snrm=sqrt(snrm)
else

isamax=1
do 12 i=1,n Largest component norm.

if(abs(sx(i)).gt.abs(sx(isamax))) isamax=i
enddo 12

snrm=abs(sx(isamax))
endif
return
END

So that the specifications for the routines atimes and asolve are clear, we list here
simple versions that assume a matrix A stored somewhere in row-index sparse format.

SUBROUTINE atimes(n,x,r,itrnsp)
INTEGER n,itrnsp,ija,NMAX
DOUBLE PRECISION x(n),r(n),sa
PARAMETER (NMAX=1000)
COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.

C USES dsprsax,dsprstx DOUBLE PRECISION versions of sprsax and sprstx.
if (itrnsp.eq.0) then

call dsprsax(sa,ija,x,r,n)
else

call dsprstx(sa,ija,x,r,n)
endif
return
END
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SUBROUTINE asolve(n,b,x,itrnsp)
INTEGER n,itrnsp,ija,NMAX,i
DOUBLE PRECISION x(n),b(n),sa
PARAMETER (NMAX=1000)
COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.
do 11 i=1,n

x(i)=b(i)/sa(i) The matrix Ã is the diagonal part of A, stored in
the first n elements of sa. Since the transpose
matrix has the same diagonal, the flag itrnsp is
not used.

enddo 11

return
END
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2.8 Vandermonde Matrices and Toeplitz
Matrices

In §2.4 the case of a tridiagonal matrix was treated specially, because that
particular type of linear system admits a solution in only of order N operations,
rather than of order N 3 for the general linear problem. When such particular types
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exist, it is important to know about them. Your computational savings, should you
ever happen to be working on a problem that involves the right kind of particular
type, can be enormous.

This section treats two special types of matrices that can be solved in of order
N2 operations, not as good as tridiagonal, but a lot better than the general case.
(Other than the operations count, these two types having nothing in common.)
Matrices of the first type, termed Vandermonde matrices, occur in some problems
having to do with the fitting of polynomials, the reconstruction of distributions from
their moments, and also other contexts. In this book, for example, a Vandermonde
problem crops up in §3.5. Matrices of the second type, termed Toeplitz matrices,
tend to occur in problems involving deconvolution and signal processing. In this
book, a Toeplitz problem is encountered in §13.7.

These are not the only special types of matrices worth knowing about. The
Hilbert matrices, whose components are of the form a ij = 1/(i + j − 1), i, j =
1, . . . , N can be inverted by an exact integer algorithm, and are very difficult to
invert in any other way, since they are notoriously ill-conditioned (see [1] for details).
The Sherman-Morrison and Woodbury formulas, discussed in §2.7, can sometimes
be used to convert new special forms into old ones. Reference [2] gives some other
special forms. We have not found these additional forms to arise as frequently as
the two that we now discuss.

Vandermonde Matrices

A Vandermonde matrix of size N × N is completely determined by N arbitrary
numbers x1, x2, . . . , xN , in terms of which its N2 components are the integer powers
xj−1

i , i, j = 1, . . . , N . Evidently there are two possible such forms, depending on whether
we view the i’s as rows, j’s as columns, or vice versa. In the former case, we get a linear
system of equations that looks like this,

1 x1 x2
1 · · · xN−1

1

1 x2 x2
2 · · · xN−1

2

...
...

...
...

1 xN x2
N · · · xN−1

N

 ·


c1

c2

...
cN

 =


y1

y2

...
yN

 (2.8.1)

Performing the matrix multiplication, you will see that this equation solves for the unknown
coefficients ci which fit a polynomial to the N pairs of abscissas and ordinates (xj , yj).
Precisely this problem will arise in §3.5, and the routine given there will solve (2.8.1) by the
method that we are about to describe.

The alternative identification of rows and columns leads to the set of equations
1 1 · · · 1
x1 x2 · · · xN

x2
1 x2

2 · · · x2
N

· · ·
xN−1

1 xN−1
2 · · · xN−1

N

 ·


w1

w2

w3

· · ·
wN

 =


q1

q2

q3

· · ·
qN

 (2.8.2)

Write this out and you will see that it relates to the problem of moments: Given the values
of N points xi, find the unknown weights wi, assigned so as to match the given values
qj of the first N moments. (For more on this problem, consult [3].) The routine given in
this section solves (2.8.2).
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The method of solution of both (2.8.1) and (2.8.2) is closely related to Lagrange’s
polynomial interpolation formula, which we will not formally meet until §3.1 below. Notwith-
standing, the following derivation should be comprehensible:

Let Pj(x) be the polynomial of degree N − 1 defined by

Pj(x) =

N∏
n=1

(n �=j)

x − xn

xj − xn
=

N∑
k=1

Ajkxk−1 (2.8.3)

Here the meaning of the last equality is to define the components of the matrix Aij as the
coefficients that arise when the product is multiplied out and like terms collected.

The polynomial Pj(x) is a function of x generally. But you will notice that it is
specifically designed so that it takes on a value of zero at all xi with i �= j, and has a value
of unity at x = xj . In other words,

Pj(xi) = δij =

N∑
k=1

Ajkxk−1
i (2.8.4)

But (2.8.4) says that Ajk is exactly the inverse of the matrix of components xk−1
i , which

appears in (2.8.2), with the subscript as the column index. Therefore the solution of (2.8.2)
is just that matrix inverse times the right-hand side,

wj =

N∑
k=1

Ajkqk (2.8.5)

As for the transpose problem (2.8.1), we can use the fact that the inverse of the transpose
is the transpose of the inverse, so

cj =
N∑

k=1

Akjyk (2.8.6)

The routine in §3.5 implements this.
It remains to find a good way of multiplying out the monomial terms in (2.8.3), in order

to get the components of Ajk. This is essentially a bookkeeping problem, and we will let you
read the routine itself to see how it can be solved. One trick is to define a master P (x) by

P (x) ≡
N∏

n=1

(x − xn) (2.8.7)

work out its coefficients, and then obtain the numerators and denominators of the specific Pj ’s
via synthetic division by the one supernumerary term. (See §5.3 for more on synthetic division.)
Since each such division is only a process of order N , the total procedure is of order N2.

You should be warned that Vandermonde systems are notoriously ill-conditioned, by
their very nature. (As an aside anticipating §5.8, the reason is the same as that which makes
Chebyshev fitting so impressively accurate: there exist high-order polynomials that are very
good uniform fits to zero. Hence roundoff error can introduce rather substantial coefficients
of the leading terms of these polynomials.) It is a good idea always to compute Vandermonde
problems in double precision.

The routine for (2.8.2) which follows is due to G.B. Rybicki.

SUBROUTINE vander(x,w,q,n)
INTEGER n,NMAX
DOUBLE PRECISION q(n),w(n),x(n)
PARAMETER (NMAX=100)

Solves the Vandermonde linear system
∑N

i=1 xk−1
i wi = qk (k = 1, . . . , N). Input consists

of the vectors x(1:n) and q(1:n); the vector w(1:n) is output.
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Parameters: NMAX is the maximum expected value of n.
INTEGER i,j,k
DOUBLE PRECISION b,s,t,xx,c(NMAX)
if(n.eq.1)then

w(1)=q(1)
else

do 11 i=1,n Initialize array.
c(i)=0.d0

enddo 11

c(n)=-x(1) Coefficients of the master polynomial are found by recur-
sion.do 13 i=2,n

xx=-x(i)
do 12 j=n+1-i,n-1

c(j)=c(j)+xx*c(j+1)
enddo 12

c(n)=c(n)+xx
enddo 13

do 15 i=1,n Each subfactor in turn
xx=x(i)
t=1.d0
b=1.d0
s=q(n)
do 14 k=n,2,-1 is synthetically divided,

b=c(k)+xx*b
s=s+q(k-1)*b matrix-multiplied by the right-hand side,
t=xx*t+b

enddo 14

w(i)=s/t and supplied with a denominator.
enddo 15

endif
return
END

Toeplitz Matrices

An N × N Toeplitz matrix is specified by giving 2N − 1 numbers Rk, k = −N +
1, . . . ,−1, 0, 1, . . . , N − 1. Those numbers are then emplaced as matrix elements constant
along the (upper-left to lower-right) diagonals of the matrix:

R0 R−1 R−2 · · · R−(N−2) R−(N−1)

R1 R0 R−1 · · · R−(N−3) R−(N−2)

R2 R1 R0 · · · R−(N−4) R−(N−3)

· · · · · ·
RN−2 RN−3 RN−4 · · · R0 R−1

RN−1 RN−2 RN−3 · · · R1 R0

 (2.8.8)

The linear Toeplitz problem can thus be written as

N∑
j=1

Ri−jxj = yi (i = 1, . . . , N) (2.8.9)

where the xj’s, j = 1, . . . , N , are the unknowns to be solved for.
The Toeplitz matrix is symmetric if Rk = R−k for all k. Levinson [4] developed an

algorithm for fast solution of the symmetric Toeplitz problem, by a bordering method, that is,
a recursive procedure that solves the M -dimensional Toeplitz problem

M∑
j=1

Ri−jx
(M)
j = yi (i = 1, . . . , M) (2.8.10)
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in turn for M = 1, 2, . . . until M = N , the desired result, is finally reached. The vector x
(M)
j

is the result at the M th stage, and becomes the desired answer only when N is reached.
Levinson’s method is well documented in standard texts (e.g., [5]). The useful fact that

the method generalizes to the nonsymmetric case seems to be less well known. At some risk
of excessive detail, we therefore give a derivation here, due to G.B. Rybicki.

In following a recursion from step M to step M +1 we find that our developing solution
x(M) changes in this way:

M∑
j=1

Ri−jx
(M)
j = yi i = 1, . . . , M (2.8.11)

becomes

M∑
j=1

Ri−jx
(M+1)
j + Ri−(M+1)x

(M+1)
M+1 = yi i = 1, . . . , M + 1 (2.8.12)

By eliminating yi we find

M∑
j=1

Ri−j

(
x

(M)
j − x

(M+1)
j

x
(M+1)
M+1

)
= Ri−(M+1) i = 1, . . . , M (2.8.13)

or by letting i → M + 1 − i and j → M + 1 − j,

M∑
j=1

Rj−iG
(M)
j = R−i (2.8.14)

where

G
(M)
j ≡ x

(M)
M+1−j − x

(M+1)
M+1−j

x
(M+1)
M+1

(2.8.15)

To put this another way,

x
(M+1)
M+1−j = x

(M)
M+1−j − x

(M+1)
M+1 G

(M)
j j = 1, . . . , M (2.8.16)

Thus, if we can use recursion to find the order M quantities x(M) and G(M) and the single
order M + 1 quantity x

(M+1)
M+1 , then all of the other x

(M+1)
j will follow. Fortunately, the

quantity x
(M+1)
M+1 follows from equation (2.8.12) with i = M + 1,

M∑
j=1

RM+1−jx
(M+1)
j + R0x

(M+1)
M+1 = yM+1 (2.8.17)

For the unknown order M + 1 quantities x
(M+1)
j we can substitute the previous order

quantities in G since

G
(M)
M+1−j =

x
(M)
j − x

(M+1)
j

x
(M+1)
M+1

(2.8.18)

The result of this operation is

x
(M+1)
M+1 =

∑M
j=1 RM+1−jx

(M)
j − yM+1∑M

j=1 RM+1−jG
(M)
M+1−j − R0

(2.8.19)

The only remaining problem is to develop a recursion relation for G. Before we do
that, however, we should point out that there are actually two distinct sets of solutions to the
original linear problem for a nonsymmetric matrix, namely right-hand solutions (which we
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have been discussing) and left-hand solutions zi. The formalism for the left-hand solutions
differs only in that we deal with the equations

M∑
j=1

Rj−iz
(M)
j = yi i = 1, . . . , M (2.8.20)

Then, the same sequence of operations on this set leads to

M∑
j=1

Ri−jH
(M)
j = Ri (2.8.21)

where

H
(M)
j ≡ z

(M)
M+1−j − z

(M+1)
M+1−j

z
(M+1)
M+1

(2.8.22)

(compare with 2.8.14 – 2.8.15). The reason for mentioning the left-hand solutions now is
that, by equation (2.8.21), the Hj satisfy exactly the same equation as the xj except for
the substitution yi → Ri on the right-hand side. Therefore we can quickly deduce from
equation (2.8.19) that

H
(M+1)
M+1 =

∑M
j=1 RM+1−jH

(M)
j − RM+1∑M

j=1 RM+1−jG
(M)
M+1−j − R0

(2.8.23)

By the same token, G satisfies the same equation as z, except for the substitution yi → R−i.
This gives

G
(M+1)
M+1 =

∑M
j=1 Rj−M−1G

(M)
j − R−M−1∑M

j=1 Rj−M−1H
(M)
M+1−j − R0

(2.8.24)

The same “morphism” also turns equation (2.8.16), and its partner for z, into the final equations

G
(M+1)
j = G

(M)
j − G

(M+1)
M+1 H

(M)
M+1−j

H
(M+1)
j = H

(M)
j − H

(M+1)
M+1 G

(M)
M+1−j

(2.8.25)

Now, starting with the initial values

x
(1)
1 = y1/R0 G

(1)
1 = R−1/R0 H

(1)
1 = R1/R0 (2.8.26)

we can recurse away. At each stage M we use equations (2.8.23) and (2.8.24) to find
H

(M+1)
M+1 , G

(M+1)
M+1 , and then equation (2.8.25) to find the other components of H(M+1) , G(M+1).

From there the vectors x(M+1) and/or z(M+1) are easily calculated.
The program below does this. It incorporates the second equation in (2.8.25) in the form

H
(M+1)
M+1−j = H

(M)
M+1−j − H

(M+1)
M+1 G

(M)
j (2.8.27)

so that the computation can be done “in place.”
Notice that the above algorithm fails if R0 = 0. In fact, because the bordering method

does not allow pivoting, the algorithm will fail if any of the diagonal principal minors of the
original Toeplitz matrix vanish. (Compare with discussion of the tridiagonal algorithm in
§2.4.) If the algorithm fails, your matrix is not necessarily singular — you might just have
to solve your problem by a slower and more general algorithm such as LU decomposition
with pivoting.

The routine that implements equations (2.8.23)–(2.8.27) is also due to Rybicki. Note
that the routine’s r(n+j) is equal to Rj above, so that subscripts on the r array vary from
1 to 2N − 1.
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SUBROUTINE toeplz(r,x,y,n)
INTEGER n,NMAX
REAL r(2*n-1),x(n),y(n)
PARAMETER (NMAX=100)

Solves the Toeplitz system
∑N

j=1 R(N+i−j)xj = yi (i = 1, . . . , N). The Toeplitz matrix

need not be symmetric. y and r are input arrays of length n and 2*n-1, respectively. x
is the output array, of length n.
Parameter: NMAX is the maximum anticipated value of n.

INTEGER j,k,m,m1,m2
REAL pp,pt1,pt2,qq,qt1,qt2,sd,sgd,sgn,shn,sxn,

* g(NMAX),h(NMAX)
if(r(n).eq.0.) goto 99
x(1)=y(1)/r(n) Initialize for the recursion.
if(n.eq.1)return
g(1)=r(n-1)/r(n)
h(1)=r(n+1)/r(n)
do 15 m=1,n Main loop over the recursion.

m1=m+1
sxn=-y(m1) Compute numerator and denominator for x,
sd=-r(n)
do 11 j=1,m

sxn=sxn+r(n+m1-j)*x(j)
sd=sd+r(n+m1-j)*g(m-j+1)

enddo 11

if(sd.eq.0.)goto 99
x(m1)=sxn/sd whence x.
do 12 j=1,m

x(j)=x(j)-x(m1)*g(m-j+1)
enddo 12

if(m1.eq.n)return
sgn=-r(n-m1) Compute numerator and denominator for G and H,
shn=-r(n+m1)
sgd=-r(n)
do 13 j=1,m

sgn=sgn+r(n+j-m1)*g(j)
shn=shn+r(n+m1-j)*h(j)
sgd=sgd+r(n+j-m1)*h(m-j+1)

enddo 13

if(sd.eq.0..or.sgd.eq.0.)goto 99
g(m1)=sgn/sgd whence G and H.
h(m1)=shn/sd
k=m
m2=(m+1)/2
pp=g(m1)
qq=h(m1)
do 14 j=1,m2

pt1=g(j)
pt2=g(k)
qt1=h(j)
qt2=h(k)
g(j)=pt1-pp*qt2
g(k)=pt2-pp*qt1
h(j)=qt1-qq*pt2
h(k)=qt2-qq*pt1
k=k-1

enddo 14

enddo 15 Back for another recurrence.
pause ’never get here in toeplz’

99 pause ’singular principal minor in toeplz’
END

If you are in the business of solving very large Toeplitz systems, you should find out about
so-called “new, fast” algorithms, which require only on the order of N(log N)2 operations,
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compared to N2 for Levinson’s method. These methods are too complicated to include here.
Papers by Bunch [6] and de Hoog [7] will give entry to the literature.
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2.9 Cholesky Decomposition

If a square matrix A happens to be symmetric and positive definite, then it has a
special, more efficient, triangular decomposition. Symmetric means that aij = aji for
i, j = 1, . . . , N , while positive definite means that

v · A · v > 0 for all vectors v (2.9.1)

(In Chapter 11 we will see that positive definite has the equivalent interpretation that A has
all positive eigenvalues.) While symmetric, positive definite matrices are rather special, they
occur quite frequently in some applications, so their special factorization, called Cholesky
decomposition, is good to know about. When you can use it, Cholesky decomposition is about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factors L and U, Cholesky
decomposition constructs a lower triangular matrix L whose transpose LT can itself serve as
the upper triangular part. In other words we replace equation (2.3.1) by

L · LT = A (2.9.2)

This factorization is sometimes referred to as “taking the square root” of the matrix A. The
components of LT are of course related to those of L by

LT
ij = Lji (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12)–(2.3.13),

Lii =

(
aii −

i−1∑
k=1

L2
ik

)1/2

(2.9.4)

and

Lji =
1

Lii

(
aij −

i−1∑
k=1

LikLjk

)
j = i + 1, i + 2, . . . , N (2.9.5)
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If you apply equations (2.9.4) and (2.9.5) in the orderi = 1, 2, . . . , N , you will see
that theL’s that occur on the right-hand side are already determined by the time they are
needed. Also, only componentsaij with j ≥ i are referenced. (SinceA is symmetric,
these have complete information.) It is convenient, then, to have the factorL overwrite the
subdiagonal (lower triangular but not including the diagonal) part ofA, preserving the input
upper triangular values ofA. Only one extra vector of lengthN is needed to store the diagonal
part of L. The operations count isN3/6 executions of the inner loop (consisting of one
multiply and one subtract), with alsoN square roots. As already mentioned, this is about a
factor 2 better thanLU decomposition ofA (where its symmetry would be ignored).

A straightforward implementation is

SUBROUTINE choldc(a,n,np,p)
INTEGER n,np
REAL a(np,np),p(n)

Given a positive-definite symmetric matrix a(1:n,1:n), with physical dimension np, this
routine constructs its Cholesky decomposition, A = L·LT . On input, only the upper triangle
of a need be given; it is not modified. The Cholesky factor L is returned in the lower triangle
of a, except for its diagonal elements which are returned in p(1:n).

INTEGER i,j,k
REAL sum
do 13 i=1,n

do 12 j=i,n
sum=a(i,j)
do 11 k=i-1,1,-1

sum=sum-a(i,k)*a(j,k)
enddo 11

if(i.eq.j)then
if(sum.le.0.)pause ’choldc failed’ a, with rounding errors, is not

positive definite.p(i)=sqrt(sum)
else

a(j,i)=sum/p(i)
endif

enddo 12

enddo 13

return
END

You might at this point wonder about pivoting. The pleasant answer is that Cholesky
decomposition is extremely stable numerically, without any pivoting at all. Failure ofcholdc
simply indicates that the matrixA (or, with roundoff error, another very nearby matrix) is
not positive definite. In fact,choldc is an efficient way to testwhether a symmetric matrix
is positive definite. (In this application, you will want to replace thepause with some less
drastic signaling method.)

Once your matrix is decomposed, the triangular factor can be used to solve a linear
equation by backsubstitution. The straightforward implementation of this is

SUBROUTINE cholsl(a,n,np,p,b,x)
INTEGER n,np
REAL a(np,np),b(n),p(n),x(n)

Solves the set of n linear equations A · x = b, where a is a positive-definite symmetric
matrix with physical dimension np. a and p are input as the output of the routine choldc.
Only the lower triangle of a is accessed. b(1:n) is input as the right-hand side vector. The
solution vector is returned in x(1:n). a, n, np, and p are not modified and can be left
in place for successive calls with different right-hand sides b. b is not modified unless you
identify b and x in the calling sequence, which is allowed.

INTEGER i,k
REAL sum
do 12 i=1,n Solve L · y = b, storing y in x.

sum=b(i)
do 11 k=i-1,1,-1

sum=sum-a(i,k)*x(k)
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enddo 11

x(i)=sum/p(i)
enddo 12

do 14 i=n,1,-1 Solve LT · x = y.
sum=x(i)
do 13 k=i+1,n

sum=sum-a(k,i)*x(k)
enddo 13

x(i)=sum/p(i)
enddo 14

return
END

A typical use ofcholdc andcholsl is in the inversion of covariance matrices describing
the fit of data to a model; see, e.g.,§15.6. In this, and many other applications, one often needs
L−1. The lower triangle of this matrix can be efficiently found from the output ofcholdc:

do 13 i=1,n
a(i,i)=1./p(i)
do 12 j=i+1,n

sum=0.
do 11 k=i,j-1

sum=sum-a(j,k)*a(k,i)
enddo 11

a(j,i)=sum/p(j)
enddo 12

enddo 13

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/1.

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), §4.9.2.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§5.3.5.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.2.

2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-calledQR
decomposition,

A = Q · R (2.10.1)

Here R is upper triangular, whileQ is orthogonal, that is,

QT · Q = 1 (2.10.2)

whereQT is the transpose matrix ofQ. Although the decomposition exists for a general
rectangular matrix, we shall restrict our treatment to the case when all the matrices are square,
with dimensionsN × N .
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Like the other matrix factorizations we have met (LU , SVD, Cholesky), QR decompo-
sition can be used to solve systems of linear equations. To solve

A · x = b (2.10.3)

first form QT · b and then solve

R · x = QT · b (2.10.4)

by backsubstitution. Since QR decomposition involves about twice as many operations as
LU decomposition, it is not used for typical systems of linear equations. However, we will
meet special cases where QR is the method of choice.

The standard algorithm for the QR decomposition involves successive Householder
transformations (to be discussed later in §11.2). We write a Householder matrix in the form
1 − u ⊗ u/c where c = 1

2
u · u. An appropriate Householder matrix applied to a given matrix

can zero all elements in a column of the matrix situated below a chosen element. Thus we
arrange for the first Householder matrix Q1 to zero all elements in the first column of A below
the first element. Similarly Q2 zeroes all elements in the second column below the second
element, and so on up to Qn−1. Thus

R = Qn−1 · · ·Q1 · A (2.10.5)

Since the Householder matrices are orthogonal,

Q = (Qn−1 · · ·Q1)
−1 = Q1 · · ·Qn−1 (2.10.6)

In most applications we don’t need to form Q explicitly; we instead store it in the factored
form (2.10.6). Pivoting is not usually necessary unless the matrix A is very close to singular.
A general QR algorithm for rectangular matrices including pivoting is given in [1]. For square
matrices, an implementation is the following:

SUBROUTINE qrdcmp(a,n,np,c,d,sing)
INTEGER n,np
REAL a(np,np),c(n),d(n)
LOGICAL sing

Constructs the QR decomposition of a(1:n,1:n), with physical dimension np. The upper
triangular matrix R is returned in the upper triangle of a, except for the diagonal elements
of R which are returned in d(1:n). The orthogonal matrix Q is represented as a product of
n− 1 Householder matrices Q1 . . . Qn−1, where Qj = 1 − uj ⊗ uj/cj . The ith component

of uj is zero for i = 1, . . . , j − 1 while the nonzero components are returned in a(i,j) for
i = j, . . . , n. sing returns as true if singularity is encountered during the decomposition,
but the decomposition is still completed in this case.

INTEGER i,j,k
REAL scale,sigma,sum,tau
sing=.false.
do 17 k=1,n-1

scale=0.
do 11 i=k,n

scale=max(scale,abs(a(i,k)))
enddo 11

if(scale.eq.0.)then Singular case.
sing=.true.
c(k)=0.
d(k)=0.

else Form Qk and Qk · A.
do 12 i=k,n

a(i,k)=a(i,k)/scale
enddo 12

sum=0.
do 13 i=k,n

sum=sum+a(i,k)**2
enddo 13

sigma=sign(sqrt(sum),a(k,k))
a(k,k)=a(k,k)+sigma
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c(k)=sigma*a(k,k)
d(k)=-scale*sigma
do 16 j=k+1,n

sum=0.
do 14 i=k,n

sum=sum+a(i,k)*a(i,j)
enddo 14

tau=sum/c(k)
do 15 i=k,n

a(i,j)=a(i,j)-tau*a(i,k)
enddo 15

enddo 16

endif
enddo 17

d(n)=a(n,n)
if(d(n).eq.0.)sing=.true.
return
END

The next routine, qrsolv, is used to solve linear systems. In many applications only the
part (2.10.4) of the algorithm is needed, so we separate it off into its own routine rsolv.

SUBROUTINE qrsolv(a,n,np,c,d,b)
INTEGER n,np
REAL a(np,np),b(n),c(n),d(n)

C USES rsolv
Solves the set of n linear equations A·x = b, where a is a matrix with physical dimension np.
a, c, and d are input as the output of the routine qrdcmp and are not modified. b(1:n)
is input as the right-hand side vector, and is overwritten with the solution vector on output.

INTEGER i,j
REAL sum,tau
do 13 j=1,n-1 Form QT · b.

sum=0.
do 11 i=j,n

sum=sum+a(i,j)*b(i)
enddo 11

tau=sum/c(j)
do 12 i=j,n

b(i)=b(i)-tau*a(i,j)
enddo 12

enddo 13

call rsolv(a,n,np,d,b) Solve R · x = QT · b.
return
END

SUBROUTINE rsolv(a,n,np,d,b)
INTEGER n,np
REAL a(np,np),b(n),d(n)

Solves the set of n linear equations R · x = b, where R is an upper triangular matrix stored
in a and d. a and d are input as the output of the routine qrdcmp and are not modified.
b(1:n) is input as the right-hand side vector, and is overwritten with the solution vector
on output.

INTEGER i,j
REAL sum
b(n)=b(n)/d(n)
do 12 i=n-1,1,-1

sum=0.
do 11 j=i+1,n

sum=sum+a(i,j)*b(j)
enddo 11

b(i)=(b(i)-sum)/d(i)
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enddo 12

return
END

See [2] for details on how to use QR decomposition for constructing orthogonal bases,
and for solving least-squares problems. (We prefer to use SVD, §2.6, for these purposes,
because of its greater diagnostic capability in pathological cases.)

Updating a QR decomposition

Some numerical algorithms involve solving a succession of linear systems each of which
differs only slightly from its predecessor. Instead of doing O(N3) operations each time
to solve the equations from scratch, one can often update a matrix factorization in O(N2)
operations and use the new factorization to solve the next set of linear equations. The LU
decomposition is complicated to update because of pivoting. However, QR turns out to be
quite simple for a very common kind of update,

A → A + s ⊗ t (2.10.7)

(compare equation 2.7.1). In practice it is more convenient to work with the equivalent form

A = Q · R → A′ = Q′ · R′ = Q · (R + u ⊗ v) (2.10.8)

One can go back and forth between equations (2.10.7) and (2.10.8) using the fact that Q
is orthogonal, giving

t = v and either s = Q · u or u = QT · s (2.10.9)

The algorithm [2] has two phases. In the first we apply N − 1 Jacobi rotations (§11.1) to
reduce R + u ⊗ v to upper Hessenberg form. Another N − 1 Jacobi rotations transform this
upper Hessenberg matrix to the new upper triangular matrix R′. The matrix Q′ is simply the
product of Q with the 2(N − 1) Jacobi rotations. In applications we usually want QT , and
the algorithm can easily be rearranged to work with this matrix instead of with Q.

SUBROUTINE qrupdt(r,qt,n,np,u,v)
INTEGER n,np
REAL r(np,np),qt(np,np),u(np),v(np)

C USES rotate
Given the QR decomposition of some n × n matrix, calculates the QR decomposition of
the matrix Q · (R + u ⊗ v). The matrices r and qt have physical dimension np. Note that
QT is input and returned in qt.

INTEGER i,j,k
do 11 k=n,1,-1 Find largest k such that u(k) �= 0.

if(u(k).ne.0.)goto 1
enddo 11

k=1
1 do 12 i=k-1,1,-1 Transform R + u ⊗ v to upper Hes-

senberg.call rotate(r,qt,n,np,i,u(i),-u(i+1))
if(u(i).eq.0.)then

u(i)=abs(u(i+1))
else if(abs(u(i)).gt.abs(u(i+1)))then

u(i)=abs(u(i))*sqrt(1.+(u(i+1)/u(i))**2)
else

u(i)=abs(u(i+1))*sqrt(1.+(u(i)/u(i+1))**2)
endif

enddo 12

do 13 j=1,n
r(1,j)=r(1,j)+u(1)*v(j)

enddo 13

do 14 i=1,k-1 Transform upper Hessenberg matrix
to upper triangular.call rotate(r,qt,n,np,i,r(i,i),-r(i+1,i))

enddo 14
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return
END

SUBROUTINE rotate(r,qt,n,np,i,a,b)
INTEGER n,np,i
REAL a,b,r(np,np),qt(np,np)

Given n×n matrices r and qt of physical dimension np, carry out a Jacobi rotation on rows i

and i+1 of each matrix. a and b are the parameters of the rotation: cos θ = a/
√

a2 + b2,

sin θ = b/
√

a2 + b2.
INTEGER j
REAL c,fact,s,w,y
if(a.eq.0.)then Avoid unnecessary overflow or underflow.

c=0.
s=sign(1.,b)

else if(abs(a).gt.abs(b))then
fact=b/a
c=sign(1./sqrt(1.+fact**2),a)
s=fact*c

else
fact=a/b
s=sign(1./sqrt(1.+fact**2),b)
c=fact*s

endif
do 11 j=i,n Premultiply r by Jacobi rotation.

y=r(i,j)
w=r(i+1,j)
r(i,j)=c*y-s*w
r(i+1,j)=s*y+c*w

enddo 11

do 12 j=1,n Premultiply qt by Jacobi rotation.
y=qt(i,j)
w=qt(i+1,j)
qt(i,j)=c*y-s*w
qt(i+1,j)=s*y+c*w

enddo 12

return
END

We will make use of QR decomposition, and its updating, in §9.7.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/8. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §§5.2, 5.3, 12.6. [2]

2.11 Is Matrix Inversion an N3 Process?

We close this chapter with a little entertainment, a bit of algorithmic prestidig-
itation which probes more deeply into the subject of matrix inversion. We start
with a seemingly simple question:
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How many individual multiplications does it take to perform the matrix mul-
tiplication of two 2 × 2 matrices,

(
a11 a12

a21 a22

)
·
(

b11 b12

b21 b22

)
=

(
c11 c12

c21 c22

)
(2.11.1)

Eight, right? Here they are written explicitly:

c11 = a11 × b11 + a12 × b21

c12 = a11 × b12 + a12 × b22

c21 = a21 × b11 + a22 × b21

c22 = a21 × b12 + a22 × b22

(2.11.2)

Do you think that one can write formulas for thec’s that involve onlyseven
multiplications? (Try it yourself, before reading on.)

Such a set of formulas was, in fact, discovered by Strassen[1]. The formulas are:

Q1 ≡ (a11 + a22) × (b11 + b22)

Q2 ≡ (a21 + a22) × b11

Q3 ≡ a11 × (b12 − b22)

Q4 ≡ a22 × (−b11 + b21)

Q5 ≡ (a11 + a12) × b22

Q6 ≡ (−a11 + a21) × (b11 + b12)

Q7 ≡ (a12 − a22) × (b21 + b22)

(2.11.3)

in terms of which

c11 = Q1 + Q4 − Q5 + Q7

c21 = Q2 + Q4

c12 = Q3 + Q5

c22 = Q1 + Q3 − Q2 + Q6

(2.11.4)

What’s the use of this? There is one fewer multiplication than in equation
(2.11.2), butmany more additions and subtractions. It is not clear that anything
has been gained. But notice that in (2.11.3) thea’s andb’s are never commuted.
Therefore (2.11.3)and (2.11.4)are valid when thea’s andb’s are themselves matrices.
The problem of multiplying two very large matrices (of orderN = 2 m for some
integerm) can now be broken down recursively by partitioning the matrices into
quarters, sixteenths, etc. And note the key point: The savings is not just a factor
“7/8”; it is that factor ateach hierarchical level of the recursion. In total it reduces
the process of matrix multiplication to orderN log2 7 instead ofN 3.
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What about all the extra additions in (2.11.3)–(2.11.4)? Don’t they outweigh
the advantage of the fewer multiplications? For largeN , it turns out that there are
six times as many additions as multiplications implied by (2.11.3)–(2.11.4). But,
if N is very large, this constant factor is no match for the change in theexponent
from N 3 to N log2 7.

With this “fast” matrix multiplication, Strassen also obtained a surprising result
for matrix inversion[1]. Suppose that the matrices

(
a11 a12

a21 a22

)
and

(
c11 c12

c21 c22

)
(2.11.5)

are inverses of each other. Then thec’s can be obtained from thea’s by the following
operations (compare equations 2.7.22 and 2.7.25):

R1 = Inverse(a11)

R2 = a21 × R1

R3 = R1 × a12

R4 = a21 × R3

R5 = R4 − a22

R6 = Inverse(R5)

c12 = R3 × R6

c21 = R6 × R2

R7 = R3 × c21

c11 = R1 − R7

c22 = −R6

(2.11.6)

In (2.11.6) the “inverse” operator occurs just twice. It is to be interpreted as the
reciprocal if thea’s andc’s are scalars, but as matrix inversion if thea’s andc’s are
themselves submatrices. Imagine doing the inversion of a very large matrix, of order
N = 2m, recursively by partitions in half. At each step, halving the orderdoubles
the number of inverse operations. But this means that there are onlyN divisions in
all! So divisions don’t dominate in the recursive use of (2.11.6). Equation (2.11.6)
is dominated, in fact, by its 6 multiplications. Since these can be done by anN log2 7

algorithm, so can the matrix inversion!
This is fun, but let’s look at practicalities: If you estimate how largeN has to be

before the difference between exponent 3 and exponentlog 2 7 = 2.807 is substantial
enough to outweigh the bookkeeping overhead, arising from the complicated nature
of the recursive Strassen algorithm, you will find thatLU decomposition is in no
immediate danger of becoming obsolete.

If, on the other hand, you like this kind of fun, then try these: (1) Can you
multiply the complex numbers(a+ib) and(c+id) in only three real multiplications?
[Answer: see§5.4.] (2) Can you evaluate a general fourth-degree polynomial in



98 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

x for many different values ofx with only three multiplications per evaluation?
[Answer: see§5.3.]
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