Chapter 2. Solution of Linear
Algebraic Equations

2.0 Introduction

A set of linear algebraic equations looks like this:

a1121 + a12x2 + a1373 + - +aiNTy = by
a21%1 + a22%2 + a2373 + -+ + aaNTN = b2

as1z1 + azer2 + agzrs + - +agyry = by (2.0.1)

ap1T1 + apa®e + apsxs + - +FapuNTN = b

Here the N unknowns z;, j = 1,2,..., N are related by M equations. The
coefficients a;; withi = 1,2,..., M and j = 1,2,..., N are known numbers, as
are the right-hand side quantities b;, i = 1,2,..., M.

Nonsingular versus Singular Sets of Equations

If N = M then there are as many equations as unknowns, and there is a good
chance of solving for a unique solution set of = ;’s. Analytically, there can fail to
be a unique solution if one or more of the M equations is a linear combination of
the others, a condition called row degeneracy, or if al equations contain certain
variables only in exactly the same linear combination, called column degeneracy.
(For square matrices, a row degeneracy implies a column degeneracy, and vice
versa) A set of equations that is degenerate is called singular. We will consider
singular matrices in some detail in §2.6.

Numerically, at least two additional things can go wrong:

e While not exact linear combinations of each other, some of the equations
may be so close to linearly dependent that roundoff errorsin the machine
render them linearly dependent at some stage in the solution process. In
this case your numerical procedure will fail, and it can tell you that it
has failed.

22

‘(eauBWY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dID3Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sq00q sadioay [ealswn 1apio 0] ‘pangiyold Apows si ‘1eindwod 1aaias Aue o} (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul 10} pajuelB si uoissiwiad

2.0 Introduction 23

e Accumulated roundoff errors in the solution process can swamp the true
solution. This problem particularly emerges if N is too large. The
numerical procedure does not fail algorithmically. However, it returns a
set of z’s that are wrong, as can be discovered by direct substitution back
into theoriginal equations. Thecloser aset of equationsisto being singular,
the more likely this is to happen, since increasingly close cancellations
will occur during the solution. In fact, the preceding item can be viewed
as the special case where the loss of significance is unfortunately total.

Much of the sophistication of complicated “linear equation-solving packages’
is devoted to the detection and/or correction of these two pathologies. As you
work with large linear sets of equations, you will develop a feeling for when such
sophistication is needed. It is difficult to give any firm guidelines, since there is no
such thing as a“typical” linear problem. But hereis aroughidea: Linear sets with
N aslarge as 20 or 50 can be routinely solved in single precision (32 bit floating
representations) without resorting to sophisticated methods, if the equations are not
close to singular. With double precision (60 or 64 bits), this number can readily
be extended to IV as large as several hundred, after which point the limiting factor
is generaly machine time, not accuracy.

Even larger linear sets, N in the thousands or greater, can be solved when the
coefficients are sparse (that is, mostly zero), by methods that take advantage of the
sparseness. We discuss this further in §2.7.

At the other end of the spectrum, one seems just as often to encounter linear
problems which, by their underlying nature, are close to singular. In this case, you
might need to resort to sophisticated methods even for the case of NV = 10 (though
rarely for N = 5). Singular value decomposition (§2.6) is a technique that can
sometimes turn singular problems into nonsingular ones, in which case additional
sophistication becomes unnecessary.

Matrices
Equation (2.0.1) can be written in matrix form as
A-x=hb (2.0.2)

Here the raised dot denotes matrix multiplication, A isthe matrix of coefficients, and
b is the right-hand side written as a column vector,

ail a2 . ai1N bl
a a L.a b

A — 21 22 2N b — 2 (2.0.3)
ayi am2 ... GMN by

By convention, the first index on an element «;; denotes its row, the second
index its column. A computer will store the matrix A as a two-dimensional array.
However, computer memory is numbered sequentially by its address, and so is
intrinsically one-dimensional. Therefore the two-dimensional array A will, at the
hardware level, either be stored by columns in the order

ai1,a21,---,0M1, A12,022,...,AM2;, ..., AIN,G2N,-.-AMN

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

24 Chapter 2. Solution of Linear Algebraic Equations

A

np

Y

A
>
Y

o @ lo o o & |9 |®
e o le o o |lo o |o
"o lo @ @ |8 o o @
o o @ o o |8 o |o
e e e e | o |® @

Figure 2.0.1. A matrix of logical dimensionm by n is stored in an array of physical dimension mp by np.
Locations marked by “x” contain extraneous i nformation which may beleft over from some previous use of
the physical array. Circled numbers show the actual ordering of the array in computer memory, not usually
relevant to the programmer. Note, however, that the logical array does not occupy consecutive memory
locations. Tolocate an (i, j) element correctly, a subroutine must be told mp and np, not just i and j.

or else stored by rows in the order
aii, @12, ...,01N, 421,022,...,02N, .., GM1,AM2, .. - AMN

FORTRAN aways stores by columns, and user programs are generally allowed
to exploit this fact to their advantage. By contrast, C, Pascal, and other languages
generally store by rows. Note one confusing point in the terminology, that a matrix
which is stored by columns (as in FORTRAN) has its row (i.e., first) index changing
most rapidly as one goes linearly through memory, the opposite of a car’s odometer!

For most purposes you don’t need to know what the order of storageis, since
you reference an element by its two-dimensional address. a3y = a(3,4). ltis,
however, essential that you understand the difference between an array’s physical
dimensions and its logical dimensions. When you pass an array to a subroutine,
you must, in general, tell the subroutine both of these dimensions. The distinction
between them is this: It may happen that you have a4 x 4 matrix stored in an array
dimensioned as 10 x 10. This occurs most frequently in practice when you have
dimensioned to the largest expected value of IV, but are at the moment considering
avaue of N smaller than that largest possible one. In the example posed, the 16
elements of the matrix do not occupy 16 consecutive memory locations. Rather they
are spread out among the 100 dimensioned locations of the array as if the whole
10 x 10 matrix were filled. Figure 2.0.1 shows an additional example.

If you have asubroutineto invert amatrix, its call might typically look like this:

call matinv(a,ai,n,np)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.0 Introduction 25

Here the subroutine has to be told both the logical size of the matrix that
you want to invert (here n = 4), and the physical size of the array in which it is
stored (here np = 10).

Thisseemslikeatrivia point, and we are sorry to belabor it. But it turnsout that
most reported failures of standard linear equation and matrix manipulation packages
are dueto user errorsin passing inappropriate logical or physical dimensions!

Tasks of Computational Linear Algebra

We will consider the following tasks as falling in the general purview of this
chapter:

e Solution of thematrix equation A -x = b for an unknownvector x, where A
isasquare matrix of coefficients, raised dot denotes matrix multiplication,
and b is a known right-hand side vector (§2.1-52.10).

o Solution of more than one matrix equation A - X ; = b, for aset of vectors
X, j =1,2,..., each corresponding to adifferent, known right-hand side
vector b;. In this task the key simplification is that the matrix A is held
constant, while the right-hand sides, the b’s, are changed (§2.1-52.10).

e Calculation of thematrix A~ whichisthematrix inverseof asquarematrix
A ie, A-A ' =A"1. A =1 where 1l istheidentity matrix (all zeros
except for ones on the diagonal). This task is equivalent, foran N x N
matrix A, to the previous task with NV different b;’s (j = 1,2,...,N),
namely the unit vectors (b; = &l zero elements except for 1 in the jth
component). The corresponding x’s are then the columns of the matrix
inverse of A (§2.1 and §2.3).

e Calculation of the determinant of a square matrix A (§2.3).

If M < N, orif M = N but the equations are degenerate, then there
are effectively fewer equations than unknowns. In this case there can be either no
solution, or el se morethan one solution vector x. Inthelatter event, the solution space
consists of a particular solution x,, added to any linear combination of (typically)
N — M vectors (which are said to be in the nullspace of the matrix A). The task
of finding the solution space of A involves

e Singular value decomposition of a matrix A.

This subject is treated in §2.6.

In the opposite case there are more equations than unknowns, M > N. When
this occurs there is, in general, no solution vector x to equation (2.0.1), and the
set of equations is said to be overdetermined. It happens frequently, however, that
the best “compromise” solution is sought, the one that comes closest to satisfying
all equations simultaneously. If closenessis defined in the least-squares sense, i.e.,
that the sum of the squares of the differences between the left- and right-hand sides
of equation (2.0.1) be minimized, then the overdetermined linear problem reducestoa

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

26 Chapter 2. Solution of Linear Algebraic Equations

(usually) solvable linear problem, called the
e Linear least-squares problem.
Thereduced set of equationsto be solved can bewritten asthe V x IV set of equations

(AT .A).x= (AT .b) (2.0.4)

where AT denotes the transpose of the matrix A. Equations (2.0.4) are called the
normal equations of the linear least-squares problem. There is a close connection
between singular value decomposition and the linear |east-squares problem, and the
latter is also discussed in §2.6. You should be warned that direct solution of the
normal equations (2.0.4) is not generally the best way to find |east-squares solutions.

Some other topics in this chapter include

o |terative improvement of a solution (§2.5)

e Various special forms. symmetric positive-definite (§2.9), tridiagonal
(§2.4), band diagonal (§2.4), Toeplitz (§2.8), Vandermonde (§2.8), sparse
(§2.7)

e Strassen’s “fast matrix inversion” (§2.11).

Standard Subroutine Packages

We cannot hope, in this chapter or in this book, to tell you everything there is
to know about the tasks that have been defined above. In many cases you will have
no aternative but to use sophisticated black-box program packages. Several good
onesare available. LINPACK was developed at Argonne National Laboratoriesand
deserves particular mention because it is published, documented, and available for
freeuse. A successor to LINPACK, LAPACK, isnow becoming available. Packages
available commercialy include those in the IMSL and NAG libraries.

You should keep in mind that the sophisticated packages are designed with very
large linear systemsin mind. They therefore go to great effort to minimize not only
the number of operations, but also the required storage. Routines for the various
tasks are usually provided in several versions, corresponding to several possible
simplifications in the form of the input coefficient matrix: symmetric, triangular,
banded, positive definite, etc. If you have a large matrix in one of these forms,
you should certainly take advantage of the increased efficiency provided by these
different routines, and not just use the form provided for general matrices.

There is also a great watershed dividing routines that are direct (i.e., execute
in a predictable number of operations) from routines that are iterative (i.e., attempt
to converge to the desired answer in however many steps are necessary). Iterative
methods become preferable when the battle against loss of significanceisin danger
of being lost, either due to large NV or because the problem is close to singular. We
will treat iterative methods only incompletely in this book, in §2.7 and in Chapters
18 and 19. These methods are important, but mostly beyond our scope. We will,
however, discuss in detail a technique which is on the borderline between direct
and iterative methods, namely the iterative improvement of a solution that has been
obtained by direct methods (52.5).

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.1 Gauss-Jordan Elimination 27

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press).

Gill, PE., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 4.

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S..LA.M.).

Coleman, T.F,, and Van Loan, C. 1988, Handbook for Matrix Computations (Philadelphia: S..LA.M.).

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall).

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook for Automatic Com-
putation (New York: Springer-Verlag).

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 9.

2.1 Gauss-Jordan Elimination

For inverting a matrix, Gauss-Jordan elimination is about as efficient as any
other method. For solving sets of linear egquations, Gauss-Jordan elimination
produces both the solution of the equations for one or more right-hand side vectors
b, and also the matrix inverse A ~!. However, its principal weaknesses are (i) that it
requires al the right-hand sides to be stored and manipulated at the same time, and
(ii) that when the inverse matrix is not desired, Gauss-Jordan is three times slower
than the best alternative techniquefor solvingasinglelinear set (§2.3). Themethod's
principal strength is that it is as stable as any other direct method, perhaps even a
bit more stable when full pivoting is used (see below).

If you come along later with an additional right-hand side vector, you can
multiply it by the inverse matrix, of course. This does give an answer, but onethat is
quite susceptible to roundoff error, not nearly as good as if the new vector had been
included with the set of right-hand side vectors in the first instance.

For these reasons, Gauss-Jordan elimination should usually not be your method
of first choice, either for solving linear equations or for matrix inversion. The
decomposition methodsin §2.3 are better. Why do we give you Gauss-Jordan at all?
Because it is straightforward, understandable, solid as a rock, and an exceptionally
good “psychological” backup for those times that something is going wrong and you
think it might be your linear-equation solver.

Some people believe that the backup is more than psychological, that Gauss-
Jordan elimination is an “independent” numerical method. This turns out to be
mostly myth. Except for the relatively minor differences in pivoting, described
below, the actual sequence of operations performed in Gauss-Jordan elimination is
very closely related to that performed by the routinesin the next two sections.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

28 Chapter 2. Solution of Linear Algebraic Equations

For clarity, and to avoid writing endless ellipses (- - -) wewill write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N x N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below is,
of course, generdl.

Elimination on Column-Augmented Matrices

Consider the linear matrix equation

ail ai2 aiz a4 z11 12 z13 Y11 Y12 Y13 Y4
a21 a2 a23 a4 | | w1 | g @22 | | T2 | | Y2r Y22 Y23 Y24
a3l as2 a33 as4 31 32 33 Y31 Y32 Y33 Y34
a41 a42 a43 Q44 T41 T42 43 Y4l Y42 Y43 Y44
b11 bi2 b13 1 0 0 O
_ ba1 ba2 bas 01 0 0
B b1 = b32 = b33 Hlo o 10 (211)
ba1 bao bas 0 0 0 1

Here the raised dot (-) signifies matrix multiplication, while the operator LI just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the LI operator.

It should not take you long to write out equation (2.1.1) and to see that it ssimply
states that x;; is the ith component (i = 1,2, 3, 4) of the vector solution of the jth
right-hand side (j = 1,2, 3), the one whose coefficients are b;;,¢ = 1,2, 3, 4; and
that the matrix of unknown coefficients y;; is the inverse matrix of a,;. In other
words, the matrix solution of

[A] . [Xl LI Xo LI X3 LI Y] = [bl by Ubs L 1] (212)

where A and Y are square matrices, the b;’s and x;’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A'X1:b1 A-X2=b2 A'X3:b3 (213)
and

A-Y=1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):

e Interchanging any two rows of A and the corresponding rows of the b’s
and of 1, does not change (or scramble in any way) the solution x’s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.

e Likewise, the solution set is unchanged and in no way scrambled if we
replace any row in A by alinear combination of itself and any other row,
as long as we do the same linear combination of the rows of theb’sand 1
(which then is no longer the identity matrix, of course).

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.1 Gauss-Jordan Elimination 29

e Interchanging any two columns of A gives the same solution set only
if we simultaneously interchange corresponding rows of the x’'s and of
Y. In other words, this interchange scrambles the order of the rows in
the solution. If we do this, we will need to unscramble the solution by
restoring the rows to their origina order.
Gauss-Jordan elimination uses one or more of the above operations to reduce
the matrix A to the identity matrix. When this is accomplished, the right-hand side
becomes the solution set, as one sees instantly from (2.1.2).

Pivoting

In “Gauss-Jordan elimination with no pivoting,” only the second operation in
the above list is used. The first row is divided by the element a; (this being a
trivial linear combination of the first row with any other row — zero coefficient for
the other row). Then the right amount of the first row is subtracted from each other
row to make al the remaining a;;'s zero. The first column of A now agrees with
the identity matrix. We move to the second column and divide the second row by
as2, then subtract the right amount of the second row from rows 1, 3, and 4, so asto
make their entries in the second column zero. The second column is now reduced
to the identity form. And so on for the third and fourth columns. As we do these
operationsto A, we of course aso do the corresponding operationsto the b’s and to
1 (which by now no longer resembles the identity matrix in any way!).

Obviously we will runinto trouble if we ever encounter a zero element on the
(then current) diagonal when we are going to divide by the diagonal element. (The
element that we divide by, incidentally, is called the pivot element or pivot.) Not so
obvious, but true, isthe fact that Gauss-Jordan elimination with no pivoting (no use of
thefirst or third proceduresin the above list) is numerically unstablein the presence
of any roundoff error, even when a zero pivot is not encountered. You must never do
Gauss-Jordan elimination (or Gaussian elimination, see below) without pivoting!

So what is this magic pivoting? Nothing more than interchanging rows (partial
pivoting) or rows and columns (full pivoting), so as to put a particularly desirable
element in the diagonal position from which the pivot is about to be selected. Since
we don’t want to mess up the part of theidentity matrix that we have already built up,
we can choose among elements that are both (i) on rows below (or on) the one that
is about to be normalized, and also (ii) on columns to the right (or on) the column
we are about to eliminate. Partial pivoting is easier than full pivoting, because we
don’t have to keep track of the permutation of the solution vector. Partial pivoting
makes available as pivots only the elements already in the correct column. It turns
out that partial pivoting is “almost” as good as full pivoting, in a sense that can be
made mathematically precise, but which need not concern us here (for discussion
and references, see [1]). To show you both variants, we do full pivoting in the routine
in this section, partial pivoting in §2.3.

We have to state how to recognize a particularly desirable pivot when we see
one. The answer to this is not completely known theoretically. It is known, both
theoretically and in practice, that simply picking the largest (in magnitude) available
element as the pivot isavery good choice. A curiosity of this procedure, however, is
that the choice of pivot will depend onthe original scaling of the equations. If wetake
the third linear equation in our original set and multiply it by afactor of amillion, it

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

30 Chapter 2. Solution of Linear Algebraic Equations

isalmost guaranteed that it will contribute the first pivot; yet the underlying solution
of the equationsis not changed by thismultiplication! One therefore sometimes sees
routines which choose as pivot that element which would have been largest if the
original equations had all been scaled to have their largest coefficient normalized to
unity. Thisiscalled implicit pivoting. Thereis some extrabookkeeping to keep track
of the scale factors by which the rows would have been multiplied. (Theroutinesin
§2.3 include implicit pivoting, but the routine in this section does not.)

Finally, let us consider the storage requirements of the method. With a little
reflection you will see that at every stage of the algorithm, either an element of A is
predictably aone or zero (if it isaready in apart of the matrix that has been reduced
to identity form) or else the exactly corresponding element of the matrix that started
as 1ispredictably aoneor zero (if itsmatein A has not been reduced to the identity
form). Therefore the matrix 1 does not have to exist as separate storage: The matrix
inverse of A is gradually built up in A as the original A is destroyed. Likewise,
the solution vectors x can gradually replace the right-hand side vectors b and share
the same storage, since after each column in A is reduced, the corresponding row
entry in the b’s is never again used.

Here is the routine for Gauss-Jordan elimination with full pivoting:

SUBROUTINE gaussj(a,n,np,b,m,mp)

INTEGER m,mp,n,np,NMAX

REAL a(np,np),b(np,mp)

PARAMETER (NMAX=50)
Linear equation solution by Gauss-Jordan elimination, equation (2.1.1) above. a(1:n,1:n)
is an input matrix stored in an array of physical dimensions np by np. b(1:n,1:m) is an in-
put matrix containing the m right-hand side vectors, stored in an array of physical dimensions
np by mp. On output, a(1:n,1:n) is replaced by its matrix inverse, and b(1:n,1:m) is
replaced by the corresponding set of solution vectors.
Parameter: NMAX is the largest anticipated value of n.

INTEGER i,icol,irow,j,k,1,11,indxc (NMAX) ,indxr(NMAX),

ipiv(NMAX) The integer arrays ipiv, indxr, and indxc are used
REAL big,dum,pivinv for bookkeeping on the pivoting.
doun j=1,n
ipiv(j)=0
enddo 11
do2 i=1,n This is the main loop over the columns to be re-
big=0. duced.
do 13 j=1,n This is the outer loop of the search for a pivot ele-
if (ipiv(j) .ne.1)then ment.
do 12 k=1,n

if (ipiv(k).eq.0) then
if (abs(a(j,k)).ge.big)then
big=abs(a(j,k))

irow=j
icol=k
endif
endif
enddo 12
endif
enddo 13

ipiv(icol)=ipiv(icol)+1
We now have the pivot element, so we interchange rows, if needed, to put the pivot
element on the diagonal. The columns are not physically interchanged, only relabeled:

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.1 Gauss-Jordan Elimination 31

indxc (i), the column of the ith pivot element, is the ith column that is reduced, while
indxr (i) is the row in which that pivot element was originally located. If indxr(i) #
indxc (i) there is an implied column interchange. With this form of bookkeeping, the
solution b's will end up in the correct order, and the inverse matrix will be scrambled
by columns.
if (irow.ne.icol) then
do14 1=1,n
dum=a(irow,1)
a(irow,1l)=a(icol,1)
a(icol,1l)=dum
enddo 14
do1s 1=1,m
dum=b (irow,1)
b(irow,1)=b(icol,1)
b(icol,1l)=dum

enddo 15
endif
indxr(i)=irow We are now ready to divide the pivot row by the pivot
indxc(i)=icol element, located at irow and icol.

if (a(icol,icol).eq.0.) pause ’singular matrix in gaussj’
pivinv=1./a(icol,icol)
a(icol,icol)=1.

dos 1=1,n
a(icol,l)=a(icol,l)*pivinv

enddo 16

do17 1=1,m
b(icol,1)=b(icol,1)*pivinv

enddo 17

do2 11=1,n Next, we reduce the rows...
if(1l.ne.icol)then ...except for the pivot one, of course.

dum=a(11l,icol)
a(ll,icol)=0.

do s 1=1,n
a(11l,1)=a(11,1)-a(icol,1l)*dum
enddo 18
do19 1=1,m
b(11,1)=b(11,1)-b(icol,1)*dum
enddo 19
endif
enddo 21
enddo 22 This is the end of the main loop over columns of the reduction.
do24 1=n,1,-1 It only remains to unscramble the solution in view
if (indxr (1) .ne.indxc(1l))then of the column interchanges. We do this by in-
do 23 k=1,n terchanging pairs of columns in the reverse order
dum=a (k,indxr (1)) that the permutation was built up.

a(k,indxr(1))=a(k,indxc(1))
a(k,indxc(1))=dum
enddo 23
endif
enddo 24
return And we are done.
END

Row versus Column Elimination Strategies

The above discussion can be amplified by a modest amount of formalism. Row
operations on a matrix A correspond to pre- (that is, left-) multiplication by some simple

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

32 Chapter 2. Solution of Linear Algebraic Equations

matrix R. For example, the matrix R with components

1 ifi=jandi##2,4
)1 ifi=2,5=14
Rij =4 ifi—4 -2 (2.1.5)
0 otherwise

effects the interchange of rows 2 and 4. Gauss-Jordan elimination by row operations alone
(including the possihility of partial pivoting) consists of a series of such left-multiplications,
yielding successively

A-Xx=b
(++R3-Ry-R;-A)-Xx=---Rg-Ry-Ry-b
(2.1.6)
(1) x=--R3-R2-R;-b
X=---R3-Rs-R;-b

The key point is that since the R’s build from right to Ieft, the right-hand side is simply
transformed at each stage from one vector to another.

Column operations, on the other hand, correspond to post-, or right-, multiplications
by simple matrices, call them C. The matrix in equation (2.1.5), if right-multiplied onto a
matrix A, will interchange A’s second and fourth columns. Elimination by column operations
involves (conceptually) inserting a column operator, and also its inverse, between the matrix
A and the unknown vector x:

A-x=b

A-C;-Ci'-x=b
A-Ci-Cy-Cy'-Cil-x=b (2.1.7)

(A-C;-Cy-C3--+)---C3'-Cy"-Ci'-x=b

(1)---c3'-c;'-cit-x=b

which (peeling of the C™!’s one at a time) implies a solution
X:C1~C2~C3'~~b (218)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C's must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press). [1]

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Example 5.2, p. 282.

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Program B-2, p. 298.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3-1.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.2 Gaussian Elimination with Backsubstitution 33

2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When a o5
is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only ass and a4z, NOt a1o (See equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):

/ / li / /
aj; G2 @13 QAyy T by
/ lA / /

0 ay agy asy| a2 | _ | by (2.2.1)

0 0 ahs a x5 |~ | b -

33 Q34 3 3
/ /
O O O a44 Ty 4

Here the primes signify that the a's and b’'s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

Backsubstitution

But how do we solve for the 2's? The last « (x4 in this example) is already
isolated, namely

xq =b)/aly, (2.2.2)
With the last = known we can move to the penultimate z,

1
z3 = ——[by — z4aby] (2.2.3)

ass

and then proceed with the x before that one. The typical step is

1 N
Ti=— b — Z ;T (2.2.4)
& j=i+1
The procedure defined by eguation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

34 Chapter 2. Solution of Linear Algebraic Equations

The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The
innermost loops of Gauss-Jordan elimination, each containing one subtraction and
one multiplication, are executed N2 and N2 M times (where there are N equations
and M unknowns). The corresponding loops in Gaussian elimination are executed
only %N 3 times (only half the matrix is reduced, and the increasing numbers of
predictable zeros reduce the count to one-third), and %N 2M times, respectively.
Each backsubstitution of aright-hand side is %N 2 executions of a similar loop (one
multiplication plus one subtraction). For M <« N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jordan.
(We could reduce this advantage to a factor 1.5 by not computing the inverse matrix
as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view as the case of M = N
right-hand sides, namely the N unit vectors which are the columns of the identity
matrix), Gaussian elimination and backsubstitution at first glancerequire %N 3 (matrix
reduction) +21N? (right-hand side manipulations) +2 N3 (IV backsubstitutions)
= %N 3 loop executions, which is more than the N 3 for Gauss-Jordan. However, the
unit vectors are quite specia in containing all zeros except for one element. If this
is taken into account, the right-side manipulations can be reduced to only %N 3 loop
executions, and, for matrix inversion, the two methods have identical efficiencies.

Both Gaussian elimination and Gauss-Jordan elimination share the disadvantage
that all right-hand sides must be known in advance. The LU decomposition method
in the next section does not share that deficiency, and also has an equally small
operations count, both for solution with any number of right-hand sides, and for
matrix inversion. For this reason we will not implement the method of Gaussian
elimination as a routine.

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3-1.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §2.1.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.2.1.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,
L-U=A (2.3.1)

where L islower triangular (has elements only on the diagonal and below) and U
is upper triangular (has elements only on the diagona and above). For the case of

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.3 LU Decomposition and Its Applications 35

a4 x 4 matrix A, for example, equation (2.3.1) would look like this:

ain 0 0 0 B11 Bz Bz Bia ail ai2 aiz ai4

az a2 0 0 | . | 0 P22 P23 P2a| _ [a21 a2z a2z ax

agr az2 asz 0 0 0 B33 B34 a3l az2 as3 as4

Q41 Q42 43 Q44 0 0 0 B a41 Q42 Q43 Q44
(23.2)

We can use a decomposition such as (2.3.1) to solve the linear set
A-x=(L-U)-x=L-U-x)=b (23.3)
by first solving for the vector y such that

L-y=b (2.3.4)
and then solving
U-x=y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of atriangular set of equationsis quite trivial, as
we have already seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

b1
yr=—
i1
) i1 (2.3.6)
i =— |bi — iiYi =2,3,...,N
Y Q4 Flajyj '

while (2.3.5) can then be solved by backsubstitution exactly asin equations (2.2.2)—
(2.2.9),

xN:—yN

BNN

1 N (2.3.7)
2= — |y — By i=N-1,N-2...,1

B |V 2 P

j=i+1

Equations (2.3.6) and (2.3.7) total (for each right-hand side b) NV 2 executions
of an inner loop containing one multiply and one add. If we have N right-hand
sides which are the unit column vectors (which is the case when we are inverting a
matrix), then taking into account the leading zeros reduces the total execution count
of (2.3.6) from 1 N® to £ N3, while (2.3.7) is unchanged at $ N*.

Notice that, once we have the LU decomposition of A, we can solve with as
many right-hand sides as we then care to, one at atime. Thisisadistinct advantage
over the methods of §2.1 and §2.2.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

36 Chapter 2. Solution of Linear Algebraic Equations

Performing the LU Decomposition

How then can we solve for L and U, given A? First, we write out the
1, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with
i+ =g
The number of termsin the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

<7 ;1015 + aizfej + - + @i fBij = aij (2.3.8)
i=J: i1 B + By + - 4 i B = agj (2.3.9)
©>7: ;101 + B + - - + i B = aij (2.3.10)

Equations (2.3.8)«(2.3.10) total N 2 equationsfor the N2 + N unknown a’sand
('s (the diagonal being represented twice). Sincethe number of unknownsis greater
than the number of equations, we areinvited to specify IV of the unknownsarbitrarily
andthentry to solvefor theothers. Infact, asweshall seg, itisalways possibleto take

A surprising procedure, now, is Crout’s algorithm, which quite trivially solves
theset of N2 4 N equations (2.3.8)—(2.3.11) for all the o’sand 3’s by just arranging
the equations in a certain order! That order is as follows:

e Setay;; =1,i=1,...,N (equation 2.3.11).

e For each j = 1,2,3,..., N do these two procedures. First, for i =

1,2,...,7,use(23.8), (2.3.9), and (2.3.11) to solve for §;;, namely

i—1
Bij = aij — Z ik Brj - (23.12)
k=1

(Wheni = 1in2.3.12the summationtermistaken to mean zero.) Second,
fori=j+1,5+2,...,N use(2.3.10) to solve for «;;, namely

1 el
Qij = 53— (aij -> aikﬁkj) : (2.3.13)
Bii k=1
Be sure to do both procedures before going on to the next ;.

If you work through a few iterations of the above procedure, you will see that
the o’s and 3’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every a ;;
is used only once and never again. This meansthat the corresponding o ;; or 3;; can
be stored in the location that the « used to occupy: the decompositionis “in place.”
[The diagonal unity elements «;; (equation 2.3.11) are not stored at al.] In brief,
Crout’'s method fills in the combined matrix of o's and s,

B P2 Bz Pua
a1 Paz P2z P
2.3.14
as1 as2 33 P34 ()
Qg1 a2 43 Paa
by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.3 LU Decomposition and Its Applications 37

pd

etc.

/
w -

e
1

(=)
=

-

-
-’

1

B
’

<,

4

— —

Figure 2.3.1. Crout's algorithm for LU decomposition of a matrix. Elements of the origina matrix are
modified in the order indicated by lower case letters. a, b, ¢, etc. Shaded boxes show the previously
modified elements that are used in modifying two typical elements, each indicated by an “x”.

What about pivoting? Pivoting (i.e., selection of a salubrious pivot element for
the division in equation 2.3.13) is absolutely essential for the stability of Crout's
method. Only partial pivoting (interchange of rows) can be implemented efficiently.
However this is enough to make the method stable. This means, incidentally, that
we don't actually decompose the matrix A into LU form, but rather we decompose
a rowwise permutation of A. (If we keep track of what that permutation is, this
decomposition is just as useful as the original one would have been.)

Pivoting is dlightly subtle in Crout’s algorithm. The key point to notice is that
equation (2.3.12) in the case of ¢ = j (its final application) is exactly the same as
equation (2.3.13) except for the division in the latter equation; in both cases the
upper limit of thesumisk = j — 1 (= ¢ — 1). This means that we don’t have to
commit ourselves as to whether the diagonal element /;; is the one that happens
to fall on the diagonal in the first instance, or whether one of the (undivided) o ;;'s
belowitinthecolumn,i = j+1,..., N,istobe"promoted” to becomethe diagonal
(. This can be decided after all the candidates in the column are in hand. Asyou
should be able to guess by now, we will choose the largest one as the diagonal
(pivot element), then do all the divisions by that element en masse. Thisis Crout’s

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

38 Chapter 2. Solution of Linear Algebraic Equations

method with partial pivoting. Our implementation has one additional wrinkle: It
initially finds the largest element in each row, and subsequently (when it is looking
for the maximal pivot element) scales the comparison asif we had initially scaled all
the equations to make their maximum coefficient equal to unity; thisis the implicit
pivoting mentioned in §2.1.

SUBROUTINE ludcmp(a,n,np,indx,d)

INTEGER n,np,indx(n) ,NMAX

REAL d,a(np,np),TINY

PARAMETER (NMAX=500,TINY=1.0e-20) Largest expected n, and a small number.
Given a matrix a(1:n,1:n), with physical dimension np by np, this routine replaces it by
the LU decomposition of a rowwise permutation of itself. a and n are input. a is output,
arranged as in equation (2.3.14) above; indx(1:n) is an output vector that records the
row permutation effected by the partial pivoting; d is output as £1 depending on whether
the number of row interchanges was even or odd, respectively. This routine is used in
combination with 1ubksb to solve linear equations or invert a matrix.

INTEGER i,imax,j,k

REAL aamax,dum,sum,vv(NMAX) vv stores the implicit scaling of each row.
da=1. No row interchanges yet.
do12 i=1,n Loop over rows to get the implicit scaling informa-
aamax=0. tion.
dou j=1,n
if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))
enddo 11
if (aamax.eq.0.) pause ’singular matrix in ludcmp’ No nonzero largest element.
vv(i)=1./aamax Save the scaling.
enddo 12
do 19 j=1,n This is the loop over columns of Crout's method.
dos i=1,j-1 This is equation (2.3.12) except for i = j.
sum=a(i,j)
do 13 k=1,i-1
sum=sum-a(i,k)*a(k,j)
enddo 13
a(i,j)=sum
enddo 14
aamax=0. Initialize for the search for largest pivot element.
do1 i=j,n This is ¢ = j of equation (2.3.12) and i = j+1... N
sum=a(i,j) of equation (2.3.13).
do1s k=1,j-1
sum=sum-a(i,k)*a(k,j)
enddo 15
a(i,j)=sum
dum=vv (i) *abs (sum) Figure of merit for the pivot.
if (dum.ge.aamax) then Is it better than the best so far?
imax=i
aamax=dum
endif
enddo 16
if (j.ne.imax)then Do we need to interchange rows?
do 17 k=1,n Yes, do so...

dum=a (imax,k)
a(imax,k)=a(j,k)

a(j,k)=dum
enddo 17
d=-d ...and change the parity of d.
vv(imax)=vv(j) Also interchange the scale factor.

endif

indx (j)=imax

if(a(j,j).eq.0.)a(j,j)=TINY
If the pivot element is zero the matrix is singular (at least to the precision of the al-
gorithm). For some applications on singular matrices, it is desirable to substitute TINY
for zero.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.3 LU Decomposition and Its Applications 39

if (j.ne.n)then Now, finally, divide by the pivot element.
dum=1./a(j,j)
dois i=j+1,n
a(i,j)=a(i,j)*dum
enddo 18
endif
enddo 19 Go back for the next column in the reduction.
return
END

Here isthe routine for forward substitution and backsubstitution, implementing
equations (2.3.6) and (2.3.7).

SUBROUTINE lubksb(a,n,np,indx,b)

INTEGER n,np,indx(n)

REAL a(np,np),b(n)
Solves the set of n linear equations A - X = B. Here a is input, not as the matrix A but
rather as its LU decomposition, determined by the routine ludcmp. indx is input as the
permutation vector returned by ludcmp. b(1:n) is input as the right-hand side vector B,
and returns with the solution vector X. a, n, np, and indx are not modified by this routine
and can be left in place for successive calls with different right-hand sides b. This routine
takes into account the possibility that b will begin with many zero elements, so it is efficient
for use in matrix inversion.

INTEGER i,ii,j,11

REAL sum

ii=0 When ii is set to a positive value, it will become the in-

do12 i=1,n dex of the first nonvanishing element of b. We now do
11=indx (i) the forward substitution, equation (2.3.6). The only new
sum=b(11) wrinkle is to unscramble the permutation as we go.
b(11)=b(i)

if (ii.ne.0)then
dou j=ii,i-1
sum=sum-a(i,j)*b(j)

enddo 11
else if (sum.ne.0.) then
ii=i A nonzero element was encountered, so from now on we will
endif have to do the sums in the loop above.
b(i)=sum
enddo 12
do 14 i=n,1,-1 Now we do the backsubstitution, equation (2.3.7).
sum=b (i)

do13 j=i+1,n
sum=sum-a(i,j)*b(j)

enddo 13

b(i)=sum/a(i,i) Store a component of the solution vector X.
enddo 14
return All done!

END

The LU decomposition in ludcmp requires about %N 3 executions of the inner
loops (each with one multiply and one add). This is thus the operation count
for solving one (or a few) right-hand sides, and is a factor of 3 better than the
Gauss-Jordan routine gaussj which was given in §2.1, and a factor of 1.5 better
than a Gauss-Jordan routine (not given) that does not compute the inverse matrix.
For inverting a matrix, the total count (including the forward and backsubstitution
as discussed following equation 2.3.7 above) is (% + + + 1)N® = N?, the same
as gaussj.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

40 Chapter 2. Solution of Linear Algebraic Equations

To summarize, this is the preferred way to solve the linear set of equations
A-x = b

call ludcmp(a,n,np,indx,d)
call lubksb(a,n,np,indx,b)

The answer x will be returned in b. Your original matrix A will have been
destroyed.

If you subsequently want to solve a set of equations with the same A but a
different right-hand side b, you repeat only

call lubksb(a,n,np,indx,b)

not, of course, with the original matrix A, but with a and indx as were already
returned from ludcmp.

Inverse of a Matrix

Using the above LU decomposition and backsubstitution routines, it is com-
pletely straightforward to find the inverse of a matrix column by column.

INTEGER np,indx(np)
REAL a(np,np),y(np,np)

do12 i=1,n Set up identity matrix.

dou j=1,n

y(i,j)=0.

enddo 11

y(i,i)=1.
enddo 12
call ludcmp(a,n,np,indx,d) Decompose the matrix just once.
do13 j=1,n Find inverse by columns.

call lubksb(a,n,np,indx,y(1,j))
Note that FORTRAN stores two-dimensional matrices by column, so y(1,j) is the
address of the jth column of y.
enddo 13

The matrix y will now contain the inverse of the original matrix a, which will have
been destroyed. Alternatively, there is nothing wrong with using a Gauss-Jordan
routine like gaussj (§2.1) to invert a matrix in place, again destroying the original.
Both methods have practically the same operations count.

Incidentally, if you ever have the need to compute A ~! - B from matrices A
and B, you should LU decompose A and then backsubstitute with the columns of
B instead of with the unit vectors that would give A’s inverse. This saves a whole
matrix multiplication, and is also more accurate.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.3 LU Decomposition and Its Applications 41

Determinant of a Matrix

The determinant of an LU decomposed matrix is just the product of the
diagonal elements,

N
det =[] 8 (2.3.15)
j=1

We don’t, recall, compute the decomposition of the original matrix, but rather a
decomposition of a rowwise permutation of it. Luckily, we have kept track of
whether the number of row interchanges was even or odd, so we just preface the
product by the corresponding sign. (You now finally know the purpose of returning
d in the routine ludcmp.)

Calculation of a determinant thus requires one call to 1udcmp, with no subse-
guent backsubstitutions by 1ubksb.

INTEGER np, indx(np)
REAL a(np,np)

call ludcmp(a,n,np,indx,d) This returns d as +1.
dou j=1,n

d=d*a(j,j)
enddo 11

The variable d now contains the determinant of the origina matrix a, which will
have been destroyed.

For a matrix of any substantial size, it is quite likely that the determinant will
overflow or underflow your computer’s floating-point dynamic range. In this case
you can modify the loop of the above fragment and (e.g.) divide by powers of ten,
to keep track of the scale separately, or (e.g.) accumulate the sum of logarithms of
the absolute values of the factors and the sign separately.

Complex Systems of Equations

If your matrix A isreal, but the right-hand side vector is complex, say b + <d, then (i)
LU decompose A in the usual way, (ii) backsubstitute b to get the real part of the solution
vector, and (iii) backsubstitute d to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

(A+iC) - (x +1iy) = (b +id) (2.3.16)

then there are two possible ways to proceed. The best way is to rewrite ludcmp and 1ubksb
as complex routines. Complex modulus substitutes for absolute value in the construction of
the scaling vector vv and in the search for the largest pivot elements. Everything else goes
through in the obvious way, with complex arithmetic used as needed.
A quick-and-dirty way to solve complex systems is to take the rea and imaginary
parts of (2.3.16), giving
A-x—C-y=b
(2.3.17)
C-x+A.y=d

which can be written as a 2N x 2N set of real equations,

EEE-G e

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

42 Chapter 2. Solution of Linear Algebraic Equations

and then solved with 1udcmp and 1ubksb in their present forms. This scheme is a factor of
2 inefficient in storage, since A and C are stored twice. It is aso a factor of 2 inefficient
in time, since the complex multiplies in a complexified version of the routines would each
use 4 real multiplies, while the solution of 22N x 2N problem involves 8 times the work of
an N x N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 4.

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.LA.M.).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §3.3, and p. 50.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapters 9, 16, and 18.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
84.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that is tridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systemsthat are band diagonal, with nonzero el ements
only along afew diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take only O(N') operations, and the whole solution can be encoded
very concisely. Theresulting routinetridag isonethat wewill usein later chapters.

Naturally, one does not reserve storage for the full N x N matrix, but only for
the nonzero components, stored as three vectors. The set of equationsto be solvedis

bl C1 0 U1l T1
az by ca - Us o
—| | (241
an—1 byn—1 cN—1 UN—1 TN-1
O anN bN UN TN

Noticethat ¢, and ¢ areundefined and are not referenced by theroutinethat follows.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.4 Tridiagonal and Band Diagonal Systems of Equations 43

SUBROUTINE tridag(a,b,c,r,u,n)
INTEGER n,NMAX
REAL a(n),b(m),c(n),r(n),uln)
PARAMETER (NMAX=500)
Solves for a vector u(1:n) of length n the tridiagonal linear set given by equation (2.4.1).
a(l:n), b(1:n), c(1:n), and r(1:n) are input vectors and are not modified.
Parameter: NMAX is the maximum expected value of n.
INTEGER j
REAL bet,gam(NMAX) One vector of workspace, gam is needed.
if(b(1).eq.0.)pause ’tridag: rewrite equations’
If this happens then you should rewrite your equations as a set of order N — 1, with ug
trivially eliminated.
bet=b(1)
u(1)=r(1)/bet
dou j=2,n Decomposition and forward substitution.
gam(j)=c(j-1)/bet
bet=b(j)-a(j)*gam(j)

if (bet.eq.0.)pause ’tridag failed’ Algorithm fails; see below.
u(j)=(r(G)-a(j)*u(j-1))/vet

enddo 11

do12 j=n-1,1,-1 Backsubstitution.
u(j)=u(j)-gam(j+1)*u(j+1)

enddo 12

return

END

There is no pivoting in tridag. It is for this reason that tridag can fail
(pause) even when the underlying matrix is nonsingular: A zero pivot can be
encountered even for a nonsingular matrix. In practice, thisis not something to lose
dleep about. The kinds of problems that lead to tridiagonal linear sets usually have
additional properties which guarantee that the algorithm in tridag will succeed.
For example, if

bjl > lal +1¢;| j=1,...,N (2.4.2)

(called diagonal dominance) then it can be shown that the al gorithm cannot encounter
a zero pivot.

It is possible to construct special examplesin which the lack of pivoting in the
algorithm causes numerical instability. Inpractice, however, suchinstability isalmost
never encountered — unlike the general matrix problem where pivoting is essential.

The tridiagonal agorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for which tridag fails, you can instead use the more general method for
band diagonal systems, now described (routines bandec and banbks).

Some other matrix forms consisting of tridiagonal with a small number of
additional elements (e.g., upper right and lower left corners) also allow rapid
solution; see §2.7.

Band Diagonal Systems

Where tridiagonal systems have nonzero elements only on the diagonal plus or minus
one, band diagonal systemsare slightly more general and have (say) mu > 0 nonzero elements
immediately to the |eft of (below) the diagonal and m2 > 0 nonzero elementsimmediately to
itsright (aboveit). Of course, thisisonly a useful classification if m; and m» areboth < N.
In that case, the solution of the linear system by LU decomposition can be accomplished
much faster, and in much less storage, than for the general N x N case.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

44 Chapter 2. Solution of Linear Algebraic Equations

The precise definition of a band diagona matrix with elements a;; is that
ai;j =0 when j>i+mo oOf i>j+m (2.4.3)

Band diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45° clockwise, so that its nonzero elements lie in a long, narrow
matrix with m1 4+ 1 + mo columns and N rows. This is best illustrated by an example:
The band diagonal matrix

3 1.0 0 0 0 O
4 1 5 0 0 00
9 2 6 5 0 0 O
0358900 (2.4.4)
007 9 3 20
00 0 3 8 4 6
00 0 0 2 4 4
whichhas N = 7, m; = 2, and mz = 1, is stored compactly asthe 7 x 4 matrix,
(2.4.5)

NWJwok 8
=00 O Ut kR
= WO o= W
8 ON O OOt

Here = denotes elements that are wasted space in the compact format; these will not be
referenced by any manipulations and can have arbitrary values. Notice that the diagona
of the original matrix appears in column m; + 1, with subdiagonal elements to its left,
superdiagonal elements to its right.

The simplest manipulation of a band diagonal matrix, stored compactly, is to multiply
it by a vector to itsright. Although this is algorithmically trivial, you might want to study
the following routine carefully, as an example of how to pull nonzero elements a;; out of the
compact storage format in an orderly fashion. Notice that, as always, the logical and physical
dimensions of a two-dimensional array can be different. Our convention isto pass N, my,
mg, and the physical dimensionsnp> N and mp > my + 1 + ma.

SUBROUTINE banmul(a,n,mi,m2,np,mp,x,b)

INTEGER ml,m2,mp,n,np

REAL a(np,mp),b(n),x(n)
Matrix multiply b = A - X, where A is band diagonal with m1 rows below the diagonal
and m2 rows above. The input vector X and output vector b are stored as x(1:n) and
b(1:n), respectively. The array a(1:n,1:m1+m2+1) stores A as follows: The diagonal
elements are in a(1:n,m1+1). Subdiagonal elements are in a(j:n,1:m1) (with 7 > 1
appropriate to the number of elements on each subdiagonal). Superdiagonal elements are
in a(1:5,m1+2:m1+m2+1) with 5 < n appropriate to the number of elements on each
superdiagonal.

INTEGER i,j,k

do12 i=1,n
b(i)=0.
k=i-m1-1
do 11 j=max(1l,1-k),min(mi+m2+1,n-k)

b(i)=b(i)+a(i,j)*x(j+k)

enddo 11

enddo 12

return

END

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.4 Tridiagonal and Band Diagonal Systems of Equations 45

It is not possible to store the LU decomposition of a band diagonal matrix A quite
as compactly as the compact form of A itself. The decomposition (essentially by Crout's
method, see §2.3) produces additional nonzero “fill-ins.” One straightforward storage scheme
isto return the upper triangular factor (U) in the same space that A previously occupied, and
to return the lower triangular factor (L) in a separate compact matrix of size N x my. The
diagonal elements of U (whose product, times d = +1, gives the determinant) are returned
in the first column of A’s storage space.

The following routine, bandec, is the band-diagonal analog of 1udcmp in §2.3:

SUBROUTINE bandec(a,n,mi,m2,np,mp,al,mpl,indx,d)
INTEGER ml,m2,mp,mpl,n,np,indx(n)
REAL d,a(np,mp),al(np,mpl),TINY
PARAMETER (TINY=1.e-20)
Given an n X n band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal
rows, compactly stored in the array a(1:n,1:m1+m2+1) as described in the comment for
routine banmul, this routine constructs an LU decomposition of a rowwise permutation
of A. The upper triangular matrix replaces a, while the lower triangular matrix is returned
inal(1:n,1:m1). indx(1:n) is an output vector which records the row permutation
effected by the partial pivoting; d is output as 1 depending on whether the number of
row interchanges was even or odd, respectively. This routine is used in combination with
banbks to solve band-diagonal sets of equations.
INTEGER i,j,k,1,mm
REAL dum
mm=m1+m2+1
if (mm.gt.mp.or.ml.gt.mpl.or.n.gt.np) pause ’bad args in bandec’
1=m1
do 13 i=1,ml Rearrange the storage a bit.
do 11 j=mi1+2-i,mm
a(i,j-1=a(i,j)
enddo 11
1=1-1
do 12 j=mm-1,mm
a(i,j)=0.
enddo 12
enddo 13
d=1.
1=m1
do 18 k=1,n For each row...
dum=a(k,1)
i=k
if(1.1t.n)1=1+1
do 1 j=k+1,1 Find the pivot element.
if (abs(a(j,1)).gt.abs(dum))then
dum=a(j,1)
i=j
endif
enddo 14
indx(k)=i
if (dum.eq.0.) a(k,1)=TINY
Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in some
applications).
if (i.ne.k)then Interchange rows.
d=-d
do1s j=1,mm
dum=a(k, j)
a(k,j)=a(i,j)
a(i,j)=dum
enddo 15
endif
do 17 i=k+1,1 Do the elimination.
dum=a(i,1)/a(k,1)
al(k,i-k)=dum
do16 j=2,mm

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

46 Chapter 2. Solution of Linear Algebraic Equations

a(i,j-1)=a(i,j)-dum*a(k,j)
enddo 16
a(i,mm)=0.
enddo 17
enddo 18
return
END

Some pivoting is possible within the storage limitations of bandec, and the above
routine does take advantage of the opportunity. In general, when TINY is returned as a
diagonal element of U, then the original matrix (perhaps as modified by roundoff error)
isin fact singular. In this regard, bandec is somewhat more robust than tridag above,
which can fail agorithmically even for nonsingular matrices; bandec isthus also useful (with
m1 = mg = 1) for some ill-behaved tridiagonal systems.

Oncethematrix A has been decomposed, any number of right-hand sides can be solvedin
turn by repeated callsto banbks, the backsubstitution routine whose analog in §2.3 is Lubksb.

SUBROUTINE banbks(a,n,ml,m2,np,mp,al,mpl,indx,b)
INTEGER m1,m2,mp,mpl,n,np,indx(n)
REAL a(np,mp),al(np,mpl),b(n)
Given the arrays a, al, and indx as returned from bandec, and given a right-hand side
vector b(1:n), solves the band diagonal linear equations A - x = b. The solution vector X
overwrites b(1:n). The other input arrays are not modified, and can be left in place for
successive calls with different right-hand sides.
INTEGER i,k,1,mm
REAL dum
mm=ml+m2+1
if (mm.gt.mp.or.ml.gt.mpl.or.n.gt.np) pause ’bad args in banbks’
1=m1
do 12 k=1,n Forward substitution, unscrambling the permuted rows as we
i=indx (k) go.
if (i.ne.k)then
dum=b (k)
b(k)=b(i)
b(i)=dum
endif
if(1.1t.n)1=1+1
do 11 i=k+1,1
b(i)=b(i)-al(k,i-k)*b(k)
enddo 11
enddo 12
1=1
do14 i=n,1,-1 Backsubstitution.
dum=b (i)
do 13 k=2,1
dum=dum-a (i,k)*b(k+i-1)
enddo 13
b(i)=dum/a(i,1)
if (1.1t.mm) 1=1+1
enddo 14
return
END

The routines bandec and banbks are based on the Handbook routines bandetl and
bansol1 in[1].

CITED REFERENCES AND FURTHER READING:

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell), p. 74.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.5 Iterative Improvement of a Solution to Linear Equations 47

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Example 5.4.3, p. 166.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter 1/6. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.3.

2.5 Iterative Improvement of a Solution to
Linear Equations

Obvioudly it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not aways easy to obtain precision equa to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If this happensto you, thereis a neat trick to restore the full machine precision,
called iterative improvement of the solution. Thetheory is very straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A-x=b (25.1)

You don't, however, know x. You only know some slightly wrong solution x + dX,
where §x isthe unknown error. When multiplied by thematrix A, your slightly wrong
solution givesaproduct slightly discrepant fromthe desired right-hand side b, namely

A-(X+6x)=b+0db (25.2)
Subtracting (2.5.1) from (2.5.2) gives
A-éx=4b (25.3)
But (2.5.2) can also be solved, trivially, for §b. Substituting thisinto (2.5.3) gives
A-Xx=A-(Xx+x)—b (2.5.4)

In this equation, the whole right-hand side is known, since x + 0x is the wrong
solution that you want to improve. It is essentia to calculate the right-hand side
in double precision, since there will be alot of cancellation in the subtraction of b.
Then, we need only solve (2.5.4) for the error §x, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution by LU
decomposition. In this case we already havethe LU decomposed form of A, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do dl this is concise and straightforward:

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

48 Chapter 2. Solution of Linear Algebraic Equations

NGV —>
"
R ", \bl+ b
v/ Lok b
Ox ,” \\ ob
// \
e Al
&

Figure 2.5.1. Iterative improvement of the solution to A - x = b. Thefirst guess x + dx is multiplied by
A to produce b + éb. The known vector b is subtracted, giving éb. The linear set with this right-hand
side isinverted, giving x. Thisis subtracted from the first guess giving an improved solution x.

SUBROUTINE mprove(a,alud,n,np,indx,b,x)

INTEGER n,np,indx(n),NMAX

REAL a(np,np),alud(np,np),b(n),x(n)

PARAMETER (NMAX=500) Maximum anticipated value of n.

USES | ubksb
Improves a solution vector x(1:n) of the linear set of equations A - X = B. The matrix
a(l:n,1:n), and the vectors b(1:n) and x(1:n) are input, as is the dimension n. Also
input is alud, the LU decomposition of a as returned by 1ludcmp, and the vector indx also
returned by that routine. On output, only x(1:n) is modified, to an improved set of values.

INTEGER i, j

REAL r(NMAX)

DOUBLE PRECISION sdp

do12 i=1,n Calculate the right-hand side, accumulating the resid-
sdp=-b(i) ual in double precision.
dou j=1,n

sdp=sdp+dble(a(i,j))*dble(x(j))

enddo 11
r(i)=sdp

enddo 12

call lubksb(alud,n,np,indx,r) Solve for the error term,

do13 i=1,n and subtract it from the old solution.
x(1)=x(i)-r (1)

enddo 13

return

END

You should note that the routine 1udcmp in §2.3 destroys the input matrix as
it LU decomposesit. Since iterative improvement requires both the original matrix
and its LU decomposition, youwill need to copy A before calling ludcmp. Likewise
lubksb destroys b in obtaining X, so make a copy of b also. If you don't mind
this extra storage, iterative improvement is highly recommended: It is a process
of order only N2 operations (multiply vector by matrix, and backsubstitute — see
discussion following equation 2.3.7); it never hurts; and it can really give you your
money’s worth if it saves an otherwise ruined solution on which you have already
spent of order N3 operations.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.5 Iterative Improvement of a Solution to Linear Equations 49

You can call mprove several timesin succession if you want. Unless you are
starting quite far from the true solution, one call is generally enough; but a second
call to verify convergence can be reassuring.

More on lIterative Improvement

It isilluminating (and will be useful later in the book) to give a somewhat more solid
analytical foundation for equation (2.5.4), and also to give some additional results. Implicitin
the previous discussion was the notion that the solution vector x + dx has an error term; but
we neglected the fact that the LU decomposition of A isitself not exact.

A different analytical approach starts with some matrix By that is assumed to be an
approximate inverse of the matrix A, so that By - A is approximately the identity matrix 1.
Define the residual matrix R of By as

R=1-Bo-A (25.5)
which is supposed to be “small” (we will be more precise below). Note that therefore
Bop-A=1-R (2.5.6)

Next consider the following formal manipulation:

A=A By By)=(A""-By")-Bo=(Bo-A)""-Bo
. - (25.7)
=(1-R)""-By=(1+R+R*+R*+...)-By

We can define the nth partial sum of the last expression by
B,=(1+R+ ---+R")-Bo (2.5.8)

s0 that Boo — AL, if the limit exists.
It now is straightforward to verify that equation (2.5.8) satisfies some interesting
recurrence relations. Asregards solving A - x = b, where x and b are vectors, define

Xn =Bp b (25.9)
Then it is easy to show that
X7L+1 = Xn + BO : (b - A - Xn) (2510)

This is immediately recognizable as equation (2.5.4), with —dX = X1 — X, and with By
taking the role of A=, We see, therefore, that equation (2.5.4) does not require that the LU
decomposition of A be exact, but only that the implied residua R be small. In rough terms, if
the residual is smaller than the square root of your computer’s roundoff error, then after one
application of equation (2.5.10) (that is, going from X, = By - b to x;) thefirst neglected term,
of order R?, will be smaller than the roundoff error. Equation (2.5.10), like equation (2.5.4),
moreover, can be applied more than once, sinceit uses only By, and not any of the higher B’s.

A much more surprising recurrence which follows from equation (2.5.8) isone that more
than doubles the order n at each stage:

Boni1 =2B, —Bn-A-B, n=0,137... (25.11)

Repeated application of equation (2.5.11), from a suitable starting matrix By, converges
quadratically to the unknown inverse matrix A~ (see §9.4 for the definition of “quadrati-
caly”). Equation (2.5.11) goes by various names, including Schultz s Method and Hotelling's
Method; see Pan and Reif [1] for references. In fact, equation (2.5.11) is simply the iterative
Newton-Raphson method of root-finding (§9.4) applied to matrix inversion.

Before you get too excited about equation (2.5.11), however, you should notice that it
involves two full matrix multiplications at each iteration. Each matrix multiplication involves
N? adds and multiplies. But we already saw in §§2.1-2.3 that direct inversion of A requires
only N® adds and N® multipliesin toto. Equation (2.5.11) is therefore practical only when
specia circumstances allow it to be evaluated much more rapidly than is the case for general
matrices. We will meet such circumstances later, in §13.10.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

50 Chapter 2. Solution of Linear Algebraic Equations

In the spirit of delayed gratification, let us nevertheless pursue the two related issues:
When does the seriesin equation (2.5.7) converge; and what is a suitable initial guess By (if,
for example, an initiadl LU decomposition is not feasible)?

We can define the norm of a matrix as the largest amplification of length that it is
able to induce on a vector,

R.-
IR|| = max RV

Vs (25.12)

If welet equation (2.5.7) act on some arbitrary right-hand side b, as one wantsamatrix inverse
to do, it is obvious that a sufficient condition for convergence is

IR| < 1 (25.13)

Pan and Reif [1] point out that a suitable initial guess for By is any sufficiently small constant
€ times the matrix transpose of A, that is,

Bo=eA” or R=1-€eA" A (2.5.14)

To see why thisis so involves concepts from Chapter 11; we give here only the briefest sketch:
AT . A is a symmetric, positive definite matrix, so it has real, positive eigenvalues. In its
diagonal representation, R takes the form

R=diag(l — e\, 1 —€Xa,..., 1 — eln) (2.5.15)

where all the \;’s are positive. Evidently any e satisfying 0 < € < 2/(max; A;) will give
IR|| < 1. Itis not difficult to show that the optimal choice for ¢, giving the most rapid
convergence for equation (2.5.11), is

€ = 2/(max A; + min \;) (2.5.16)

Rarely does one know the eigervalues of AT - A in equation (2.5.16). Pan and Reif
derive severa interesting bounds, which are computable directly from A. The following
choices guarantee the convergence of B, asn — oo,

€< 1/ E a or €< 1/(maX E laij| X max E |aij|) (25.17)
i J
gk J i

The latter expression is truly a remarkable formula, which Pan and Reif derive by noting that
the vector norm in equation (2.5.12) need not be the usual L, norm, but can instead be either
the Lo (max) norm, or the L; (absolute value) norm. See their work for details.

Another approach, with which we have had some success, is to estimate the largest
eigenvalue statistically, by calculating s; = |A - v;|? for several unit vector v;’swith randomly
chosen directionsin N-space. The largest eigenvalue A can then be bounded by the maximum
of 2max s; and 2NVar(s;)/u(s:), where Var and p. denote the sample variance and mean,
respectively.

CITED REFERENCES AND FURTHER READING:

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.3.4, p. 55.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), p. 74.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
85.5.6, p. 183.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapter 13.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.5, p. 437.

Pan, V., and Reif, J. 1985, in Proceedings of the Seventeenth Annual ACM Symposium on Theory
of Computing (New York: Association for Computing Machinery). [1]

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.6 Singular Value Decomposition 51

2.6 Singular Value Decomposition

Thereexists avery powerful set of techniquesfor dealing with sets of equations
or matricesthat are either singular or else numerically very closeto singular. In many
cases where Gaussian elimination and LU decomposition fail to give satisfactory
results, this set of techniques, known as singular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “the” answer
that you thought you should get.

SVD isasothemethod of choicefor solving most linear | east-squares problems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data.

SV D methodsare based on the following theorem of linear algebra, whose proof
isbeyond our scope: Any M x N matrix A whose number of rows M isgreater than
or equal to its number of columns N, can be written as the product of an M x N
column-orthogona matrix U, an N x N diagona matrix W with positive or zero
elements (the singular values), and the transpose of an NV x N orthogonal matrix V.
The various shapes of these matrices will be made clearer by the following tableau:

(2.6.1)

The matrices U and V are each orthogona in the sense that their columns are
orthonormal,

M

1<k<N
UiiUsn = 1o = 262
N
1<k<N
> VikVin = 6kn L en<N (26.3)

Jj=1

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

52 Chapter 2. Solution of Linear Algebraic Equations

or as a tableau,

u”? : U = vT : \4 E
g

3

=

8

- 1 -

o

S

X

(2.6.9 ;j

[\

SinceV is square, it is also row-orthonormat,- VT = 1. =

The SVD decomposition can also be carried out whén< N. In this case
the singular values); for j = M + 1,..., N are all zero, and the corresponding
columns ofU are also zero. Equatlon (2 6 2) then holds onlyAfon < M.

The decomposition (2.6.1) can always be done, no matter how singular thed
matrix is, and it is “almost” unique. That is to say, it is unique up to (i) making
the same permutation of the columnsléf elements ofV, and columns o¥ (or
rows ofVT), or (i) forming linear combinations of any columns dfandV whose
corresponding elements8f happen to be exactly equal. An importantconsequence
of the permutation freedom is that for the cage< N, a numerical algorithm for
the decomposition need not return zerg's for j = M +1,...,N; the N — M
zero singular values can be scattered among all posijiend, 2, ..., N.

At the end of this section, we give a routinssdcmp, that performs SVD on
an arbitrary matrixA, replacing it byU (they are the same shape) and returning
W andV separately. The routinevdcmp is based on a routine by Forsythe et
al.[1], which is in turn based on the original routine of Golub and Reinsch, found, in
various forms, iri2-4] and elsewhere. These references include extensive discussio
of the algorithm used. As much as we dislike the use of black-box routines, we are
going to ask you to accept this one, since it would take us too far afield to cover
its necessary background material here. Suffice it to say that the algorithm is verns
stable, and that it is very unusual for it ever to misbehave. Most of the concepts thag
enter the algorithm (Householder reduction to bidiagonal form, diagonalization by
QR procedure with shifts) will be discussed further in Chapter 11.

If you are as suspicious of black boxes as we are, you will want to verify yourself 3
thatsvdcmp does what we say it does. Thatis very easy to do: Generate an arbitrary
matrix A, call the routine, and then verify by matrix multiplication that (2.6.1) and
(2.6.4) are satisfied. Since these two equations are the only defining requirements
for SVD, this procedure is (for the chosén) a complete end-to-end check.

Now let us find out what SVD is good for.

0 BOlBWY YLON

ﬁﬁqweo@/ueslsnomeup 0} [rews puas 1o ‘(Aju

0'9

) B

STho

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

UON P!

TBouswy Y

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.6 Singular Value Decomposition 53

SVD of a Square Matrix

If the matrixA is square)N x N say, therlJ, V, andW are all square matrices
of the same size. Their inverses are also trivial to computandV are orthogonal,
so their inverses are equal to their transpo$¥sis diagonal, so its inverse is the
diagonal matrix whose elements are the reciprocals of the elemgntsrom (2.6.1)
it now follows immediately that the inverse &f is

A~ =V . [diag(1/w;)] - UT (2.6.5

The only thing that can go wrong with this construction is for one of ¢hgs
to be zero, or (numerically) for it to be so small that its value is dominated by
roundoff error and therefore unknowable. If more than one ofuthés have this
problem, then the matrix is even more singular. So, first of all, SVD gives you a
clear diagnosis of the situation.

Formally, thecondition number of a matrix is defined as the ratio of the largest
(in magnitude) of thav;'s to the smallest of thev;’s. A matrix is singular if its
condition number is infinite, and it i$l-conditioned if its condition number is too
large, that is, if its reciprocal approaches the machine’s floating-point precision (for
example, less that0 =6 for single precision oi0~'2 for double).

For singular matrices, the concepts millspace and range are important.
Consider the familiar set of simultaneous equations

T (129 10 WO U MmM//:dny

A-x=b (2.6.6

whereA is a square matrixp andx are vectors. Equation (2.6.6) definksas a
linear mapping from the vector spaxéo the vector spach. If A is singular, then
there is some subspacexqfcalled the nullspace, that is mapped to zérox = 0.

The dimension of the nullspace (the number of linearly independent vectboet

can be found in it) is called thaeullity of A.

Now, there is also some subspacéddhat can be “reached” b, in the sense
that there exists somewhich is mapped there. This subspacé &f called the range
of A. The dimension of the range is called tla@k of A. If A is nonsingular, then its
range will be all of the vector spate so its rank isV. If A is singular, then the rank
will be less thanV. In fact, the relevant theorem is “rank plus nullity equals

What has this to do with SVD? SVD explicitly constructs orthonormal bases
for the nullspace and range of a matrix. Specifically, the column® efhose
same-numbered elements arenonzero are an orthonormal set of basis vectors that
span the range; the columns\dfwhose same-numbered elemeunts are zero are
an orthonormal basis for the nullspace.

Now let's have another look at solving the set of simultaneous linear equations
(2.6.6) in the case tha is singular. First, the set dlomogeneous equations, where
b = 0, is solved immediately by SVD: Any column & whose corresponding ;
is zero yields a solution.

When the vectob on the right-hand side is not zero, the important question is
whether it lies in the range & or not. If it does, then the singular set of equations
does have a solutiorx; in fact it has more than one solution, since any vector in
the nullspace (any column &f with a corresponding zere ;) can be added t&
in any linear combination.

uononpoidal Jayun4 "asn feuosiad umo J1ay; 1oy Adoo Jaded auo axew 0} SIasn 18ulslUl J0) pajue.d S uoIssIwIad

) 610°8BpLqUIRI @ AIBSISN1084IP 0} [lewd puas Jo ‘(Ajuo eauswy YUON) £27/-2/8-008

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

13WY YLON 8pIsIno

‘(ea
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jjo BuiAdoo Aue o

54 Chapter 2. Solution of Linear Algebraic Equations

If we want to single out one particular member of this solution-set of vectors as

a representative, we might want to pick the one with the smallest I¢x16]‘thHere is
how to find that vector using SVD: Simptgplace1/w ; by zeroif w; = 0. (Itis not
very often that one gets to s&t = 0!) Then compute (working from right to left)

x =V - [diag (1/w;)] - (UT - b) (2.6.7

This will be the solution vector of smallest length; the column¥ dhat are in the
nullspace complete the specification of the solution set.

Proof: Considefx + x|, wherex’ lies in the nullspace. Then, W ~' denotes
the modified inverse o with some elements zeroed,

X+X|=[V-W™ . U" b+
= V- W UT.- b+ VT .X) (2.6.8
=w .U b+ V"X

Here the first equality follows from (2.6.7), the second and third from the orthonor-
mality of V. If you now examine the two terms that make up the sum on the

right-hand side, you will see that the first one has nonzemmponents only where
w; # 0, while the second one, singéis in the nullspace, has nonzgroomponents
only wherew; = 0. Therefore the minimum length obtains for= 0, g.e.d.

If b is notin the range of the singular matéx then the set of equations (2.6.6)

has no solution. But here is some good newsb I§ not in the range oA, then
equation (2.6.7) can still be used to construct a “solution” vextorhis vectorx
will not exactly solveA - x = b. But, among all possible vectoxs it will do the
closest possible job in the least squares sense. In other words (2.6.7) finds

x which minimizes r =|A-x—b| (2.6.9

The number- is called theresidual of the solution.

The proof is similar to (2.6.8): Suppose we modifipy adding some arbitrary
x’. ThenA - x — b is modified by adding somb’ = A - x’. Obviouslyb’ is in
the range ofA. We then have

|A-x—b+b|=[U-W-VT).(V.W".U".b)—b+1|

=|U-W-W-U"—1)-b+Db|

:}U'[(W'Wfl—l)-UT-b+uT.b/]| (2.6.10

=|W-w-1).UT - b+U". b

Now, (W - W' — 1) is a diagonal matrix which has nonzereomponents only for
w; = 0, while U”'b’ has nonzerg components only fow; # 0, sinceb’ lies in the
range ofA. Therefore the minimum obtains ftr = 0, g.e.d.

Figure 2.6.1 summarizes our discussion of SVD thus far.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.6 Singular Value Decomposition 55

AR

(€Y
null
space
of A .
solutions of
solutions of Alk=c
Alk=d
SVD “solution”
of Ak =c o4
range of A
- - = ‘
\
d ‘.C
SVD solution of
Alk=d
(b)

Figure 2.6.1. (8 A nonsingular matrix A maps a vector space into one of the same dimension. The
vector x is mapped into b, so that x satisfies the equation A - x = b. (b) A singular matrix A maps a
vector space into one of lower dimensionality, here a plane into a line, called the “range” of A. The
“nullspace” of A is mapped to zero. The solutions of A - x = d consist of any one particular solution plus
any vector in the nullspace, here forming aline parallel to the nullspace. Singular value decomposition
(SVD) selects the particular solution closest to zero, as shown. The point c lies outside of the range
of A, so A -x = c has no solution. SVD finds the least-squares best compromise solution, namely a
solution of A - x = ¢/, as shown.

In the discussion since equation (2.6.6), we have been pretending that a matrix
either is singular or else isn't. That is of course true analytically. Numerically,
however, the far more common situation is that some of the w;’s are very small
but nonzero, so that the matrix is ill-conditioned. In that case, the direct solution
methods of LU decomposition or Gaussian elimination may actually give aformal
solution to the set of equations (that is, a zero pivot may not be encountered); but
the solution vector may have wildly large components whose algebraic cancellation,
when multiplying by the matrix A, may give a very poor approximation to the
right-hand vector b. In such cases, the solution vector x obtained by zeroing the

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

56 Chapter 2. Solution of Linear Algebraic Equations

small w;’s and then using equation (2.6.7) is very often better (in the sense of the
residual |A - x — b| being smaller) than both the direct-method solution and the SVD
solution where the small w;’s are left nonzero.

It may seem paradoxical that this can be so, since zeroing a singular value
corresponds to throwing away one linear combination of the set of equations that
we are trying to solve. The resolution of the paradox is that we are throwing away
precisely a combination of equationsthat is so corrupted by roundoff error asto be at
best useless; usually it is worse than useless since it “pulls’ the solution vector way
off towards infinity along some direction that is aimost a nullspace vector. In doing
this, it compounds the roundoff problem and makes the residua |A - x — b| larger.

SVD cannot be applied blindly, then. You have to exercise some discretion in
deciding at what threshold to zero the small w ;’s, and/or you have to have some idea
what size of computed residual |A - x — b| is acceptable.

As an example, here is a “backsubstitution” routine svbksb for evaluating
equation (2.6.7) and obtaining a solution vector x from a right-hand side b, given
that the SVD of amatrix A has already been calculated by acall to svdcmp. Note
that this routine presumes that you have already zeroed the small w ;’s. It does not
do this for you. If you haven't zeroed the small w;'s, then this routine is just as
ill-conditioned as any direct method, and you are misusing SVD.

SUBROUTINE svbksb(u,w,v,m,n,mp,np,b,x)
INTEGER m,mp,n,np,NMAX
REAL b(mp) ,u(mp,np),v(np,np),w(np),x(np)
PARAMETER (NMAX=500) Maximum anticipated value of n.
Solves A - X = B for a vector X, where A is specified by the arrays u, w, v as returned by
svdcmp. m and n are the logical dimensions of a, and will be equal for square matrices. mp
and np are the physical dimensions of a. b(1:m) is the input right-hand side. x(1:n) is
the output solution vector. No input quantities are destroyed, so the routine may be called
sequentially with different b's.
INTEGER i,3,3j
REAL s,tmp (NMAX)
do12 j=1,n Calculate UT B.
s=0.
if (w(j) .ne.0.)then Nonzero result only if w; is nonzero.
don i=1,m
s=s+u(i,j)*b(i)
enddo 11
s=s/w(j) This is the divide by wj.
endif
tmp(j)=s
enddo 12
dous j=1,n Matrix multiply by V' to get answer.
s=0.
do13 jj=1,n
s=s+v(j,j3)*¥tmp (3§
enddo 13
x(j)=s
enddo 14
return
END

Note that a typical use of svdcmp and svbksb superficially resembles the
typical use of ludcmp and lubksb: In both cases, you decompose the left-hand
matrix A just once, and then can use the decomposition either once or many times
with different right-hand sides. The crucial differenceisthe*editing” of the singular

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.6 Singular Value Decomposition 57

values before svbksb is called:

REAL a(np,np),u(np,np),w(np),v(np,np),blnp),x(np)

do12 i=1,n Copy a into u if you don’t want it to be destroyed.
don j=1,n
u(i,j)=ali,jd
enddo 11
enddo 12
call svdcmp(u,n,n,np,np,w,v) SVD the square matrix a.
wmax=0. Will be the maximum singular value obtained.
do1s j=1,n
if (w(j) .gt.wmax)wmax=w(j)
enddo 13
wmin=wmax*1.0e-6 This is where we set the threshold for singular values
do 14 j=1,n allowed to be nonzero. The constant is typical,
if (w(j).1t.wmin)w(j)=0. but not universal. You have to experiment with
enddo 1 your own application.

call svbksb(u,w,v,n,n,np,np,b,x) Now we can backsubstitute.

SVD for Fewer Equations than Unknowns

If you have fewer linear equations M than unknowns N, then you are not
expecting a unique solution. Usually there will be an N — M dimensional family
of solutions. If you want to find this whole solution space, then SVD can readily
do the job.

The SVD decomposition will yield N — M zero or negligible w;’s, since
M < N. There may be additional zero w;’s from any degeneracies in your M
equations. Be sure that you find this many small w;'s, and zero them before calling
svbksb, which will give you the particular solution vector x. Asbefore, the columns
of V corresponding to zeroed w ;'s are the basis vectors whose linear combinations,
added to the particular solution, span the solution space.

SVD for More Equations than Unknowns

This situation will occur in Chapter 15, when we wish to find the |east-squares
solution to an overdetermined set of linear equations. In tableau, the equations
to be solved are

A Ix|=1b (2.6.11)

The proofs that we gave above for the square case apply without modification
to the case of more equations than unknowns. The |east-squares solution vector x is

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

58 Chapter 2. Solution of Linear Algebraic Equations

given by (2.6.7), which, with nonsguare matrices, looks like this,

x| = Vv | diag@ jw;) | - uT b

(2.6.12)

In general, the matrix W will not be singular, and no w ;s will need to be
set to zero. Occasionally, however, there might be column degeneraciesin A. In
this case you will need to zero some small w; values after al. The corresponding
column in V gives the linear combination of x’s that is then ill-determined even by
the supposedly overdetermined set.

Sometimes, although you do not need to zero any w;'s for computational
reasons, you may nevertheless want to take note of any that are unusualy small:
Their corresponding columnsinV arelinear combinationsof x’swhich areinsensitive
to your data. In fact, you may then wish to zero these w ;'s, to reduce the number of
free parametersin the fit. These matters are discussed more fully in Chapter 15.

Constructing an Orthonormal Basis

Suppose that you have N vectors in an M-dimensional vector space, with
N < M. Then the N vectors span some subspace of the full vector space.
Often you want to construct an orthonormal set of N vectors that span the same
subspace. The textbook way to do this is by Gram-Schmidt orthogonalization,
starting with one vector and then expanding the subspace one dimension at a
time. Numerically, however, because of the build-up of roundoff errors, naive
Gram-Schmidt orthogonalization is terrible.

The right way to construct an orthonormal basis for a subspace is by SVD:
Form an M x N matrix A whose N columns are your vectors. Run the matrix
through svdcmp. The columns of the matrix U (which in fact replaces A on output
from svdcmp) are your desired orthonormal basis vectors.

You might also want to check the output w;'s for zero values. If any occur,
then the spanned subspace was not, in fact, N dimensional; the columns of U
corresponding to zero w;'s should be discarded from the orthonormal basis set.

(QR factorization, discussed in §2.10, also constructs an orthonormal basis,
see[5].)

Approximation of Matrices

Note that equation (2.6.1) can be rewritten to express any matrix A ;; as asum
of outer products of columns of U and rows of V7, with the “weighting factors”
being the singular values w;,

N
Ay =Y wp Ui Vi (2.6.13)
k=1

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.6 Singular Value Decomposition 59

If you ever encounter a situation where most of the singular values w; of a
matrix A are very small, then A will be well-approximated by only afew termsinthe
sum (2.6.13). This meansthat you have to store only afew columnsof U and V (the
same k ones) and you will be able to recover, with good accuracy, the whole matrix.

Note also that it is very efficient to multiply such an approximated matrix by a
vector x: You just dot x with each of the stored columns of V, multiply the resulting
scalar by the corresponding w, and accumulate that multiple of the corresponding
column of U. If your matrix is approximated by a small number K of singular
values, then this computation of A - x takes only about K (M + N) multiplications,
instead of M N for the full matrix.

SVD Algorithm

Here is the algorithm for constructing the singular value decomposition of any
matrix. See §11.2-11.3, and aso [4-5], for discussion relating to the underlying
method.

SUBROUTINE svdcmp(a,m,n,mp,np,w,v)
INTEGER m,mp,n,np,NMAX
REAL a(mp,np),v(np,np),w(np)
PARAMETER (NMAX=500) Maximum anticipated value of n.
USES pyt hag
Given a matrix a(1:m,1:n), with physical dimensions mp by np, this routine computes its
singular value decomposition, A = U - W - V7. The matrix U replaces a on output. The
diagonal matrix of singular values W is output as a vector w(1:n). The matrix V (not the
transpose V1) is output as v(1:n,1:n).
INTEGER i,its,j,jj,k,1,nm
REAL anorm,c,f,g,h,s,scale,x,y,z,rvi(NMAX),pythag
g=0.0 Householder reduction to bidiagonal form.
scale=0.0
anorm=0.0
do2 i=1,n
1=i+1
rvi(i)=scalex*g
g=0.0
s=0.0
scale=0.0
if(i.le.m)then
don k=i,m
scale=scale+abs(a(k,i))
enddo 11
if (scale.ne.0.0)then
do 12 k=i,m
a(k,i)=a(k,i)/scale
s=s+a(k,i)*a(k,i)
enddo 12
f=a(i,i)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,i)=f-g
dois j=1,n
s=0.0
do 13 k=i,m
s=s+a(k,i)*a(k,j)
enddo 13
f=s/h
do 14 k=i,m
a(k,j)=a(k,j)+f*a(k,i)
enddo 14

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

60 Chapter 2. Solution of Linear Algebraic Equations

enddo 15
do 16 k=i,m
a(k,i)=scale*a(k,i)

enddo 16
endif
endif
w(i)=scale *g
g=0.0
s=0.0
scale=0.0
if((i.le.m).and. (i.ne.n))then
do 17 k=1,n
scale=scale+abs(a(i,k))
enddo 17
if (scale.ne.0.0)then
do 18 k=1,n
a(i,k)=a(i,k)/scale
s=s+a(i,k)*a(i,k)
enddo 18
f=a(i,1)
g=-sign(sqrt(s),f)
h=fx*g-s
a(i,)=f-g
do 19 k=1,n
rvi(k)=a(i,k)/h
enddo 19
do23 j=1,m
s=0.0
do 21 k=1,n
s=s+a(j,k)*a(i,k)
enddo 21
do 22 k=1,n
a(j,k)=a(j,k)+s*rvi(k)
enddo 22
enddo 23
do 24 k=1,n
a(i,k)=scale*a(i,k)
enddo 24
endif
endif
anorm=max (anorm, (abs (w(i))+abs(rv1(i))))
enddo 25
do3 i=n,1,-1 Accumulation of right-hand transformations.

if (i.1t.n)then
if(g.ne.0.0)then

do2 j=1,n Double division to avoid possible underflow.
v(j,i)=(a(i,j)/ali,1))/g
enddo 26
do2 j=1,n
s=0.0
do 27 k=1,n
s=s+a(i,k)*v(k,j)
enddo 27
do 28 k=1,n
vk, j)=v(k,j)+s*v(k,i)
enddo 28
enddo 29
endif
doa j=1l,n
v(i,j)=0.0
v(j,i)=0.0
enddo 31

endif
v(i,i)=1.0

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.6 Singular Value Decomposition 61

g=rv1(i)
1=1i
enddo 32
do 3 i=min(m,n),1,-1
1=i+1
g=w(i)
doss j=1,n
a(i,j)=0.0
enddo 33
if(g.ne.0.0)then
g=1.0/g
doss j=1,n
s=0.0
do 3 k=1,m
s=s+a(k,i)*a(k,j)
enddo 34
f=(s/a(i,i))*g
do 3 k=i,m

Accumulation of left-hand transformations.

a(k,j)=a(k,j)+f*a(k,i)

enddo 35
enddo 36
do37 j=i,m
a(j,i)=a(j,i)*g
enddo 37
else
doss j= i,m
a(j,i)=0.0
enddo 38
endif
a(i,i)=a(i,i)+1.0
enddo 39
do 49 k=n,1,-1
do 4 its=1,30
doa 1=k,1,-1
nm=1-1

Diagonalization of the bidiagonal form: Loop over
singular values, and over allowed iterations.

Test for splitting.

Note that rv1(1) is always zero.

if ((abs(rv1(l))+anorm) .eq.anorm) goto 2
if ((abs(w(nm))+anorm) .eq.anorm) goto 1

enddo 41

c=0.0

s=1.0

do4 i=1,k
f=s*rvi(i)
rvi(i)=cxrvi(i)

Cancellation of rv1(1), if 1 > 1.

if ((abs(f)+anorm) .eq.anorm) goto 2

g=w(i)
h=pythag(f,g)
w(i)=h
h=1.0/h
c= (g*h)
s=-(f*h)
do4 j=1,m
y=a(j,nm)
z=a(j,1i)
a(j,nm)=(y*c)+(z*s)
a(j,i)=-(y*s)+(z*c)
enddo 42
enddo 43
z=w (k)
if(1.eq.k)then
if(z.1t.0.0)then
w(k)=-z
do4 j=1,n
v(j,k)=-v(j,k)
enddo 44

Convergence.
Singular value is made nonnegative.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

62 Chapter 2. Solution of Linear Algebraic Equations

endif
goto 3
endif
if(its.eq.30) pause ’no convergence in svdcmp’
x=w(1) Shift from bottom 2-by-2 minor.
nm=k-1
y=w (nm)
g=rvi(nm)
h=rvi(k)
f=((y-z)*(y+z)+(g-h) *(g+h)) / (2. 0*h*y)
g=pythag(f,1.0)
f=((x-2z) *(x+z) +h* ((y/ (f+sign(g,f)))-h)) /x
c=1.0 Next QR transformation:
s=1.0
do 47 j=1,nm
i=j+1
g=rvi(i)
y=w(i)
h=s*g
g=c*g
z=pythag(f,h)
rvi(j)=z
c=f/z
s=h/z
f= (x*xc)+(g*s)
g=-(x*s)+(g*c)
h=y*s
y=y*c
doss jj=1,n
x=v(jj,j)
z=v(jj,i)
v(jj,j)= (x*xc)+(z*s)
v(jj,i)=-(x*xs)+(z*c)
enddo 45
z=pythag(f,h)
w(j)=z Rotation can be arbitrary if z = 0.
if(z.ne.0.0)then
z=1.0/z
c=fx*xz
s=h*z
endif
f= (c*g)+(s*xy)
x=—(s*g)+(c*y)
dos jj=1,m
y=a(jj,Jj)
z=a(jj,1i)
a(jj,j)= (y*c)+(zxs)
a(jj,i)=-(y*s)+(z*c)
enddo 46
enddo 47
rvi(1)=0.0
rvi(k)=£f
w(k)=x
enddo 48
continue
enddo 49
return
END

FUNCTION pythag(a,b)
REAL a,b,pythag
Computes (a2 4 b2)1/2 without destructive underflow or overflow.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.7 Sparse Linear Systems 63

REAL absa,absb
absa=abs (a)
absb=abs (b)
if (absa.gt.absb)then
pythag=absa*sqrt (1.+(absb/absa)**2)
else
if (absb.eq.0.)then
pythag=0.
else
pythag=absbx*sqrt (1.+(absa/absb) **2)
endif
endif
return
END

(Double precision versions of svdcmp, svbksb, and pythag, named dsvdcmp,
dsvbksb, and dpythag, are used by the routine ratlsq in §5.13. You can easily
make the conversions, or else get the converted routines from the Numerical Recipes
diskette.)

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.3 and Chapter 12.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall), Chapter 18.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter 1.10 by G.H. Golub and C. Reinsch. [2]

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.), Chapter 11. [3]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
86.7. [4]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §5.2.6. [5]

2.7 Sparse Linear Systems

A system of linear equationsis called sparse if only arelatively small number
of its matrix elements a;; are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of the O(N 3) arithmetic operations
devoted to solving the set of equations or inverting the matrix involve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not always compatible) goals for any sparse
matrix method: saving time and/or saving space.

We have already considered one archetypal sparse form in §2.4, the band
diagonal matrix. In the tridiagonal case, e.g., we saw that it was possible to save

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

64 Chapter 2. Solution of Linear Algebraic Equations

both time (orderN instead of N3) and space (ordelN instead of N2). The
method of solution was not different in principle from the general methof(6f
decomposition; it was just applied cleverly, and with due attention to the bookkeeping
of zero elements. Many practical schemes for dealing with sparse problems have this
same character. They are fundamentally decomposition schemes, or else elimination
schemes akin to Gauss-Jordan, but carefully optimized so as to minimize the number
of so-calledfill-ins, initially zero elements which must become nonzero during the
solution process, and for which storage must be reserved.

Direct methods for solving sparse equations, then, depend crucially on the:
precise pattern of sparsity of the matrix. Patterns that occur frequently, or that ar
useful as way-stations in the reduction of more general forms, already have speci
names and special methods of solution. We do not have space here for any detail
review of these. References listed at the end of this section will furnish you with an
“in” to the specialized literature, and the following list of buzz words (and Figure
2.7.1) will at least let you hold your own at cocktail parties:

e tridiagonal
band diagonal (or banded) with bandwidth
band triangular
block diagonal
block tridiagonal
block triangular
cyclic banded
singly (or doubly) bordered block diagonal
singly (or doubly) bordered block triangular
singly (or doubly) bordered band diagonal
singly (or doubly) bordered band triangular

e other (1)

You should also be aware of some of the special sparse forms that occur in th
solution of partial differential equations in two or more dimensions. See Chapter 19.

Mwww//:dny

R 10%0Fu

ISgaM JISIA ‘SINOYAD 10 $X009 sadioay [eauawnp Japio o] "panqyosd Apouis si ‘1aindwod Janias Aue 03 (suo siyy buipnjour) saji ajgepesal

Tl
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

®© 06 06 0606 06 0 0 0 o
@up 01 |rews puas 10 ‘(Aluo eousWY YLON) £2t/-2/8-008

If your particular pattern of sparsity is not a simple one, then you may wish to
try ananalyze/factorize/operate package, which automates the procedure of figuring
out how fill-ins are to be minimized. Thanalyze stage is done once only for each
pattern of sparsity. Theactorize stage is done once for each particular matrix that
fits the pattern. Theperate stage is performed once for each right-hand side to
be used with the particular matrix. ConslalB] for references on this. The NAG
library [4] has an analyze/factorize/operate capability. A substantial collection of
routines for sparse matrix calculation is also available from IM3las theYale
Soarse Matrix Package [6].

You should be aware that the special order of interchanges and eliminations2
prescribed by a sparse matrix method so as to minimize fill-ins and arithmetic&
operations, generally acts to decrease the method’s numerical stability as compareds
to, e.g., regula.U decomposition with pivoting. Scaling your problem so as to
make its nonzero matrix elements have comparable magnitudes (if you can do it)
will sometimes ameliorate this problem.

In the remainder of this section, we present some concepts which are applicable
to some general classes of sparse matrices, and which do not necessarily depend on
details of the pattern of sparsity.

Wy YUoN apisino) Bio abplques @A1asisnad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

2.7 Sparse Linear Systems 65

Zeros

Zeros Zeros

@ (b) (©

4
1]
1[4 0]
(11

(d) C ®)

©) (h) 0]

N I N e
O =
O o =

{m

FE
Oope’o
0 W

]
o, o
EID

O

0) ®

Figure 2.7.1. Some standard formsfor sparse matrices. (a) Band diagonal; (b) block triangular; (c) block
tridiagonal; (d) singly bordered block diagonal; (e) doubly bordered block diagonal; (f) singly bordered
block triangular; (g) bordered band-triangular; (h) and (i) singly and doubly bordered band diagond; (j)
and (k) other! (after Tewarson) [1].

Sherman-Morrison Formula

Suppose that you have aready obtained, by herculean effort, the inverse matrix
A~! of a square matrix A. Now you want to make a “small” change in A, for
example change one element a;;, or a few elements, or one row, or one column.
Is there any way of calculating the corresponding change in A ~* without repeating

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

66 Chapter 2. Solution of Linear Algebraic Equations

your difficult 1abors? Yes, if your change is of the form
A —- (A+uv) (27.1)

for some vectorsu and v. If u is aunit vector e;, then (2.7.1) adds the components
of v to theith row. (Recall that u ® v isamatrix whose ¢, jth element is the product
of the ith component of u and the jth component of v.) If v isaunit vector e ;, then
(2.7.1) adds the components of u to the jth column. If both u and v are proportional
to unit vectors e; and e; respectively, then aterm is added only to the element a ; ;.

The Sherman-Morrison formulagivestheinverse (A +u®v) ~!, andis derived
briefly as follows:

A+uev)t=1+Auev)t-AT!
=1-Atuev+A Tt ugv-Alugv—..)-AT!
AP AT uRV-ATI AN L)

At u)y@ (v-ATh

=A"1
I+

(2.7.2)
where

A=v-Al.u (2.7.3)

The second line of (2.7.2) is aformal power series expansion. In the third line, the
associativity of outer and inner productsis used to factor out the scalars \.

The use of (2.7.2) is this: Given A~ and the vectors u and v, we need only
perform two matrix multiplications and a vector dot product,

z=A"1tu w=AYHT.v A=v.z (2.7.4)
to get the desired change in the inverse

-1 _ ZQW

A—l
- 1T+ A

(2.7.5)

The whole procedure requires only 3V 2 multiplies and a like number of adds (an
even smaller number if u or v is a unit vector).

The Sherman-Morrison formula can be directly applied to a class of sparse
problems. If you already have a fast way of calculating the inverse of A (eg., a
tridiagonal matrix, or some other standard sparse form), then (2.7.4)—(2.7.5) alow
you to build up to your related but more complicated form, adding for example a
row or column at atime. Notice that you can apply the Sherman-Morrison formula
more than once successively, using at each stage the most recent update of A !
(equation 2.7.5). Of course, if you have to modify every row, then you are back to
an N3 method. The constant in front of the N3 is only afew times worse than the
better direct methods, but you have deprived yourself of the stabilizing advantages
of pivoting — so be careful.

For some other sparse problems, the Sherman-Morrison formula cannot be
directly applied for the simple reason that storage of the whole inverse matrix A ~!

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

2.7 Sparse Linear Systems 67

is not feasible. If you want to add only a single correction of the form u ® v,
and solve the linear system

(A+u®v)-x=hb (2.7.6)

then you proceed as follows. Using the fast method that is presumed available for
the matrix A, solve the two auxiliary problems

A-y=b A-z=u (2.7.7)

for the vectors y and z. In terms of these,

X=Yy— [%} z (2.7.8)

as we see by multiplying (2.7.2) on the right by b.
Cyclic Tridiagonal Systems
So-called cyclic tridiagonal systems occur quite frequently, and are a good

example of how to use the Sherman-Morrison formulain the manner just described.
The equations have the form

by ¢ 0O .- B 1 1
az by ca - T2 T2
=1 - (2.7.9)
an—1 bv-1 cn-1 TN_1 TN-1
« ce 0 an bN TN N

Thisis atridiagona system, except for the matrix elements « and 3 in the corners.
Forms like this are typically generated by finite-differencing differential equations
with periodic boundary conditions (§19.4).

We use the Sherman-Morrison formula, treating the system as tridiagonal plus
acorrection. In the notation of equation (2.7.6), define vectors u and v to be

o 1
0 0
u=|: v=| (2.7.10)
0 0
a B/

Here ~y is arbitrary for the moment. Then the matrix A is the tridiagonal part of the
matrix in (2.7.9), with two terms modified:

by =b1 — 7, N =bn —afB/y (2.7.11)

We now solve equations (2.7.7) with the standard tridiagonal algorithm, and then
get the solution from equation (2.7.8).

Theroutine cyclic below implementsthis algorithm. We choose the arbitrary
parameter v = —b; to avoid loss of precision by subtraction in the first of equations
(2.7.12). In the unlikely event that this causes loss of precision in the second of
these equations, you can make a different choice.

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

68 Chapter 2. Solution of Linear Algebraic Equations

SUBROUTINE cyclic(a,b,c,alpha,beta,r,x,n)
INTEGER n,NMAX
REAL alpha,beta,a(n),b(n),c(n),r(n),x(n)
PARAMETER (NMAX=500)
USES tridag
Solves for a vector x(1:n) the “cyclic” set of linear equations given by equation (2.7.9).
a, b, ¢, and r are input vectors, while alpha and beta are the corner entries in the matrix.
The input is not modified.
INTEGER i
REAL fact,gamma,bb(NMAX) ,u(NMAX) ,z(NMAX)
if(n.le.2)pause ’n too small in cyclic’
if (n.gt.NMAX)pause ’NMAX too small in cyclic’
gamma=-b (1) Avoid subtraction error in forming bb(1).
bb(1)=b(1) -gamma Set up the diagonal of the modified tridiagonal system.
bb(n)=b(n)-alpha*beta/gamma
don i=2,n-1
bb(i)=b(i)
enddo 11
call tridag(a,bb,c,r,x,n) Solve A - x =r.
u(1)=gamma Set up the vector u.
u(n)=alpha
do 12 i=2,n-1
u(i)=0.
enddo 12
call tridag(a,bb,c,u,z,n) Solve A -z = u.
fact=(x(1)+beta*x(n)/gamma)/(1.+z(1)+beta*z(n)/gamma) Form v-x/(1+V-z).
do13 i=1,n Now get the solution vector X.
x(i)=x(i)-fact*z(i)
enddo 13
return
END

Woodbury Formula

If you want to add more than a single correction term, then you cannot use (2.7.8)
repeatedly, since without storing a new A~' you will not be able to solve the auxiliary
problems (2.7.7) efficiently after thefirst step. Instead, you need the Woodbury formula, which
is the block-matrix version of the Sherman-Morrison formula,

(A+U-vhH)!
-1 -1 T -1 -1 T -1 (27.12)
—A! [A U-2A+VT AT U)oV A

Here A is, as usuad, an N x N matrix, while U and V are N x P matrices with P < N
and usually P <« N. Theinner piece of the correction term may become clearer if written
as the tableau,

U i+vtoaTtoul VT (2.7.13)

where you can see that the matrix whose inverseisneeded isonly P x P rather than N x N.

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

2.7 Sparse Linear Systems 69

The relation between the Woodbury formulaand successive applications of the Sherman-
Morrison formulaisnow clarified by noting that, if U isthe matrix formed by columns out of the
P vectorsuy, ..., up,andV isthe matrix formed by columns out of the P vectorsvy, ..., Vvp,

C
Il
c
S

up Vv

Il
<
S

vp (2.7.14)

then two ways of expressing the same correction to A are

(A + XP: Up ® vk> =(A+U-VT") (2.7.15)

k=1

(Note that the subscripts on u and v do not denote components, but rather distinguish the
different column vectors.)

Equation (2.7.15) reveals that, if you have A~" in storage, then you can either make the
P corrections in one fell swoop by using (2.7.12), inverting a P x P matrix, or else make
them by applying (2.7.5) P successive times.

If you don’t have storage for A~!, then you must use (2.7.12) in the following way:
To solve the linear equation

(A +Y w® vk> x=b (2.7.16)

k=1

first solve the P auxiliary problems

A-z21 =U
A -7y = U
(2.7.17)
A-zZp =Up
and construct the matrix Z by columns from the z's obtained,
Z=|Z1|---|zp (2.7.18)
Next, do the P x P matrix inversion
H=(1+V"'.2)™" (2.7.19)
Finally, solve the one further auxiliary problem
A.y=hb (2.7.20)

In terms of these quantities, the solution is given by

X=y—Z- [H (vT y)} (27.21)

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

70 Chapter 2. Solution of Linear Algebraic Equations

Inversion by Partitioning

Once in a while, you will encounter a matrix (not even necessarily sparse)
that can be inverted efficiently by partitioning. Suppose that the N x N matrix
A is partitioned into

A= {g g} (2.7.22)

where P and S are square matrices of sizep x p and s x s respectively (p + s = N).
The matrices Q and R are not necessarily square, and have sizesp x s and s x p,

respectively.
If the inverse of A is partitioned in the same manner,
5 5
Al=|_ 9 (2.7.23)
R S

then P, Q, R, S, which have the same sizes as P, Q, R, S, respectively, can be
found by either the formulas

P=FP-Q-S!.R)!
é:_(p_Q.s—l.R)*l.(Q.s—l)

. (2.7.24)
R=—(S'R).-(P-Q-S'.R)™!
S=S!'4+(S'-R)-(P-Q-S'R)!'.(Q-5Y
or else by the equivalent formulas
P=P'4+P'.Q (S-R-P' Q7! (R-P
Q=—(P1-Q-(S-R-P".Q"
(2.7.25)

R=—(S—R-P'.Q "' (R-P
S=(S-R-P1.Q)!

The parentheses in equations (2.7.24) and (2.7.25) highlight repeated factors that
you may wish to compute only once. (Of course, by associativity, you can instead
do the matrix multiplications in any order you like)) The choice between using
equation (2.7.24) and (2.7.25) depends on whether you want P or S to have the
simpler formula; or on whether the repeated expression (S—R-P - Q) ! iseasier
to calculate than the expression (P — Q - S™! - R)~!; or on the relative sizes of P
and S; or on whether P! or S™! is aready known.

Another sometimes useful formula is for the determinant of the partitioned
matrix,

det A = detPdet(S—R-P™'.Q) =detSdet(P-—Q-S™'-R) (27.26)

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

2.7 Sparse Linear Systems 71

Indexed Storage of Sparse Matrices

We have already seen (§2.4) that tri- or band-diagonal matrices can be stored in acompact
format that allocates storage only to elements which can be nonzero, plus perhaps afew wasted
locations to make the bookkeeping easier. What about more general sparse matrices? When a
sparse matrix of logical size N x N contains only afew times N nonzero elements (atypical
case), it is surely inefficient — and often physically impossible — to allocate storage for all
N? elements. Even if one did allocate such storage, it would be inefficient or prohibitive in
machine time to loop over al of it in search of nonzero elements.

Obviously some kind of indexed storage scheme isrequired, one that stores only nonzero
matrix elements, along with sufficient auxiliary information to determine where an element
logically belongs and how the various elements can be looped over in common matrix
operations. Unfortunately, there is no one standard scheme in general use. Knuth[7] describes
one method. The Yale Sparse Matrix Package[6] and ITPACK [8] describe several other
methods. For most applications, we favor the storage scheme used by PCGPACK [9], which
isamost the same as that described by Bentley [10], and also similar to one of the Yale Sparse
Matrix Package methods. The advantage of this scheme, which can be called row-indexed
sparse storage mode, isthat it requires storage of only about two times the number of nonzero
matrix elements. (Other methods can require as much as three or five times.) For simplicity,
we will treat only the case of square matrices, which occurs most frequently in practice.

To represent a matrix A of logical size N x N, the row-indexed scheme sets up two
one-dimensional arrays, call them sa and ija. Thefirst of these stores matrix element values
in single or double precision asdesired; the second storesinteger values. The storagerules are:

e Thefirst V locations of sa store A’sdiagonal matrix elements, in order. (Notethat
diagonal elements are stored even if they are zero; thisis at most a dlight storage
inefficiency, since diagonal elements are nonzero in most realistic applications.)

e Each of thefirst V locations of ija stores the index of the array sa that contains
the first off-diagonal element of the corresponding row of the matrix. (If there are
no off-diagonal elements for that row, it is one greater than the index in sa of the
most recently stored element of a previous row.)

e Location 1 of ijaisawaysequal to N + 2. (It can beread to determine N.)

e Location N + 1 of ija isone greater than theindex in sa of the last off-diagonal
element of the last row. (It can be read to determine the number of nonzero
elements in the matrix, or the logical length of the arrays sa and ija.) Location
N + 1 of sa isnot used and can be set arbitrarily.

e Entriesin sa at locations > N + 2 contain A’s off-diagonal values, ordered by
rows and, within each row, ordered by columns.

e Entriesinijaatlocations> N 42 containthe columnnumber of the corresponding
element in sa.

While these rules seem arbitrary at first sight, they result in a rather elegant storage

scheme. As an example, consider the matrix

3.0 1. 0. 0.
0. 4. 0. 0. 0.
0. 7. 5 9. 0. (2.7.27)
0. 0. 0. 0. 2
0. 0. 0. 6. 5.

In row-indexed compact storage, matrix (2.7.27) is represented by the two arrays of length
11, as follows

index k 1 2 3 4 5 6 7 8 9 (10 | 11

ija(k) 7 8 8 (10 | 11 | 12 3 2 4 5 4

sa(k) 3. | 4. | 5. 0. 5. x [1. | 7.]9 2. 6.

(2.7.28)

Here z is an arbitrary value. Notice that, according to the storage rules, the value of N
(namely 5) is ija(1)-2, and the length of each array is ija(ija(1)-1)-1, namely 11.

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

72 Chapter 2. Solution of Linear Algebraic Equations

The diagonal element in row i is sa(i), and the off-diagonal elements in that row are in
sa(k) where k loops from ija(i) to ija(i+1)-1, if the upper limit is greater or equal to
the lower one (as in FORTRAN do loops).

Hereisaroutine, sprsin, that convertsamatrix from full storage mode into row-indexed
sparse storage mode, throwing away any elements that are less than a specified threshold.
Of course, the principal use of sparse storage mode is for matrices whose full storage mode
won't fit into your machine at all; then you have to generate them directly into sparse format.
Nevertheless sprsin is useful as a precise algorithmic definition of the storage scheme, for
subscale testing of large problems, and for the case where execution time, rather than storage,
furnishes the impetus to sparse storage.

SUBROUTINE sprsin(a,n,np,thresh,nmax,sa,ija)

INTEGER n,nmax,np,ija(nmax)

REAL thresh,a(np,np),sa(nmax)
Converts a square matrix a(1:n,1:n) with physical dimension np into row-indexed sparse
storage mode. Only elements of a with magnitude >thresh are retained. Output is in
two linear arrays with physical dimension nmax (an input parameter): sa(l:) contains
array values, indexed by ija(1:). The logical sizes of sa and ija on output are both
ija(ija(1)-1)-1 (see text).

INTEGER 1i,j,k

dou j=1,n Store diagonal elements.

sa(j)=a(j,j)
enddo 11
ija(1)=n+2 Index to 1st row off-diagonal element, if any.
k=n+1
do13 i=1,n Loop over rows.

do12 j=1,n Loop over columns.

if (abs(a(i,j)) .ge.thresh)then
if(i.ne.j)then Store off-diagonal elements and their columns.
k=k+1

if (k.gt.nmax)pause ’nmax too small in sprsin’
sa(k)=a(i,j)
ija(k)=j
endif
endif
enddo 12
ija(i+1)=k+1 As each row is completed, store index to next.
enddo 13
return
END

The single most important use of a matrix in row-indexed sparse storage mode is to
multiply a vector to itsright. In fact, the storage mode is optimized for just this purpose.
The following routine is thus very simple.

SUBROUTINE sprsax(sa,ija,x,b,n)

INTEGER n,ija(¥)

REAL b(n),sa(*),x(n)
Multiply a matrix in row-index sparse storage arrays sa and ija by a vector x(1:n), giving
a vector b(1:n).

INTEGER i,k

if (ija(l) .ne.n+2) pause ’mismatched vector and matrix in sprsax’

do12 i=1,n

b(i)=sa(i)*x(i) Start with diagonal term.
dou k=ija(i),ija(i+1)-1 Loop over off-diagonal terms.
b(i)=b(i)+sa(k)*x(ija(k))
enddo 11
enddo 12
return

END

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

2.7 Sparse Linear Systems 73

Itisalso simpleto multiply thetranspose of amatrix by avector toitsright. (Wewill use
this operation later in this section.) Note that the transpose matrix is not actually constructed.

SUBROUTINE sprstx(sa,ija,x,b,n)
INTEGER n,ija(¥)
REAL b(n),sa(*),x(n)
Multiply the transpose of a matrix in row-index sparse storage arrays sa and ija by a
vector x(1:n), giving a vector b(1:n).
INTEGER i,j,k
if (ija(l) .ne.n+2) pause ’mismatched vector and matrix in sprstx’
doun i=1,n Start with diagonal terms.
b(i)=sa(i)*x(i)
enddo 11
do13 i=1,n Loop over off-diagonal terms.
do 12 k=ija(i),ija(i+1)-1
j=ija(k)
b(§)=b(j)+sa(k)*x(i)
enddo 12
enddo 13
return
END

(Double precision versions of sprsax and sprstx, named dsprsax and dsprstx, are used
by the routine atimes later in this section. You can easily make the conversion, or else get
the converted routines from the Numerical Recipes diskettes.)

In fact, because the choice of row-indexed storage treats rows and columns quite
differently, it is quite an involved operation to construct the transpose of a matrix, given the
matrix itself in row-indexed sparse storage mode. When the operation cannot be avoided, it
is done as follows: An index of all off-diagonal elements by their columns is constructed
(see §8.4). The elements are then written to the output array in column order. As each
element is written, its row is determined and stored. Finally, the elements in each column
are sorted by row.

SUBROUTINE sprstp(sa,ija,sb,ijb)

INTEGER ija(x),ijb(*)

REAL sa(*),sb(x)

USES i i ndexx Version of indexx with all REAL variables changed to INTEGER.
Construct the transpose of a sparse square matrix, from row-index sparse storage arrays sa
and ija into arrays sb and ijb.

INTEGER j,jl,jm,jp,ju,k,m,n2,noff,inc,iv

REAL v

n2=ija(1) Linear size of matrix plus 2.

do 11 j=1,n2-2 Diagonal elements.
sb(j)=sa(j)

enddo 11

call iindexx(ija(n2-1)-ija(1),ija(n2),ijb(n2))
Index all off-diagonal elements by their columns.

jp=0
do 13 k=ija(1),ija(n2-1)-1 Loop over output off-diagonal elements.
m=ijb(k)+n2-1 Use index table to store by (former) columns.
sb(k)=sa(m)
do 12 j=jp+1,ija(m) Fill in the index to any omitted rows.
1jb(j)=k
enddo 12
jp=ija(m) Use bisection to find which row element m is in and put that
jl=1 into ijb(k).
ju=n2-1

if (ju-jl.gt.1) then
jm=(ju+jl)/2
if(ija(jm) .gt.m)then
ju=jm
else

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

74 Chapter 2. Solution of Linear Algebraic Equations

jl=jm
endif
goto 5
endif
1jb(k)=j1
enddo 13
do 14 j=jp+1,n2-1
ijb(j)=ija(n2-1)
enddo 14 Make a final pass to sort each row by Shell sort algorithm.
do 16 j=1,n2-2
jl=ijb(j+1)-ijb(j)
noff=ijb(j)-1
inc=1
inc=3*inc+1
if(inc.le.jl)goto 1
continue
inc=inc/3
do 15 k=noff+inc+1,noff+jl
iv=ijb(k)
v=sb (k)
m=k
if (ijb(m-inc) .gt.iv)then
ijb(m)=ijb(m-inc)
sb(m)=sb(m-inc)

m=m-inc
if (m-noff.le.inc)goto 4
goto 3
endif
ijb(m)=iv
sb(m)=v
enddo 15
if (inc.gt.1)goto 2
enddo 16
return
END

The above routine embeds internally a sorting algorithm from §8.1, but calls the external
routine iindexx to construct the initial column index. Thisroutineisidentical to indexx, as
listed in §8.4, except that the latter’s two REAL declarations should be changed to integer.
(The Numerical Recipes diskettes include both indexx and iindexx.) In fact, you can
often use indexx without making these changes, since many computers have the property
that numerical values will sort correctly independently of whether they are interpreted as
floating or integer values.

As final examples of the manipulation of sparse matrices, we give two routines for the
multiplication of two sparse matrices. Theseare useful for techniquesto bedescribedin §13.10.

In general, the product of two sparse matrices is not itself sparse. One therefore wants
to limit the size of the product matrix in one of two ways: either compute only those elements
of the product that are specified in advance by a known pattern of sparsity, or else compute all
nonzero elements, but store only those whose magnitude exceeds some threshold value. The
former technique, when it can be used, is quite efficient. The pattern of sparsity is specified
by furnishing an index array in row-index sparse storage format (e.g., ija). The program
then constructs a corresponding value array (e.g., sa). The latter technique runs the danger of
excessive compute times and unknown output sizes, so it must be used cautiously.

With row-index storage, it is much more natural to multiply a matrix (on the left) by
the transpose of a matrix (on the right), so that one is crunching rows on rows, rather than
rows on columns, Our routines therefore calculate A - BT, rather than A - B. This means
that you have to run your right-hand matrix through the transpose routine sprstp before
sending it to the matrix multiply routine.

Thetwoimplementing routines, sprspm for “ pattern multiply” and sprstm for “threshold
multiply” are quite similar in structure. Both are complicated by the logic of the various

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

2.7 Sparse Linear Systems 75

combinations of diagonal or off-diagonal elementsfor thetwo input streams and output stream.

SUBROUTINE sprspm(sa,ija,sb,ijb,sc,ijc)
INTEGER ija(*),ijb(*),ijc(*)
REAL sa(*),sb(*),sc(*)

Matrix multiply A - BT where A and B are two sparse matrices in row-index storage mode,
and B7 is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the
matrix B. This routine computes only those components of the matrix product that are pre-
specified by the input index array ijc, which is not modified. On output, the arrays sc and
ijc give the product matrix in row-index storage mode. For sparse matrix multiplication,
this routine will often be preceded by a call to sprstp, so as to construct the transpose
of a known matrix into sb, ijb.

INTEGER i,ijma,ijmb,j,m,ma,mb,mbb,mn

REAL sum
if (ija(1).ne.ijb(1).or.ija(1).ne.ijc(1))
pause ’sprspm sizes do not match’
do1 i=1,ijc(1)-2 Loop over rows.
j=i Set up so that first pass through loop does the diag-
m=i onal component.
mn=ijc(i)
sum=sa(i)*sb(i)
continue Main loop over each component to be output.
mb=13b(j)
do 1 ma=ija(i),ija(i+1)-1 Loop through elements in A’s row. Convoluted logic,
ijma=ija(ma) following, accounts for the various combinations
if(ijma.eq.j)then of diagonal and off-diagonal elements.
sum=sum+sa(ma) *sb(j)
else

if (mb.1t.ijb(j+1))then
ijmb=1ijb(mb)
if (ijmb.eq.i)then
sum=sum+sa (i) *sb (mb)
mb=mb+1
goto 2
else if(ijmb.lt.ijma)then
mb=mb+1
goto 2
else if(ijmb.eq.ijma)then
sum=sum+sa (ma) *sb (mb)
mb=mb+1
goto 2
endif
endif
endif
enddo 11
do 12 mbb=mb,ijb(j+1)-1 Exhaust the remainder of B's row.
if (ijb(mbb) .eq.i)then
sum=sum+sa (i) *sb (mbb)
endif
enddo 12
sc(m)=sum
sum=0.e0 Reset indices for next pass through loop.
if (mn.ge.ijc(i+1))goto 3
m=mn
mn=mn+1
j=ijc(m)
goto 1
continue

enddo 13
return

END

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

76

Chapter 2. Solution of Linear Algebraic Equations

SUBROUTINE sprstm(sa,ija,sb,ijb,thresh,nmax,sc,ijc)
INTEGER nmax,ija(*),ijb(*),ijc(nmax)
REAL thresh,sa(*),sb(*),sc(nmax)

Matrix multiply A - BT where A and B are two sparse matrices in row-index storage mode,
and B is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the
matrix B. This routine computes all components of the matrix product (which may be non-
sparse!), but stores only those whose magnitude exceeds thresh. On output, the arrays
sc and ijc (whose maximum size is input as nmax) give the product matrix in row-index
storage mode. For sparse matrix multiplication, this routine will often be preceded by a call
to sprstp, so as to construct the transpose of a known matrix into sb, ijb.

INTEGER i,ijma,ijmb,j,k,ma,mb,mbb

REAL sum

if (ija(1).ne.ijb(1)) pause ’sprstm sizes do not match’

k=ija(1)

ije(1)=k

dou i=1,ija(1)-2 Loop over rows of A,
do 13 j=1,ijb(1)-2 and rows of B.

if(i.eq.j)then
sum=sa(i)*sb(j)

else
sum=0.e0
endif
mb=1jb(j)
do 11 ma=ija(i),ija(i+1)-1 Loop through elements in A’s row. Convoluted logic,
ijma=ija(ma) following, accounts for the various combinations
if(ijma.eq.j)then of diagonal and off-diagonal elements.
sum=sum+sa(ma) *sb(j)
else
if (mb.1t.1ijb(j+1))then
ijmb=i3jb (mb)
if (ijmb.eq.i)then
sum=sum+sa (i) *sb (mb)
mb=mb+1
goto 2
else if(ijmb.lt.ijma)then
mb=mb+1
goto 2
else if(ijmb.eq.ijma)then
sum=sum+sa (ma) *sb (mb)
mb=mb+1
goto 2
endif
endif
endif
enddo 11
do 12 mbb=mb,ijb(j+1)-1 Exhaust the remainder of B’s row.

if (ijb(mbb) .eq.i)then
sum=sum+sa (i) *sb (mbb)
endif
enddo 12
if(i.eq.j)then Where to put the answer...
sc(i)=sum
else if(abs(sum).gt.thresh)then
if (k.gt.nmax)pause ’sprstm: nmax to small’

sc(k)=sum
ijc(k)=j
k=k+1
endif
enddo 13
ije(i+1)=k
enddo 14
return

END

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

2.7 Sparse Linear Systems 7

Conjugate Gradient Method for a Sparse System

So-called conjugate gradient methods provide a quite general means for solving the
N x N linear system

A-x=b (2.7.29)

The attractiveness of these methods for large sparse systems is that they reference A only
through its multiplication of a vector, or the multiplication of its transpose and a vector. As
we have seen, these operations can be very efficient for a properly stored sparse matrix. You,
the “owner” of the matrix A, can be asked to provide subroutines that perform these sparse
matrix multiplications as efficiently as possible. We, the“ grand strategists’ supply the general
routine, 1inbcg below, that solvesthe set of linear equations, (2.7.29), using your subroutines.

Thesimplest, “ordinary” conjugate gradient algorithm [11-13] solves (2.7.29) only in the
casethat A issymmetric and positive definite. It isbased on theideaof minimizing thefunction

f(x):%x-A-x—b-x (2.7.30)
This function is minimized when its gradient
Vf=A-x—b (2.7.31)

is zero, which is equivalent to (2.7.29). The minimization is carried out by generating a
succession of search directions p,, and improved minimizers x;.. At each stage a quantity o
is found that minimizes f(X, + axp,), and Xx41 iS set equal to the new point Xi + axp,,.
The p,, and x;, are built up in such away that X1 isalso the minimizer of f over the whole
vector space of directions already taken, {p,,p,,...,P,}. After N iterations you arrive at
the minimizer over the entire vector space, i.e., the solution to (2.7.29).

Later, in §10.6, we will generalize this “ordinary” conjugate gradient algorithm to the
minimization of arbitrary nonlinear functions. Here, where our interest isin solving linear,
but not necessarily positive definite or symmetric, equations, a different generalization is
important, the biconjugate gradient method. This method does not, in general, have a simple
connection with function minimization. It constructs four sequences of vectors, ry, Tx, Py,
Pr. k= 1,2,.... Yousupply theinitial vectorsr; and Ty, and set p; = ri1, p; = 1. Then
you carry out the following recurrence:

T Tg
ﬁk'A'pk
rk+1:rk—akA~pk

(€75

M1 =Tk — arA” Py (2.7.32)
 Tkg1 Tkt o
B = ———

Tk IE
Prt1 = Met1 + BePy

Pri1 = Tht1 + Biby
This sequence of vectors satisfies the biorthogonality condition
T;- ry=r;-: Tj =0, j <1 (2733)

and the biconjugacy condition

P, A-p,=p;-AT-p; =0, j<i (2.7.34)
There is also a mutua orthogonality,
Fi-p;=r:-p; =0, j<i (2.7.35)

The proof of these properties proceeds by straightforward induction[14]. As long as the
recurrence does not break down earlier because one of the denominators is zero, it must

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

78 Chapter 2. Solution of Linear Algebraic Equations

terminate after m < N stepswith r,,41 = Tm41 = 0. Thisisbasically because after at most
N steps you run out of new orthogonal directions to the vectors you've aready constructed.

To use the algorithm to solve the system (2.7.29), make an initial guess x; for the
solution. Choose r; to be the residual

r = b—A- X1 (2736)
and choose T1 = r;. Then form the sequence of improved estimates
Xk+1 = Xk + Py, (2737)

while carrying out the recurrence (2.7.32). Equation (2.7.37) guarantees that ry4; from the
recurrence is in fact the residual b — A - X1 corresponding to Xg+1. Since ry,+1 = 0,
Xm+1 IS the solution to equation (2.7.29).

While there is no guarantee that this whole procedure will not break down or become
unstable for general A, in practice thisis rare. More importantly, the exact termination in at
most NV iterations occurs only with exact arithmetic. Roundoff error means that you should
regard the process as a genuinely iterative procedure, to be halted when some appropriate
error criterion is met.

The ordinary conjugate gradient algorithm is the special case of the biconjugate gradient
agorithm when A is symmetric, and we chooseT; =r;. Thent, = r, and p, = p, for all
k; you can omit computing them and halve the work of the algorithm. This conjugate gradient
version has the interpretation of minimizing equation (2.7.30). If A is positive definite as
well as symmetric, the algorithm cannot break down (in theory!). The routine 1inbcg below
indeed reduces to the ordinary conjugate gradient method if you input a symmetric A, but
it does al the redundant computations.

Another variant of the general algorithm corresponds to a symmetric but non-positive
definite A, with the choice i = A -ry instead of T1 = rq1. Inthiscaser, = A - ry and
P = A - p, for al k. Thisalgorithm is thus equivalent to the ordinary conjugate gradient
algorithm, but with al dot productsa- b replaced by a- A - b. Itiscalled the minimumresidual
algorithm, because it corresponds to successive minimizations of the function

d(x) = % ror= % |A-x—b? (2.7.38)
wherethe successiveiteratesx; minimize & over the same set of search directionsp,, generated
in the conjugate gradient method. This algorithm has been generaized in various ways for
unsymmetric matrices. The generalized minimum residual method (GMRES; see[9,15)) is
probably the most robust of these methods.

Note that equation (2.7.38) gives

Vo(x) =A" - (A-x—b) (2.7.39)

For any nonsingular matrix A, AT - A is symmetric and positive definite. You might therefore
be tempted to solve equation (2.7.29) by applying the ordinary conjugate gradient algorithm
to the problem

(AT .A).x=AT.b (2.7.40)

Don't! The condition number of the matrix AT - A is the square of the condition number of
A (see §2.6 for definition of condition number). A large condition number both increases the
number of iterations required, and limits the accuracy to which a solution can be obtained. It
isamost always better to apply the biconjugate gradient method to the original matrix A.

So far we have said nothing about the rate of convergence of these methods. The
ordinary conjugate gradient method works well for matrices that are well-conditioned, i.e.,
“close” to the identity matrix. This suggests applying these methods to the preconditioned
form of equation (2.7.29),

(A A)-x=A".b (2.7.41)

Theideaisthat you nlight aready be able to solve your linear system easily for someA close
to A, in which case A" - A ~ 1, allowing the algorithm to converge in fewer steps. The

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

2.7 Sparse Linear Systems 79

matrix A is caled a preconditioner [11], and the overall scheme given here is known as the
preconditioned biconjugate gradient method or PBCG.

For efficient implementation, the PBCG algorithm introduces an additional set of vectors
7, and z;, defined by

A-zp=r, ad A -Z, =T, (2.7.42)
and modifies the definitions of o, Bk, p,, and P, in equation (2.7.32):
o = Tk - Zk
i ﬁk A pk
By = Trt1 - Zrt1
k T - 21 (2.7.43)

Prt1 = Zi+1 + BrPy
Pri1 = Ze+1 + BiPy

For 1inbcg, below, we will ask you to supply routines that solve the auxiliary linear systems

(2.7.42). If you have no idea what to use for the preconditioner A, then use the diagonal part
of A, or even the identity matrix, in which case the burden of convergence will be entirely
on the biconjugate gradient method itself.

Theroutinelinbcg, below, isbased onaprogram originally written by Anne Greenbaum.
(See[13] for a different, less sophisticated, implementation.) There are a few wrinkles you
should know about.

What constitutes “good” convergence is rather application dependent. The routine
linbcg therefore provides for four possibilities, selected by setting the flag itol on input.
If itol=1, iteration stops when the quantity |A - x — b|/|b| is less than the input quantity
tol. If itol=2, the required criterion is

AT (A-x—b)|/JA"" - b| < tol (2.7.44)

If ito1=3, the routine uses its own estimate of the error in X, and requires its magnitude,
divided by the magnitude of X, to belessthan tol. The setting itol=4 isthe sameasitol=3,
except that the largest (in absolute value) component of the error and largest component of x
are used instead of the vector magnitude (that is, the L., norm instead of the L, norm). You
may need to experiment to find which of these convergence criteriais best for your problem.

On output, err is the tolerance actualy achieved. If the returned count iter does
not indicate that the maximum number of allowed iterations itmax was exceeded, then err
should be less than tol. If you want to do further iterations, leave al returned quantities as
they are and call the routine again. The routine loses its memory of the spanned conjugate
gradient subspace between calls, however, so you should not force it to return more often
than about every N iterations.

Finally, note that 1inbcg is furnished in double precision, since it will be usually be
used when N is quite large.

SUBROUTINE linbcg(n,b,x,itol,tol,itmax,iter,err)

INTEGER iter,itmax,itol,n,NMAX

DOUBLE PRECISION err,tol,b(*),x(*),EPS Double precision is a good idea in this rou-
PARAMETER (NMAX=1024,EPS=1.d-14) tine.

C USES atines, asol ve, snrm

Solves A - x = b for x(1:n), given b(1:n), by the iterative biconjugate gradient method.
On input x(1:n) should be set to an initial guess of the solution (or all zeros); itol is
1,2,3, or 4, specifying which convergence test is applied (see text); itmax is the maximum
number of allowed iterations; and tol is the desired convergence tolerance. On output,
x(1:n) is reset to the improved solution, iter is the number of iterations actually taken,
and err is the estimated error. The matrix A is referenced only through the user-supplied
routines atimes, which computes the product of either A or its transpose on a vector; and

~ ~T ~
asolve, which solves A-x =b or A~ - x = b for some preconditioner matrix A (possibly
the trivial diagonal part of A).

INTEGER j

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

80 Chapter 2. Solution of Linear Algebraic Equations

DOUBLE PRECISION ak,akden,bk,bkden,bknum,bnrm,dxnrm,
xnrm,zminrm,znrm, p (NMAX) , pp (NMAX) ,r (NMAX) ,rr (NMAX) ,
z (NMAX) ,zz (NMAX) , snrm

iter=0 Calculate initial residual.

call atimes(n,x,r,0) Input to atimes is x(1:n), output isr(1:n);

do1 j=1,n the final 0 indicates that the matrix (not
r(j)=b(3)-r(j) its transpose) is to be used.
rr(j)=r(j)

enddo 11

call atimes(n,r,rr,0) Uncomment this line to get the “minimum

if(itol.eq.1) then residual” variant of the algorithm.
bnrm=snrm(n,b,itol)
call asolve(n,r,z,0) Input to asolve is r(1:n), output is z(1:n);

else if (itol.eq.2) then the final 0 indicates that the matrix A
call asolve(n,b,z,0) (not its transpose) is to be used.

bnrm=snrm(n,z,itol)
call asolve(n,r,z,0)
else if (itol.eq.3.or.itol.eq.4) then
call asolve(n,b,z,0)
bnrm=snrm(n,z,itol)
call asolve(n,r,z,0)
znrm=snrm(n,z,itol)
else
pause ’illegal itol in linbcg’
endif

100 if (iter.le.itmax) then Main loop.

iter=iter+1
call asolve(n,rr,zz,1) Final 1 indicates use of transpose matrix AT.
bknum=0.d0
do12 j=1,n Calculate coefficient bk and direction vectors
bknum=bknum+z (j) *rr (j) p and pp.
enddo 12
if(iter.eq.1) then
do13 j=1,n
p()=z(3)
pp(j)=zz(j)
enddo 13
else
bk=bknum/bkden
dous j=1,n
p(§)=bk*p(j)+z(j)
pp (j)=bk*pp (j)+zz(j)
enddo 14
endif
bkden=bknum Calculate coefficient ak, new iterate x, and
call atimes(n,p,z,0) new residuals r and rr.
akden=0.d0
do1s j=1,n
akden=akden+z (j)*pp(j)
enddo 15
ak=bknum/akden
call atimes(n,pp,zz,1)
dos j=1,n
x(§)=x(j)+ak*p(j)
r(j)=r(j)-ak*z(j)
rr (j)=rr(j)-ak*zz(j)
enddo 16 _
call asolve(n,r,z,0) Solve A-z =r and check stopping criterion.
if(itol.eq.1)then
err=snrm(n,r,itol) /bnrm
else if(itol.eq.2)then
err=snrm(n,z,itol)/bnrm
else if(itol.eq.3.or.itol.eq.4)then
zmlnrm=znrm

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

2.7 Sparse Linear Systems 8l

znrm=snrm(n,z,itol)

if (abs(zminrm-znrm) .gt .EPS*znrm) then
dxnrm=abs (ak) *snrm(n,p,itol)
err=znrm/abs (zmlnrm-znrm) *dxnrm

else
err=znrm/bnrm Error may not be accurate, so loop again.
goto 100

endif

xnrm=snrm(n,x,itol)
if (err.le.0.5d0*xnrm) then
err=err/xnrm

else
err=znrm/bnrm Error may not be accurate, so loop again.
goto 100
endif
endif

write (*,*) ’ iter=’,iter,’ err=’,err
if (err.gt.tol) goto 100
endif
return
END

The routine 1inbcg uses this short utility for computing vector norms:

FUNCTION snrm(n,sx,itol)
INTEGER n,itol,i,isamax
DOUBLE PRECISION sx(n),snrm
Compute one of two norms for a vector sx(1:n), as signaled by itol. Used by linbcg.
if (itol.le.3)then
snrm=0.
dou i=1,n Vector magnitude norm.
snrm=snrm+sx (i) **2
enddo 11
snrm=sqrt (snrm)
else
isamax=1
do12 i=1,n Largest component norm.
if (abs(sx(i)) .gt.abs(sx(isamax))) isamax=i
enddo 12
snrm=abs (sx (isamax))
endif
return
END

So that the specifications for the routines atimes and asolve are clear, we list here
simple versions that assume a matrix A stored somewhere in row-index sparse format.

SUBROUTINE atimes(n,x,r,itrnsp)
INTEGER n,itrnsp,ija,NMAX
DOUBLE PRECISION x(n),r(n),sa
PARAMETER (NMAX=1000)
COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.
USES dsprsax, dsprst x DOUBLE PRECISION versions of sprsax and sprstx.
if (itrnsp.eq.0) then
call dsprsax(sa,ija,x,r,n)
else
call dsprstx(sa,ija,x,r,n)
endif
return
END

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

82 Chapter 2. Solution of Linear Algebraic Equations

SUBROUTINE asolve(n,b,x,itrnsp)

INTEGER n,itrnsp,ija,NMAX,i

DOUBLE PRECISION x(n),b(n),sa

PARAMETER (NMAX=1000)

COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.
don i=1,n

x(1)=b(i)/sa(i) The matrix A is the diagonal part of A, stored in
enddo 11 the first n elements of sa. Since the transpose
return matrix has the same diagonal, the flag itrnsp is
END not used.

CITED REFERENCES AND FURTHER READING:
Tewarson, R.P. 1973, Sparse Matrices (New York: Academic Press). [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Artin Numerical Analysis (London: Academic Press),
Chapter 1.3 (by J.K. Reid). [2]

George, A., and Liu, JW.H. 1981, Computer Solution of Large Sparse Positive Definite Systems
(Englewood Cliffs, NJ: Prentice-Hall). [3]

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.).
(4]
IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [5]

Eisenstat, S.C., Gursky, M.C., Schultz, M.H., and Sherman, A.H. 1977, Yale Sparse Matrix Pack-
age, Technical Reports 112 and 114 (Yale University Department of Computer Science). [6]

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.2.6. [7]

Kincaid, D.R., Respess, J.R., Young, D.M., and Grimes, R.G. 1982, ACM Transactions on Math-
ematical Software, vol. 8, pp. 302-322. [8]

PCGPAK User’s Guide (New Haven: Scientific Computing Associates, Inc.). [9]
Bentley, J. 1986, Programming Pearls (Reading, MA: Addison-Wesley), §9. [10]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapters 4 and 10, particularly §§10.2-10.3. [11]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 8. [12]

Baker, L. 1991, More C Tools for Scientists and Engineers (New York: McGraw-Hill). [13]

Fletcher, R. 1976, in Numerical Analysis Dundee 1975, Lecture Notes in Mathematics, vol. 506,
A. Dold and B Eckmann, eds. (Berlin: Springer-Verlag), pp. 73-89. [14]

Saad, Y., and Schulz, M. 1986, SIAM Journal on Scientific and Statistical Computing, vol. 7,
pp. 856-869. [15]

Bunch, J.R., and Rose, D.J. (eds.) 1976, Sparse Matrix Computations (New York: Academic
Press).

Duff, I.S., and Stewart, G.W. (eds.) 1979, Sparse Matrix Proceedings 1978 (Philadelphia:
S.LAM.).

2.8 Vandermonde Matrices and Toeplitz
Matrices

In §2.4 the case of a tridiagonal matrix was treated specially, because that
particular type of linear system admits a solution in only of order N operations,
rather than of order V3 for the general linear problem. When such particular types

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

2.8 Vandermonde Matrices and Toeplitz Matrices 83

exist, it is important to know about them. Your computational savings, should you
ever happen to be working on a problem that involves the right kind of particular
type, can be enormous.

This section treats two special types of matrices that can be solved in of order
N? operations, not as good as tridiagonal, but a lot better than the general case.
(Other than the operations count, these two types having nothing in common.)
Matrices of the first type, termed Vandermonde matrices, occur in some problems
having to do with the fitting of polynomials, the reconstruction of distributions from
their moments, and also other contexts. In this book, for example, a Vandermonde
problem crops up in §3.5. Matrices of the second type, termed Toeplitz matrices,
tend to occur in problems involving deconvolution and signal processing. In this
book, a Toeplitz problem is encountered in §13.7.

These are not the only specia types of matrices worth knowing about. The
Hilbert matrices, whose components are of the forma,; = 1/(i +j — 1), i,j =
1,..., N can be inverted by an exact integer algorithm, and are very difficult to
invert in any other way, since they are notoriously ill-conditioned (see [1] for details).
The Sherman-Morrison and Woodbury formulas, discussed in §2.7, can sometimes
be used to convert new specia forms into old ones. Reference [2] gives some other
special forms. We have not found these additional forms to arise as frequently as
the two that we now discuss.

Vandermonde Matrices

A Vandermonde matrix of size N x N is completely determined by N arbitrary
numbers x1,z2,..., 2y, in terms of which its N 2 components are the integer powers
xfl, 1,7 = 1,..., N. Evidently there are two possible such forms, depending on whether

we view the i's as rows, j's as columns, or vice versa. In the former case, we get a linear
system of equations that looks like this,

2 N-1
1 =z 2z - z3 c1 Y1
2 N-1
Lo 23 - 2 e = | v (2.8.1)
: : 1 N1 : :
1 znv 2xy - Ty CN YN

Performing the matrix multiplication, you will see that this equation solves for the unknown
coefficients ¢; which fit a polynomial to the N pairs of abscissas and ordinates (x;,y;).
Precisely this problem will arise in §3.5, and the routine given there will solve (2.8.1) by the
method that we are about to describe.

The alternative identification of rows and columns leads to the set of equations

1 1 e 1 w1 q1
m% x'% cee Ié\f w2 q2
1 3 0 N || w3 | =43 (2.8.2)
N-1 _ N-1 N-1
T Ty e Ty wWN an

Write this out and you will see that it relates to the problem of moments: Given the values
of N points x;, find the unknown weights w;, assigned so as to match the given values
gq; of the first N moments. (For more on this problem, consult [3].) The routine given in
this section solves (2.8.2).

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

84 Chapter 2. Solution of Linear Algebraic Equations

The method of solution of both (2.8.1) and (2.8.2) is closely related to Lagrange's
polynomial interpolation formula, which we will not formally meet until §3.1 below. Notwith-
standing, the following derivation should be comprehensible:

Let P;(x) be the polynomial of degree N — 1 defined by

N N
T — Tn _
Piw) =] xj_—anE Ajpz® (283)
n=1 k=1
(n#3)

Here the meaning of the last equality is to define the components of the matrix A;; as the
coefficients that arise when the product is multiplied out and like terms collected.

The polynomial P;(z) is a function of x generally. But you will notice that it is
specifically designed so that it takes on a value of zero at all x; with ¢ # j, and has a value
of unity & = = z;. In other words,

N
Py(w:) = 615 = Agrry ! (2.8.4)
k=1

But (2.8.4) saysthat A, isexactly theinverse of the matrix of components z°~*, which
appears in (2.8.2), with the subscript as the column index. Therefore the solution of (2.8.2)
is just that matrix inverse times the right-hand side,

N
w; =Y Ak (2.8.5)
k=1

Asfor the transpose problem (2.8.1), we can use the fact that the inverse of the transpose
is the transpose of the inverse, so

N
Cc; = Z Akjyk (286)
k=1

The routine in §3.5 implements this.

It remains to find a good way of multiplying out the monomial termsin (2.8.3), in order
to get the components of A;x. Thisisessentially a bookkeeping problem, and we will let you
read the routine itself to see how it can be solved. Onetrick isto define a master P(x) by

N
P(x)=[[(@—=zn) (2.8.7)

work out its coefficients, and then obtain the numerators and denominators of the specific B;'s
viasynthetic division by theonesupernumerary term. (See§5.3for moreon syntheticdivision.)
Since each such division is only a process of order IV, the total procedure is of order N2,

You should be warned that Vandermonde systems are notoriously ill-conditioned, by
their very nature. (As an aside anticipating §5.8, the reason is the same as that which makes
Chebyshev fitting so impressively accurate: there exist high-order polynomials that are very
good uniform fits to zero. Hence roundoff error can introduce rather substantial coefficients
of the leading terms of these polynomials.) Itisagood idea aways to compute Vandermonde
problems in double precision.

The routine for (2.8.2) which follows is due to G.B. Rybicki.

SUBROUTINE vander(x,w,q,n)
INTEGER n,NMAX
DOUBLE PRECISION q(n),w(n),x(n)
PARAMETER (NMAX=100)
Solves the Vandermonde linear system Zf\r:1 2P w; = g (k=1,...,N). Input consists

of the vectors x(1:n) and q(1:n); the vectonz' w(1:n) is output.

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

2.8 Vandermonde Matrices and Toeplitz Matrices 85

Parameters: NMAX is the maximum expected value of n.
INTEGER 1i,j,k
DOUBLE PRECISION b,s,t,xx,c(NMAX)

if(n.eq.1)then

w(1)=q(1)
else
dou i=1,n Initialize array.
c(i)=0.d0
enddo 11
c(n)=-x(1) Coefficients of the master polynomial are found by recur-
do13 i=2,n sion.
xx=-x(1)

do12 j=n+1-i,n-1
c(§r=c(j)+xx*xc(j+1)
enddo 12
c(m)=c(n)+xx
enddo 13
do1s i=1,n
xx=x (i)
t=1.d0
b=1.40
s=q(n)
do 14 k=n,2,-1
b=c (k) +xx*b
s=s+q(k-1)*b
t=xx*t+b
enddo 14
w(i)=s/t
enddo 15
endif
return
END

Toeplitz Matrices

Each subfactor in turn

is synthetically divided,

matrix-multiplied by the right-hand side,

and supplied with a denominator.

An N x N Toeplitz matrix is specified by giving 2N — 1 numbers R, k = —N +
1,...,—1,0,1,..., N — 1. Those numbers are then emplaced as matrix elements constant
along the (upper-left to lower-right) diagonals of the matrix:

Ry R R, R,(N,Q) Rf(N71)
Ry Ro R, R_(n-3 R_(n-_2
R Ry Ro R_(n—49y R_(n-3) (2.88)
Ry-2 Rny-3 Ry-4 Ro R
Ry-1 Rn-2 Rn-3 Ry Ro
The linear Toeplitz problem can thus be written as
N
> Rijzj=yi (i=1,...,N) (2.8.9)
j=1
where the z;’s, j = 1,..., N, are the unknowns to be solved for.

The Toeplitz matrix is symmetric if R, = R_j for al k. Levinson [4] developed an
algorithm for fast solution of the symmetric Toeplitz problem, by a bordering method, that is,
a recursive procedure that solves the M -dimensional Toeplitz problem

M
S R =

=1

(2.8.10)

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

86 Chapter 2. Solution of Linear Algebraic Equations

inturnfor M = 1,2,... until M = N, the desired result, isfinally reached. The vector z\""
isthe result at the Mth stage, and becomes the desired answer only when N is reached.
Levinson's method is well documented in standard texts (e.g., [5]). The useful fact that
the method generalizes to the nonsymmetric case seems to be less well known. At some risk
of excessive detail, we therefore give a derivation here, due to G.B. Rybicki.
In following arecursion from step M to step M + 1 wefind that our devel oping solution

z™) changes in this way:

M
SRiaM™M =y i=1,...M (2.8.11)
j=1
becomes
M
Z Riﬁ‘w;MH) + RF(MHWE\%SU = Ui i=1,...,M+1 (28.12)
j=1

By eliminating y; we find

M (M) (M+1)
i M - = 2813
ZRFJ' NS =Ri_(m+1) 1=1,....,.M (28.13)
j=1 Tary1
orbylettingi - M+1—diandj — M +1—j,
M
M
SR GY =R, (2.8.14)
j=1
where
on ey _ (M)
M) _ Trm41—j M+1—j
G8M = T (2.8.15)
M+1
To put this another way,
M+1 M M+1 M .
5&1+1jj = xSVIJr)lfj - 37§w+1)G§) j=1...,.M (2.8.16)

Thus, if we can use recursion to find the order M quantities z*” and G*) and the single
order M + 1 quantity z','}}", then al of the other 2" *" will follow. Fortunately, the
quantity z{;"}" follows from equation (2.8.12) with i = M + 1,

M
> Rarersae™™ + Roafi Y = yara (2817)
j=1

(M+1)

For the unknown order M + 1 quantities x;

quantities in G since

we can substitute the previous order

2M) _ (M)
(M) e B |

Gy = D (2.8.18)
M+1

The result of this operation is

M M
(M+1) _ ijl RI\/I+17]‘LI)§) _ YM 1

M+1 M M
Zj:l R1W+1*J'G§w+)17j —Ro
The only remaining problem is to develop a recursion relation for G. Before we do

that, however, we should point out that there are actually two distinct sets of solutions to the
original linear problem for a nonsymmetric matrix, namely right-hand solutions (which we

(2.8.19)

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

2.8 Vandermonde Matrices and Toeplitz Matrices 87

have been discussing) and left-hand solutions z;. The formalism for the left-hand solutions
differs only in that we deal with the equations

M
SR ™M=y, i=1,...M (2.8.20)

j=1

Then, the same sequence of operations on this set leads to

M
S Ri;HM =R (2.8.21)
j=1
where
LM (M)
HM = 2 i H)M“’J (2.8.22)
21

(compare with 2.8.14 — 2.8.15). The reason for mentioning the left-hand solutions now is
that, by equation (2.8.21), the H; satisfy exactly the same equation as the x; except for
the substitution y; — R; on the right-hand side. Therefore we can quickly deduce from
equation (2.8.19) that

M M
MY ijl RMH*J'H;‘ |- R

M+1 T M (M)
Zj:1 RI‘/I+1*1GAI+1—j — Ro

By the same token, G satisfies the same equation as z, except for the substitution y; — R—_;.
This gives

(2.8.23)

M M
G(I\/I+1) _ Zj:l ijMfng‘) - Ry

M+1 = M (M)
Zj:l ijfwle]\/I«rlfj —Ro

(2.8.24)

The same“morphism” also turnsequation (2.8.16), and its partner for z, into thefinal equations

(M+1) _ M) M+1 M)
Gj - G; - G§w+1)H1(v1+17j

(2.8.25)
M M M M
H](‘ = H](‘) — H1(W+J[1)G5\£f+)l—j
Now, starting with the initial values
eV =ym/Re GM=R.,/Ry¢ HY =Ri/Ro (2.8.26)

we can recurse away. At each stage M we use equations (2.8.23) and (2.8.24) to find

HH G Y andthen equation (2.8.25) tofind theother componentsof HM+1) | M+,

From there the vectors z(**% and/or z(*+1) are easily calculated.
The program below does this. It incorporates the second equation in (2.8.25) in the form

M1 M MA41) ~(M
H1(v1+13j = H](\/I+)1—j - H](M+1)G§) (2.8.27)

so that the computation can be done “in place”

Notice that the above algorithm failsif Ry = 0. In fact, because the bordering method
does not alow pivoting, the algorithm will fail if any of the diagona principal minors of the
original Toeplitz matrix vanish. (Compare with discussion of the tridiagonal algorithm in
§2.4.) If the algorithm fails, your matrix is not necessarily singular — you might just have
to solve your problem by a slower and more general algorithm such as LU decomposition
with pivoting.

The routine that implements equations (2.8.23)—(2.8.27) is also due to Rybicki. Note
that the routine’s r (n+j) is equal to R; above, so that subscripts on the r array vary from
1to 2N — 1.

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

88 Chapter 2. Solution of Linear Algebraic Equations

SUBROUTINE toeplz(r,x,y,n)
INTEGER n,NMAX
REAL r(2*n-1),x(n),y(n)
PARAMETER (NMAX=100)
Solves the Toeplitz system Zfrzl R(nyi—jzj = yi (i =1,...,N). The Toeplitz matrix
need not be symmetric. y and r are input arrays of length n and 2*n-1, respectively. x
is the output array, of length n.
Parameter: NMAX is the maximum anticipated value of n.
INTEGER j,k,m,m1,m2
REAL pp,ptl,pt2,q9q,qtl,qt2,sd,sgd,sgn,shn,sxn,
g (NMAX) ,h (NMAX)
if(r(n).eq.0.) goto 99
x(1)=y(1)/r(n) Initialize for the recursion.
if(n.eq.1)return
g()=r(n-1)/r(n)
h(1)=r(n+1)/r(n)

do 15 m=1,n Main loop over the recursion.
mi=m+1
sxn=-y(m1) Compute numerator and denominator for z,
sd=-r(n)
don j=1,m

sxn=sxn+r (n+m1-j)*x(j)
sd=sd+r (n+m1-j)*g(m-j+1)
enddo 11
if(sd.eq.0.)goto 99
x(m1)=sxn/sd whence x.
do1 j=1,m
x(§)=x(j)-x(m1) *g (m-j+1)
enddo 12
if (ml.eq.n)return
sgn=-r (n-m1) Compute numerator and denominator for G and H,
shn=-r (n+m1)
sgd=-r(n)
do13 j=1,m
sgn=sgn+r (n+j-m1)*g(j)
shn=shn+r (n+m1-j)*h(j)
sgd=sgd+r (n+j-m1) *h(m-j+1)
enddo 13
if(sd.eq.0..or.sgd.eq.0.)goto 99
g(m1)=sgn/sgd whence G and H.
h(m1)=shn/sd
k=m
m2=(m+1) /2
pp=g(m1)
qa=h(m1)
do 14 j=1,m2
pti=g(j)
pt2=g(k)
qt1=h(j)
qt2=h(k)
g(j)=pt1-pp*qt2
g(k)=pt2-pp*qt1
h(j)=qti-qqg*pt2
h(k)=qt2-qq*pt1
k=k-1
enddo 14
enddo 15 Back for another recurrence.
pause ’never get here in toeplz’
pause ’singular principal minor in toeplz’
END

If you arein the business of solving very large Toeplitz systems, you should find out about
so-called “new, fast” algorithms, which require only on the order of N (log N)? operations,

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

2.9 Cholesky Decomposition 89

compared to N2 for Levinson’s method. These methods are too complicated to include here.
Papers by Bunch [6] and de Hoog [7] will give entry to the literature.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 5 [also treats some other special forms].

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), §19. [1]

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley). [2]

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), pp. 394ff. [3]

Levinson, N., Appendix B of N. Wiener, 1949, Extrapolation, Interpolation and Smoothing of
Stationary Time Series (New York: Wiley). [4]

Robinson, E.A., and Treitel, S. 1980, Geophysical Signal Analysis (Englewood Cliffs, NJ: Prentice-
Hall), pp. 163ff. [5]

Bunch, J.R. 1985, SIAM Journal on Scientific and Statistical Computing, vol. 6, pp. 349-364. [6]
de Hoog, F. 1987, Linear Algebra and Its Applications, vol. 88/89, pp. 123-138. [7]

2.9 Cholesky Decomposition

If a square matrix A happens to be symmetric and positive definite, then it has a
special, more efficient, triangular decomposition. Symmetric means that a;; = aj; for
i,7 = 1,..., N, while positive definite means that

v-A.-v>0 foral vectorsv (29.1)

(In Chapter 11 we will see that positive definite has the equivalent interpretation that A has
all positive eigenvalues.) While symmetric, positive definite matrices are rather special, they
occur quite frequently in some applications, so their special factorization, called Cholesky
decomposition, isgood to know about. When you can useit, Cholesky decomposition is about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factors L and U, Cholesky
decomposition constructs a lower triangular matrix L whose transpose LT can itself serve as
the upper triangular part. In other words we replace equation (2.3.1) by

L-LT=A (2.9.2)

This factorization is sometimes referred to as “taking the sguare root” of the matrix A. The
components of LT are of course related to those of L by

L =Ly (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12)«(2.3.13),

i—1 1/2
Li; = (a -3 Lfk> (2.9.4)
k=1

and

sz' =

i—1
Ll.. (aij —ZLiijk> j=t1+1i+2,....N (295)
1 kj:l

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

90 Chapter 2. Solution of Linear Algebraic Equations

If you apply equations (2.9.4) and (2.9.5) in the order 1,2,..., N, you will see
that the L's that occur on the right-hand side are already determined by the time they are
needed. Also, only components; with j > ¢ are referenced. (Sinc& is symmetric,
these have complete information.) It is convenient, then, to have the faatwerwrite the
subdiagonal (lower triangular but not including the diagonal) pa# gbreserving the input
upper triangular values &. Only one extra vector of lengtN is needed to store the diagonal
part of L. The operations count i&%/6 executions of the inner loop (consisting of one
multiply and one subtract), with alsy square roots. As already mentioned, this is about a
factor 2 better thallU decomposition oA (where its symmetry would be ignored).

A straightforward implementation is

SUBROUTINE choldc(a,n,np,p)
INTEGER n,np
REAL a(np,np),p(n)
Given a positive-definite symmetric matrix a(1:n,1:n), with physical dimension np, this
routine constructs its Cholesky decomposition, A = L-L7. On input, only the upper triangle
of a need be given; it is not modified. The Cholesky factor L is returned in the lower triangle
of a, except for its diagonal elements which are returned in p(1:n).
INTEGER i,j,k
REAL sum
do13 i=1,n
do12 j=i,n
sum=a(i,j)
do 11 k=i-1,1,-1
sum=sum-a(i,k)*a(j,k)

enddo 11
if(i.eq.j)then
if (sum.le.0.)pause ’choldc failed’ a, with rounding errors, is not
p(i)=sqrt (sum) positive definite.
else
a(j,i)=sum/p(i)
endif
enddo 12
enddo 13
return
END

AIBSISND]08IIP O] [fewa puss Jo ‘(AJuo eouBWY YUON) £2¢/-2/8-008-T |2 10 W09 Ju Mmmm//:dny

You might at this point wonder about pivoting. The pleasant answer is that Cholesky
decomposition is extremely stable numerically, without any pivoting at all. Failuseaqfdc
simply indicates that the matri (or, with roundoff error, another very nearby matrix) is
not positive definite. In facttholdc is an efficient way to tesvhether a symmetric matrix
is positive definite. (In this application, you will want to replace gamse with some less
drastic signaling method.)

Once your matrix is decomposed, the triangular factor can be used to solve a line
equation by backsubstitution. The straightforward implementation of this is

SUBROUTINE cholsl(a,n,np,p,b,x)

INTEGER n,np

REAL a(np,np),b(n),p(n),x(n)
Solves the set of n linear equations A - X = b, where a is a positive-definite symmetric
matrix with physical dimension np. a and p are input as the output of the routine choldc.
Only the lower triangle of a is accessed. b(1:n) is input as the right-hand side vector. The
solution vector is returned in x(1:n). a, n, np, and p are not modified and can be left
in place for successive calls with different right-hand sides b. b is not modified unless you
identify b and x in the calling sequence, which is allowed.

INTEGER i,k

REAL sum

do12 i=1,n Solve L -y = b, storing y in X.
sum=b (i)
do 11 k=i-1,1,-1

sum=sum-a (i, k)*x (k)

‘(eauBWyY YuoN ap!smo%m'eﬁpqueo@
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.10 QR Decomposition 91

enddo 11
x(i)=sum/p(i)

enddo 12

do 14 i=n,1,-1 Solve LT . x =y.
sum=x (i)
do 13 k=i+1,n

sum=sum-a(k, i) *x (k)

enddo 13
x(i)=sum/p(i)

enddo 14

return

END

Atypical use ofcholdc andcholsl is in the inversion of covariance matrices describing
the fit of data to a model; see, e.§15.6. In this, and many other applications, one often needs
L. The lower triangle of this matrix can be efficiently found from the outputtafldc:

do 13 i=1,n
a(i,i)=1./p(i)
do12 j=i+l,n
sum=0.
do 11 k=i, j-1
sum=sum-a(j,k)*a(k,i)
enddo 11
a(j,i)=sum/p(j)
enddo 12
enddo 13

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter /1.

Gill, PE., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), §4.9.2.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§5.3.5.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.2.

2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-cafed
decomposition,

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

A=Q-R (2.10.3
HereR is upper triangular, whil&® is orthogonal, that is,
or.Q0=1 (2.10.2

where Q7T is the transpose matrix d. Although the decomposition exists for a general
rectangular matrix, we shall restrict our treatment to the case when all the matrices are square,
with dimensionsN x N.

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

92 Chapter 2. Solution of Linear Algebraic Equations

Like the other matrix factorizations we have met (LU, SVD, Cholesky), QR decompo-
sition can be used to solve systems of linear equations. To solve

A-x=b (2.10.3)
first form QT - b and then solve
R-x=0Q7.b (2.10.4)

by backsubstitution. Since QR decomposition involves about twice as many operations as
LU decomposition, it is not used for typical systems of linear equations. However, we will
meet specia cases where QR is the method of choice.

The standard algorithm for the QR decomposition involves successive Householder
transformations (to be discussed later in §11.2). We write a Householder matrix in the form
1-u®u/cwherec = %u - u. An appropriate Householder matrix applied to agiven matrix
can zero al elements in a column of the matrix situated below a chosen element. Thus we
arrange for the first Householder matrix Q, to zero all elementsin the first column of A below
the first element. Similarly Q. zeroes all elements in the second column below the second
element, and soon up to Q,,_,. Thus

R=Q, ;- -Q-A (2.10.5)
Since the Householder matrices are orthogonal,
Q=(Qu Q) "' =0Q Q. (2.10.6)

In most applications we don’'t need to form Q explicitly; we instead store it in the factored
form (2.10.6). Pivoting is not usually necessary unless the matrix A is very close to singular.
A genera Q R agorithm for rectangular matricesincluding pivoting isgiven in[1]. For square
matrices, an implementation is the following:

SUBROUTINE qrdcmp(a,n,np,c,d,sing)

INTEGER n,np

REAL a(np,np),c(n),d(n)

LOGICAL sing
Constructs the QR decomposition of a(1:n,1:n), with physical dimension np. The upper
triangular matrix R is returned in the upper triangle of a, except for the diagonal elements
of R which are returned in d(1:n). The orthogonal matrix Q is represented as a product of
n — 1 Householder matrices Q; ...Q,,_1, where Q; = 1—u; ®U;/c;. The ith component
of uj is zero for i = 1,...,j — 1 while the nonzero components are returned in a(i,j) for
i =j,...,n. sing returns as true if singularity is encountered during the decomposition,
but the decomposition is still completed in this case.

INTEGER i,j,k

REAL scale,sigma,sum,tau

sing=.false.

do 17 k=1,n-1
scale=0.
do 1 i=k,n

scale=max(scale,abs(a(i,k)))

enddo 11

if(scale.eq.0.)then Singular case.
sing=.true.
c(k)=0.
d(k)=0.

else Form Qj and Q, - A.

do 12 i=k,n
a(i,k)=a(i,k)/scale
enddo 12
sum=0.
do 13 i=k,n
sum=sum+a (i ,k)**2
enddo 13
sigma=sign(sqrt(sum),a(k,k))
a(k,k)=a(k,k)+sigma

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.10 QR Decomposition 93

c(k)=sigmaxa(k,k)
d(k)=-scale*sigma
do16 j=k+1,n
sum=0.
do 14 i=k,n
sum=sum+a (i,k)*a(i,j)
enddo 14
tau=sum/c (k)
do 15 i=k,n
a(i,j)=a(i,j)-tau*a(i,k)
enddo 15
enddo 16
endif
enddo 17
d(n)=a(n,n)
if (d(n) .eq.0.)sing=.true.
return
END

The next routine, qrsolv, isused to solve linear systems. In many applications only the
part (2.10.4) of the algorithm is needed, so we separate it off into its own routine rsolv.

SUBROUTINE grsolv(a,n,np,c,d,b)
INTEGER n,np
REAL a(np,np),b(n),c(n),d(n)
USES rsol v
Solves the set of n linear equations A-X = b, where a is a matrix with physical dimension np.
a, ¢, and d are input as the output of the routine grdcmp and are not modified. b(1:n)
is input as the right-hand side vector, and is overwritten with the solution vector on output.
INTEGER 1i,j
REAL sum,tau
do13 j=1,n-1 Form QT . b.
sum=0.
doun i=j,n
sum=sum+a (i, j)*b(i)
enddo 11
tau=sum/c(j)
do1 i=j,n
b(i)=b(i)-tau*a(i,j)
enddo 12
enddo 13
call rsolv(a,n,np,d,b) Solve R-x = QT . b.
return
END

SUBROUTINE rsolv(a,n,np,d,b)
INTEGER n,np
REAL a(np,np),b(n),d(n)
Solves the set of n linear equations R - x = b, where R is an upper triangular matrix stored
in a and d. a and d are input as the output of the routine grdcmp and are not modified.
b(1:n) is input as the right-hand side vector, and is overwritten with the solution vector
on output.
INTEGER i, j
REAL sum
b(n)=b(n)/d(n)
do 12 i=n-1,1,-1
sum=0.
doun j=i+1,n
sum=sum+a (i, j)*b(j)
enddo 11
b(i)=(b(i)-sum)/d(i)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

94 Chapter 2. Solution of Linear Algebraic Equations

enddo 12
return
END

See [2] for details on how to use @ R decomposition for constructing orthogonal bases,
and for solving least-squares problems. (We prefer to use SVD, §2.6, for these purposes,
because of its greater diagnostic capability in pathological cases.)

Updating a QR decomposition

Some numerical algorithms involve solving a succession of linear systems each of which
differs only slightly from its predecessor. Instead of doing O(N?) operations each time
to solve the equations from scratch, one can often update a matrix factorization in O(N?)
operations and use the new factorization to solve the next set of linear equations. The LU
decomposition is complicated to update because of pivoting. However, QR turns out to be
quite smple for a very common kind of update,

A—A+sat (2.10.7)
(compare equation 2.7.1). In practice it is more convenient to work with the equivalent form
A=Q-R — A =Q -R=Q-(R+uv) (2.10.8)

One can go back and forth between equations (2.10.7) and (2.10.8) using the fact that Q
is orthogonal, giving

t=v andeither s=Q-u or u=Q" s (2.10.9)

The algorithm [2] has two phases. In the first we apply NV — 1 Jacobi rotations (§11.1) to
reduce R + u ® v to upper Hessenberg form. Another N — 1 Jacobi rotations transform this
upper Hessenberg matrix to the new upper triangular matrix R’. The matrix Q’ is simply the
product of Q with the 2(IV — 1) Jacobi rotations. In applications we usually want Q”, and
the algorithm can easily be rearranged to work with this matrix instead of with Q.

SUBROUTINE qrupdt(r,qt,n,np,u,v)

INTEGER n,np

REAL r(np,np),qt(np,np),ulnp),v(np)

USES rotate
Given the QR decomposition of some n x n matrix, calculates the QR decomposition of
the matrix Q - (R 4+ u® V). The matrices r and qt have physical dimension np. Note that
QT is input and returned in qt.

INTEGER 1i,j,k

do 11 k=n,1,-1 Find largest k such that u(k) # 0.
if (u(k) .ne.0.)goto 1

enddo 11

k=1

do12 i=k-1,1,-1 Transform R + u ® v to upper Hes-
call rotate(r,qt,n,np,i,u(i),-u(i+1)) senberg.

if(u(i).eq.0.)then
u(i)=abs(u(i+1))
else if(abs(u(i)).gt.abs(u(i+1)))then
u(i)=abs(u(i))*sqrt (1.+(u(i+1)/u(i))**2)
else
u(i)=abs(u(i+1))*sqrt(1.+(u(i)/u(i+1))**2)
endif
enddo 12
do1s j=1,n
r(1,j)=r(1,j)+u(1)*v(j)
enddo 13
do 14 i=1,k-1 Transform upper Hessenberg matrix
call rotate(r,qt,n,np,i,r(i,i),-r(i+1,1i)) to upper triangular.
enddo 14

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

2.11 Is Matrix Inversion an N3 Process? 95

return
END

SUBROUTINE rotate(r,qt,n,np,i,a,b)
INTEGER n,np,i
REAL a,b,r(np,np),qt(np,np)
Given nxn matrices r and gt of physical dimension np, carry out a Jacobi rotation on rows i
and i+ 1 of each matrix. a and b are the parameters of the rotation: cosf = a/v/ a? + b2,
sinf = b/va? + b2.
INTEGER j
REAL c,fact,s,w,y
if(a.eq.0.)then Avoid unnecessary overflow or underflow.
c=0.
s=sign(1.,b)
else if(abs(a).gt.abs(b))then
fact=b/a
c=sign(1./sqrt(1.+fact**2),a)
s=fact*c
else
fact=a/b
s=sign(1./sqrt(1.+fact**2),b)
c=fact*s
endif
do1 j=i,n Premultiply r by Jacobi rotation.
y=r(i,j)
w=r(i+1,j)
r(i,j)=c*xy-s*w
r(i+l,j)=s*y+c*u
enddo 11
do 12 j=1,n Premultiply qt by Jacobi rotation.
y=qt(i,j)
w=qt (i+1,3)
qt (i, j)=c*y-s*w
qt (i+1, j)=s*y+c*w
enddo 12
return
END

We will make use of QR decomposition, and its updating, in §9.7.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter 1/8. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §§5.2, 5.3, 12.6. [2]

2.11 Is Matrix Inversion an N3 Process?

We close this chapter with alittle entertainment, a bit of algorithmic prestidig-
itation which probes more deeply into the subject of matrix inversion. We start
with a seemingly simple question:

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

96 Chapter 2. Solution of Linear Algebraic Equations

How many individual multiplications does it take to perform the matrix mul-
tiplication of two 2 x 2 matrices,

ai;p a2 bi1 b2 €11 C12
. = 2.11.
<a21 a22 > < ba1 baa) (CQI C22) (])
Eight, right? Here they are written explicitly:

c11 = a1 X byy + a2 X bay
c12 = ai; X bz + a2 X b
(2.11.2
C21 = a21 X b1y + aze X bay
Co2 = ag1 X bia + azz X bao
Do you think that one can write formulas for thats that involve onlyseven

multiplications? (Try it yourself, before reading on.)
Such a set of formulas was, in fact, discovered by StraB3eihe formulas are:

Q1 = (a11 + a22) X (bi1 + b22)
Q2 = (a1 + az) X by

Q3 = a1 x (b2 — ba2)

Q1 = azz X (—b11 + b21) (2.11.3
Qs = (a11 + ai2) X bay

Q6 = (—a11 +az21) X (b11 + b12)

Q7 = (a12 — a22) X (ba1 + b22)

in terms of which

e =Q1+Q4— Qs+ Q7
C21 = Q2+ Q4
ci2 =03+ Qs
Co2 =Q1+ Q3 — Q2+ s

(2.11.4

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

What's the use of this? There is one fewer multiplication than in equation
(2.11.2), butmany more additions and subtractions. It is not clear that anything
has been gained. But notice that in (2.11.3) éfeeandb’'s are never commuted.
Therefore (2.11.3)and (2.11.4) are valid whendiseandb’s are themselves matrices.
The problem of multiplying two very large matrices (of ord®¥r= 2™ for some
integerm) can now be broken down recursively by partitioning the matrices into
guarters, sixteenths, etc. And note the key point: The savings is not just a factor
“7/8”; it is that factor ateach hierarchical level of the recursion. In total it reduces
the process of matrix multiplication to ord&f'°: 7 instead of N 3.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.11 Is Matrix Inversion an N 3 Process? 97

What about all the extra additions in (2.11.3)—(2.11.4)? Don't they outweigh
the advantage of the fewer multiplications? For lafggeit turns out that there are
six times as many additions as multiplications implied by (2.11.3)—(2.11.4). But,
if N is very large, this constant factor is no match for the change iretpenent
from N3 to N'°827,

With this “fast” matrix multiplication, Strassen also obtained a surprising result
for matrix inversioril]. Suppose that the matrices

<CL11 a12> and (Cll 012> (2.11.5
a1 Qa9 C21 (€22
are inverses of each other. Then tfeecan be obtained from theés by the following
operations (compare equations 2.7.22 and 2.7.25):

R; = Inverséaq)
R2 = ag1 X Rl
R3 = Rl X a12

R4 = ag1 X R3

Rs = Ry — age

Rg = InverséRs) (2.11.9
c12 = R3 X Rg

co1 = Rg X Ry

Ry = R3 X co1

c11 = Ry — Ry

c22 = —Rg

In (2.11.6) the “inverse” operator occurs just twice. It is to be interpreted as the
reciprocal if thea's andc’s are scalars, but as matrix inversion if th'e andc’s are
themselves submatrices. Imagine doing the inversion of a very large matrix, of orde
N = 2™, recursively by partitions in half. At each step, halving the oteibles
the number of inverse operations. But this means that there aré\bdlyisions in
alll So divisions don't dominate in the recursive use of (2.11.6). Equation (2.11.6)
is dominated, in fact, by its 6 multiplications. Since these can be done by'zf ”
algorithm, so can the matrix inversion!

This is fun, but let’s look at practicalities: If you estimate how lafgéas to be
before the difference between exponent 3 and expdognt7 = 2.807 is substantial
enough to outweigh the bookkeeping overhead, arising from the complicated nature
of the recursive Strassen algorithm, you will find tHdf decomposition is in no
immediate danger of becoming obsolete.

If, on the other hand, you like this kind of fun, then try these: (1) Can you
multiply the complex numbei(g +ib) and(c+id) in only threereal multiplications?
[Answer: see55.4.] (2) Can you evaluate a general fourth-degree polynomial in

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

“(eouBWY YLON apisino) B0°aBpLquIB @AISSISN0108.IP 0} [leWd puds 1o ‘(AJuo eouawy YUON) £27/-2/8-008-T [[22 10 Wod"1u mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

98 Chapter 2. Solution of Linear Algebraic Equations

x for many different values of with only three multiplications per evaluation?
[Answer: see§5.3.]

CITED REFERENCES AND FURTHER READING:

Strassen, V. 1969, Numerische Mathematik, vol. 13, pp. 354—-356. [1]

Kronsjo, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley).

Winograd, S. 1971, Linear Algebra and Its Applications, vol. 4, pp. 381-388.

Pan, V. Ya. 1980, SIAM Journal on Computing, vol. 9, pp. 321-342.

Pan, V. 1984, How to Multiply Matrices Faster, Lecture Notes in Computer Science, vol. 179
(New York: Springer-Verlag)

Pan, V. 1984, SIAM Review, vol. 26, pp. 393-415. [More recent results that show that an exponent
of 2.496 can be achieved — theoretically!]

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

