
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Chapter 17. Two Point Boundary
Value Problems

17.0 Introduction

When ordinary differential equations are required to satisfy boundary conditions
at more than one value of the independent variable, the resulting problem is called a
two point boundary value problem. As the terminology indicates, the most common
case by far is where boundary conditions are supposed to be satisfied at two points —
usually the starting and ending values of the integration. However, the phrase “two
point boundary value problem” is also used loosely to include more complicated
cases, e.g., where some conditions are specified at endpoints, others at interior
(usually singular) points.

The crucial distinction between initial value problems (Chapter 16) and two
point boundary value problems (this chapter) is that in the former case we are able
to start an acceptable solution at its beginning (initial values) and just march it along
by numerical integration to its end (final values); while in the present case, the
boundary conditions at the starting point do not determine a unique solution to start
with — and a “random” choice among the solutions that satisfy these (incomplete)
starting boundary conditions is almost certain not to satisfy the boundary conditions
at the other specified point(s).

It should not surprise you that iteration is in general required to meld these
spatially scattered boundary conditions into a single global solution of the differential
equations. For this reason, two point boundary value problems require considerably
more effort to solve than do initial value problems. You have to integrate your dif-
ferential equations over the interval of interest, or perform an analogous “relaxation”
procedure (see below), at least several, and sometimes very many, times. Only in
the special case of linear differential equations can you say in advance just how
many such iterations will be required.

The “standard” two point boundary value problem has the following form: We
desire the solution to a set of N coupled first-order ordinary differential equations,
satisfying n1 boundary conditions at the starting point x1, and a remaining set of
n2 = N − n1 boundary conditions at the final point x2. (Recall that all differential
equations of order higher than first can be written as coupled sets of first-order
equations, cf. §16.0.)

The differential equations are

dyi(x)
dx

= gi(x, y1, y2, . . . , yN) i = 1, 2, . . . , N (17.0.1)

745

746 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

required
boundary
value

desired
boundary
value

1

3

2

y

x

Figure 17.0.1. Shooting method (schematic). Trial integrations that satisfy the boundary condition at one
endpoint are “launched.” The discrepancies from the desired boundary condition at the other endpoint are
used to adjust the starting conditions, until boundary conditions at both endpoints are ultimately satisfied.

At x1, the solution is supposed to satisfy

B1j(x1, y1, y2, . . . , yN) = 0 j = 1, . . . , n1 (17.0.2)

while at x2, it is supposed to satisfy

B2k(x2, y1, y2, . . . , yN) = 0 k = 1, . . . , n2 (17.0.3)

There are two distinct classes of numerical methods for solving two point
boundary value problems. In the shooting method (§17.1) we choose values for all
of the dependent variables at one boundary. These values must be consistent with
any boundary conditions for that boundary, but otherwise are arranged to depend
on arbitrary free parameters whose values we initially “randomly” guess. We then
integrate the ODEs by initial value methods, arriving at the other boundary (and/or any
interior points with boundary conditions specified). In general, we find discrepancies
from the desired boundary values there. Now we have a multidimensional root-
finding problem, as was treated in §9.6 and §9.7: Find the adjustment of the free
parameters at the starting point that zeros the discrepancies at the other boundary
point(s). If we liken integrating the differential equations to following the trajectory
of a shot from gun to target, then picking the initial conditions corresponds to aiming
(see Figure 17.0.1). The shooting method provides a systematic approach to taking
a set of “ranging” shots that allow us to improve our “aim” systematically.

As another variant of the shooting method (§17.2), we can guess unknown free
parameters at both ends of the domain, integrate the equations to a common midpoint,
and seek to adjust the guessed parameters so that the solution joins “smoothly” at
the fitting point. In all shooting methods, trial solutions satisfy the differential
equations “exactly” (or as exactly as we care to make our numerical integration),
but the trial solutions come to satisfy the required boundary conditions only after
the iterations are finished.

Relaxation methods use a different approach. The differential equations are
replaced by finite-difference equations on a mesh of points that covers the range of

17.0 Introduction 747

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

required
boundary
value

required
boundary
value

initial guess
1st iteration

2nd iteration

true solution

Figure 17.0.2. Relaxation method (schematic). An initial solution is guessed that approximately satisfies
the differential equation and boundary conditions. An iterative process adjusts the function to bring it
into close agreement with the true solution.

the integration. A trial solution consists of values for the dependent variables at each
mesh point, not satisfying the desired finite-difference equations, nor necessarily even
satisfying the required boundary conditions. The iteration, now called relaxation,
consists of adjusting all the values on the mesh so as to bring them into successively
closer agreement with the finite-difference equations and, simultaneously, with the
boundary conditions (see Figure 17.0.2). For example, if the problem involves three
coupled equations and a mesh of one hundred points, we must guess and improve
three hundred variables representing the solution.

With all this adjustment, you may be surprised that relaxation is ever an efficient
method, but (for the right problems) it really is! Relaxation works better than
shooting when the boundary conditions are especially delicate or subtle, or where
they involve complicated algebraic relations that cannot easily be solved in closed
form. Relaxation works best when the solution is smooth and not highly oscillatory.
Such oscillations would require many grid points for accurate representation. The
number and position of required points may not be known a priori. Shooting methods
are usually preferred in such cases, because their variable stepsize integrations adjust
naturally to a solution’s peculiarities.

Relaxation methods are often preferred when the ODEs have extraneous
solutions which, while not appearing in the final solution satisfying all boundary
conditions, may wreak havoc on the initial value integrations required by shooting.
The typical case is that of trying to maintain a dying exponential in the presence
of growing exponentials.

Good initial guesses are the secret of efficient relaxation methods. Often one
has to solve a problem many times, each time with a slightly different value of some
parameter. In that case, the previous solution is usually a good initial guess when
the parameter is changed, and relaxation will work well.

Until you have enough experience to make your own judgment between the two
methods, you might wish to follow the advice of your authors, who are notorious
computer gunslingers: We always shoot first, and only then relax.

748 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Problems Reducible to the Standard Boundary Problem

There are two important problems that can be reduced to the standard boundary
value problem described by equations (17.0.1) – (17.0.3). The first is the eigenvalue
problem for differential equations. Here the right-hand side of the system of
differential equations depends on a parameter λ,

dyi(x)
dx

= gi(x, y1, . . . , yN , λ) (17.0.4)

and one has to satisfy N + 1 boundary conditions instead of just N . The problem
is overdetermined and in general there is no solution for arbitrary values of λ. For
certain special values of λ, the eigenvalues, equation (17.0.4) does have a solution.

We reduce this problem to the standard case by introducing a new dependent
variable

yN+1 ≡ λ (17.0.5)

and another differential equation

dyN+1

dx
= 0 (17.0.6)

An example of this trick is given in §17.4.
The other case that can be put in the standard form is a free boundary problem.

Here only one boundary abscissa x1 is specified, while the other boundary x2 is to
be determined so that the system (17.0.1) has a solution satisfying a total of N + 1
boundary conditions. Here we again add an extra constant dependent variable:

yN+1 ≡ x2 − x1 (17.0.7)

dyN+1

dx
= 0 (17.0.8)

We also define a new independent variable t by setting

x − x1 ≡ t yN+1, 0 ≤ t ≤ 1 (17.0.9)

The system of N + 1 differential equations for dy i/dt is now in the standard form,
with t varying between the known limits 0 and 1.

CITED REFERENCES AND FURTHER READING:

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

Eggleton, P.P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364.

London, R.A., and Flannery, B.P. 1982, Astrophysical Journal, vol. 258, pp. 260–269.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§7.3–7.4.

17.1 The Shooting Method 749

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

17.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from
x1 to x2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots”
from both sides of the interval and trying to match continuity conditions at some
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphson (§9.7). It seeks to zero n 2 functions
of n2 variables. The functions are obtained by integrating N differential equations
from x1 to x2. Let us see how this works:

At the starting point x1 there are N starting values yi to be specified, but
subject to n1 conditions. Therefore there are n2 = N −n1 freely specifiable starting
values. Let us imagine that these freely specifiable values are the components of a
vector V that lives in a vector space of dimension n2. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a subroutine that
generates a complete set of N starting values y, satisfying the boundary conditions
at x1, from an arbitrary vector value of V in which there are no restrictions on the n 2

component values. In other words, (17.0.2) converts to a prescription

yi(x1) = yi(x1; V1, . . . , Vn2) i = 1, . . . , N (17.1.1)

Below, the subroutine that implements (17.1.1) will be called load.
Notice that the components of V might be exactly the values of certain “free”

components of y, with the other components of y determined by the boundary
conditions. Alternatively, the components of V might parametrize the solutions that
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose algebraic relations among the y i, rather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier to
“solve” the boundary relations for a consistent set of y i’s. It makes no difference
which way you go, as long as your vector space of V’s generates (through 17.1.1)
all allowed starting vectors y.

Given a particular V, a particular y(x1) is thus generated. It can then be turned
into a y(x2) by integrating the ODEs to x2 as an initial value problem (e.g., using
Chapter 16’s odeint). Now, at x2, let us define a discrepancy vector F, also of
dimension n2, whose components measure how far we are from satisfying the n 2

boundary conditions at x2 (17.0.3). Simplest of all is just to use the right-hand
sides of (17.0.3),

Fk = B2k(x2, y) k = 1, . . . , n2 (17.1.2)

As in the case of V, however, you can use any other convenient parametrization,
as long as your space of F’s spans the space of possible discrepancies from the
desired boundary conditions, with all components of F equal to zero if and only if
the boundary conditions at x2 are satisfied. Below, you will be asked to supply a
user-written subroutine score which uses (17.0.3) to convert an N -vector of ending
values y(x2) into an n2-vector of discrepancies F.

750 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Now, as far as Newton-Raphson is concerned, we are nearly in business. We
want to find a vector value ofV that zeros the vector value ofF. We do this
by invoking the globally convergent Newton’s method implemented in the routine
newt of §9.7. Recall that the heart of Newton’s method involves solving the set
of n2 linear equations

J · δV = −F (17.1.3)

and then adding the correction back,

Vnew = Vold + δV (17.1.4)

In (17.1.3), the Jacobian matrixJ has components given by

Jij =
∂Fi

∂Vj
(17.1.5)

It is not feasible to compute these partial derivatives analytically. Rather, each
requires aseparate integration of theN ODEs, followed by the evaluation of

∂Fi

∂Vj
≈ Fi(V1, . . . , Vj + ∆Vj , . . .) − Fi(V1, . . . , Vj , . . .)

∆Vj
(17.1.6)

This is done automatically for you in the routinefdjac that comes withnewt. The
only input tonewt that you have to provide is the routinefuncv that calculatesF
by integrating the ODEs. Here is the appropriate routine:

C SUBROUTINE shoot(n2,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n2,v,f)
INTEGER n2,nvar,kmax,kount,KMAXX,NMAX
REAL f(n2),v(n2),x1,x2,dxsav,xp,yp,EPS
PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX coupled ODEs.
COMMON /caller/ x1,x2,nvar
COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar coupled
ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated
from the n2 input coefficients v(1:n2), using the user-supplied routine load. The routine
integrates the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize
h1, and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to
evaluate the n2 functions f(1:n2) that ought to be zero to satisfy the boundary conditions
at x2. The functions f are returned on output. newt uses a globally convergent Newton’s
method to adjust the values of v until the functions f are zero. The user-supplied subroutine
derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter
16). The common block caller receives its values from the main program so that funcv
can have the syntax required by newt. The common block path is included for compatibility
with odeint.

INTEGER nbad,nok
REAL h1,hmin,y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load(x1,v,y)
call odeint(y,nvar,x1,x2,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(x2,y,f)
return
END

17.2 Shooting to a Fitting Point 751

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

For some problems the initial stepsize∆V might depend sensitively upon the
initial conditions. It is straightforward to alterload to include a suggested stepsize
h1 as another returned argument and feed it tofdjac via a common block.

A complete cycle of the shooting method thus requiresn 2 + 1 integrations of
theN coupled ODEs: one integration to evaluate the current degree of mismatch,
andn2 for the partial derivatives. Each new cycle requires a new round ofn 2 + 1
integrations. This illustrates the enormous extra effort involved in solving two point
boundary value problems compared with initial value problems.

If the differential equations arelinear, then only one complete cycle is required,
since (17.1.3)–(17.1.4) should take us right to the solution. A second round can be
useful, however, in mopping up some (never all) of the roundoff error.

As given here,shoot uses the quality controlled Runge-Kutta method of§16.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just as
well be used.

You, the user, must supplyshoot with: (i) a subroutineload(x1,v,y) which
returns then-vectory(1:n) (satisfying the starting boundary conditions, of course),
given the freely specifiable variables ofv(1:n2) at the initial pointx1; (ii) a
subroutinescore(x2,y,f) which returns the discrepancy vectorf(1:n2) of the
ending boundary conditions, given the vectory(1:n) at the endpointx2; (iii) a
starting vectorv(1:n2); (iv) a subroutinederivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to useshoot.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

17.2 Shooting to a Fitting Point

The shooting method described in§17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initial solution can’t even get fromx 1 to x2 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a square root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such cases it is
feasible to integrate in the directionaway from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usually not feasible to integrateinto
a singular point, if only because one has not usually expended the same analytic

752 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficulties isshooting to a fitting point.
Instead of integrating fromx1 to x2, we integrate first fromx1 to some pointxf that
is between x1 andx2; and second fromx2 (in the opposite direction) toxf .

If (as before) the number of boundary conditions imposed atx 1 is n1, and the
number imposed atx2 is n2, then there aren2 freely specifiable starting values at
x1 andn1 freely specifiable starting values atx2. (If you are confused by this, go
back to§17.1.) We can therefore define ann2-vectorV(1) of starting parameters
at x1, and a prescriptionload1(x1,v1,y) for mappingV(1) into a y that satisfies
the boundary conditions atx1,

yi(x1) = yi(x1; V(1)1, . . . , V(1)n2) i = 1, . . . , N (17.2.1)

Likewise we can define ann1-vector V(2) of starting parameters atx2, and a
prescriptionload2(x2,v2,y) for mappingV(2) into ay that satisfies the boundary
conditions atx2,

yi(x2) = yi(x2; V(2)1, . . . , V(2)n1) i = 1, . . . , N (17.2.2)

We thus have a total ofN freely adjustable parameters in the combination of
V(1) andV(2). TheN conditions that must be satisfied are that there be agreement
in N components ofy at xf between the values obtained integrating from one side
and from the other,

yi(xf ; V(1)) = yi(xf ; V(2)) i = 1, . . . , N (17.2.3)

In some problems, theN matching conditions can be better described (physically,
mathematically, or numerically) by usingN different functionsF i, i = 1 . . .N , each
possibly depending on theN componentsy i. In those cases, (17.2.3) is replaced by

Fi[y(xf ; V(1))] = Fi[y(xf ; V(2))] i = 1, . . . , N (17.2.4)

In the programbelow, the user-suppliedsubroutinescore(xf,y,f) is supposed
to map an inputN -vectory into an outputN -vectorF. In most cases, you can
dummy this subroutine as the identity mapping.

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
as in§17.1. Comparing closely with the routineshoot of the previous section, you
should have no difficulty in understanding the following routineshootf. The main
differences in use are that you have to supply bothload1 andload2. Also, in the
calling program you must supply initial guesses forv1(1:n2) andv2(1:n1). Once
again a sample program illustrating shooting to a fitting point is given in§17.4.

C SUBROUTINE shootf(n,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n,v,f)
INTEGER n,nvar,nn2,kmax,kount,KMAXX,NMAX
REAL f(n),v(n),x1,x2,xf,dxsav,xp,yp,EPS
PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX equations.
COMMON /caller/ x1,x2,xf,nvar,nn2
COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load1,load2,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar cou-
pled ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar

17.3 Relaxation Methods 753

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

ODEs at x1 (x2) are generated from the n2 (n1) coefficients v1 (v2), using the user-
supplied routine load1 (load2). The coefficients v1 and v2 should be stored in a sin-
gle array v(1:n1+n2) in the main program by an EQUIVALENCE statement of the form
(v1(1),v(1)),(v2(1),v(n2+1)) . The input parameter n = n1+n2 = nvar. The rou-
tine integrates the ODEs to xf using the Runge-Kutta method with tolerance EPS, initial
stepsize h1, and minimum stepsize hmin. At xf it calls the user-supplied subroutine score
to evaluate the nvar functions f1 and f2 that ought to match at xf. The differences f are
returned on output. newt uses a globally convergent Newton’s method to adjust the val-
ues of v until the functions f are zero. The user-supplied subroutine derivs(x,y,dydx)
supplies derivative information to the ODE integrator (see Chapter 16). The common block
caller receives its values from the main program so that funcv can have the syntax
required by newt. Set nn2 = n2 in the main program. The common block path is for
compatibility with odeint.

INTEGER i,nbad,nok
REAL h1,hmin,f1(NMAX),f2(NMAX),y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load1(x1,v,y) Path from x1 to xf with best trial values v1.
call odeint(y,nvar,x1,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f1)
call load2(x2,v(nn2+1),y) Path from x2 to xf with best trial values v2.
call odeint(y,nvar,x2,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f2)
do 11 i=1,n

f(i)=f1(i)-f2(i)
enddo 11

return
END

There are boundary value problems where even shooting to a fitting point fails
— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see[1].

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§7.3.5–7.3.6. [1]

17.3 Relaxation Methods

In relaxation methods we replace ODEs by approximatefinite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical example,
we could replace a general first-order differential equation

dy

dx
= g(x, y) (17.3.1)

with an algebraic equation relating function values at two pointsk, k − 1:

yk − yk−1 − (xk − xk−1) g
[
1
2
(xk + xk−1),

1
2
(yk + yk−1)

]
= 0 (17.3.2)

754 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involves N coupled first-order ODEs
represented by FDEs on a mesh of M points, a solution consists of values for N dependent
functions given at each of the M mesh points, or N × M variables in all. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. As the
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size (MN) × (MN). Since MN can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples at most pairs of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs. The
ODE problem is exactly identical to that expressed in equations (17.0.1)–(17.0.3) where we had
N coupled first-order equations that satisfy n1 boundary conditions at x1 and n2 = N − n1

boundary conditions at x2. We first define a mesh or grid by a set of k = 1, 2, ..., M points
at which we supply values for the independent variable xk. In particular, x1 is the initial
boundary, and xM is the final boundary. We use the notation yk to refer to the entire set of
dependent variables y1, y2, . . . , yN at point xk. At an arbitrary point k in the middle of the
mesh, we approximate the set of N first-order ODEs by algebraic relations of the form

0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1, yk, yk−1), k = 2, 3, . . . , M (17.3.3)

The notation signifies that gk can be evaluated using information from both points k, k − 1.
The FDEs labeled by Ek provide N equations coupling 2N variables at points k, k−1. There
are M − 1 points, k = 2, 3, . . . , M , at which difference equations of the form (17.3.3) apply.
Thus the FDEs provide a total of (M −1)N equations for the MN unknowns. The remaining
N equations come from the boundary conditions.

At the first boundary we have

0 = E1 ≡ B(x1, y1) (17.3.4)

while at the second boundary

0 = EM+1 ≡ C(xM , yM) (17.3.5)

The vectors E1 and B have only n1 nonzero components, corresponding to the n1 boundary
conditions at x1. It will turn out to be useful to take these nonzero components to be the
last n1 components. In other words, Ej,1 �= 0 only for j = n2 + 1, n2 + 2, . . . , N . At
the other boundary, only the first n2 components of EM+1 and C are nonzero: Ej,M+1 �= 0
only for j = 1, 2, . . . , n2.

The “solution” of the FDE problem in (17.3.3)–(17.3.5) consists of a set of variables
yj,k, the values of the N variables yj at the M points xk. The algorithm we describe
below requires an initial guess for the yj,k. We then determine increments ∆yj,k such that
yj,k + ∆yj,k is an improved approximation to the solution.

Equations for the increments are developed by expanding the FDEs in first-order Taylor
series with respect to small changes ∆yk. At an interior point, k = 2, 3, . . . , M this gives:

Ek(yk + ∆yk, yk−1 + ∆yk−1) ≈ Ek(yk, yk−1)

+

N∑
n=1

∂Ek

∂yn,k−1
∆yn,k−1 +

N∑
n=1

∂Ek

∂yn,k
∆yn,k

(17.3.6)

For a solution we want the updated value E(y +∆y) to be zero, so the general set of equations
at an interior point can be written in matrix form as

N∑
n=1

Sj,n∆yn,k−1 +

2N∑
n=N+1

Sj,n∆yn−N,k = −Ej,k, j = 1, 2, . . . , N (17.3.7)

17.3 Relaxation Methods 755

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

where

Sj,n =
∂Ej,k

∂yn,k−1
, Sj,n+N =

∂Ej,k

∂yn,k
, n = 1, 2, . . . , N (17.3.8)

The quantity Sj,n is an N × 2N matrix at each point k. Each interior point thus supplies a
block of N equations coupling 2N corrections to the solution variables at the points k, k − 1.

Similarly, the algebraic relations at the boundaries can be expanded in a first-order
Taylor series for increments that improve the solution. Since E1 depends only on y1, we
find at the first boundary:

N∑
n=1

Sj,n∆yn,1 = −Ej,1, j = n2 + 1, n2 + 2, . . . , N (17.3.9)

where

Sj,n =
∂Ej,1

∂yn,1
, n = 1, 2, . . . , N (17.3.10)

At the second boundary,

N∑
n=1

Sj,n∆yn,M = −Ej,M+1, j = 1, 2, . . . , n2 (17.3.11)

where

Sj,n =
∂Ej,M+1

∂yn,M
, n = 1, 2, . . . , N (17.3.12)

We thus have in equations (17.3.7)–(17.3.12) a set of linear equations to be solved for
the corrections ∆y, iterating until the corrections are sufficiently small. The equations have
a special structure, because each Sj,n couples only points k, k − 1. Figure 17.3.1 illustrates
the typical structure of the complete matrix equation for the case of 5 variables and 4 mesh
points, with 3 boundary conditions at the first boundary and 2 at the second. The 3 × 5
block of nonzero entries in the top left-hand corner of the matrix comes from the boundary
condition Sj,n at point k = 1. The next three 5 × 10 blocks are the Sj,n at the interior
points, coupling variables at mesh points (2,1), (3,2), and (4,3). Finally we have the block
corresponding to the second boundary condition.

We can solve equations (17.3.7)–(17.3.12) for the increments ∆y using a form of
Gaussian elimination that exploits the special structure of the matrix to minimize the total
number of operations, and that minimizes storage of matrix coefficients by packing the
elements in a special blocked structure. (You might wish to review Chapter 2, especially
§2.2, if you are unfamiliar with the steps involved in Gaussian elimination.) Recall that
Gaussian elimination consists of manipulating the equations by elementary operations such
as dividing rows of coefficients by a common factor to produce unity in diagonal elements,
and adding appropriate multiples of other rows to produce zeros below the diagonal. Here
we take advantage of the block structure by performing a bit more reduction than in pure
Gaussian elimination, so that the storage of coefficients is minimized. Figure 17.3.2 shows
the form that we wish to achieve by elimination, just prior to the backsubstitution step. Only a
small subset of the reduced MN ×MN matrix elements needs to be stored as the elimination
progresses. Once the matrix elements reach the stage in Figure 17.3.2, the solution follows
quickly by a backsubstitution procedure.

Furthermore, the entire procedure, except the backsubstitution step, operates only on
one block of the matrix at a time. The procedure contains four types of operations: (1)
partial reduction to zero of certain elements of a block using results from a previous step,
(2) elimination of the square structure of the remaining block elements such that the square
section contains unity along the diagonal, and zero in off-diagonal elements, (3) storage of the
remaining nonzero coefficients for use in later steps, and (4) backsubstitution. We illustrate
the steps schematically by figures.

Consider the block of equations describing corrections available from the initial boundary
conditions. We have n1 equations for N unknown corrections. We wish to transform the first

756 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Figure 17.3.1. Matrix structure of a set of linear finite-difference equations (FDEs) with boundary
conditions imposed at both endpoints. Here X represents a coefficient of the FDEs, V represents a
component of the unknown solution vector, and B is a component of the known right-hand side. Empty
spaces represent zeros. The matrix equation is to be solved by a special form of Gaussian elimination.
(See text for details.)

1
1

1

X
X
X
1

X
X
X

1
1

1
1

X
X
X
X
X
1

X
X
X
X
X

1
1

1
1

X
X
X
X
X
1

1
1

1

X
X
X
X
X
1

X
X
X
X
X

1

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

X
X
X
X
X

1

Figure 17.3.2. Target structure of the Gaussian elimination. Once the matrix of Figure 17.3.1 has been
reduced to this form, the solution follows quickly by backsubstitution.

17.3 Relaxation Methods 757

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

block so that its left-hand n1 × n1 square section becomes unity along the diagonal, and zero
in off-diagonal elements. Figure 17.3.3 shows the original and final form of the first block
of the matrix. In the figure we designate matrix elements that are subject to diagonalization
by “D”, and elements that will be altered by “A”; in the final block, elements that are stored
are labeled by “S”. We get from start to finish by selecting in turn n1 “pivot” elements from
among the first n1 columns, normalizing the pivot row so that the value of the “pivot” element
is unity, and adding appropriate multiples of this row to the remaining rows so that they
contain zeros in the pivot column. In its final form, the reduced block expresses values for the
corrections to the first n1 variables at mesh point 1 in terms of values for the remaining n2

unknown corrections at point 1, i.e., we now know what the first n1 elements are in terms of
the remaining n2 elements. We store only the final set of n2 nonzero columns from the initial
block, plus the column for the altered right-hand side of the matrix equation.

We must emphasize here an important detail of the method. To exploit the reduced
storage allowed by operating on blocks, it is essential that the ordering of columns in the s
matrix of derivatives be such that pivot elements can be found among the first n1 rows of
the matrix. This means that the n1 boundary conditions at the first point must contain some
dependence on the first j=1,2,...,n1 dependent variables, y(j,1). If not, then the original
square n1 × n1 subsection of the first block will appear to be singular, and the method will
fail. Alternatively, we would have to allow the search for pivot elements to involve all N
columns of the block, and this would require column swapping and far more bookkeeping.
The code provides a simple method of reordering the variables, i.e., the columns of the s
matrix, so that this can be done easily. End of important detail.

Next consider the block of N equations representing the FDEs that describe the relation
between the 2N corrections at points 2 and 1. The elements of that block, together with results
from the previous step, are illustrated in Figure 17.3.4. Note that by adding suitable multiples
of rows from the first block we can reduce to zero the first n1 columns of the block (labeled
by “Z”), and, to do so, we will need to alter only the columns from n1 + 1 to N and the
vector element on the right-hand side. Of the remaining columns we can diagonalize a square
subsection of N × N elements, labeled by “D” in the figure. In the process we alter the final
set of n2 + 1 columns, denoted “A” in the figure. The second half of the figure shows the
block when we finish operating on it, with the stored (n2 + 1) × N elements labeled by “S.”

If we operate on the next set of equations corresponding to the FDEs coupling corrections
at points 3 and 2, we see that the state of available results and new equations exactly reproduces
the situation described in the previous paragraph. Thus, we can carry out those steps again
for each block in turn through block M . Finally on block M + 1 we encounter the remaining
boundary conditions.

Figure 17.3.5 shows the final block of n2 FDEs relating the N corrections for variables
at mesh point M , together with the result of reducing the previous block. Again, we can first
use the prior results to zero the first n1 columns of the block. Now, when we diagonalize
the remaining square section, we strike gold: We get values for the final n2 corrections
at mesh point M .

With the final block reduced, the matrix has the desired form shown previously in
Figure 17.3.2, and the matrix is ripe for backsubstitution. Starting with the bottom row and
working up towards the top, at each stage we can simply determine one unknown correction
in terms of known quantities.

The subroutine solvde organizes the steps described above. The principal procedures
used in the algorithm are performed by subroutines called internally by solvde. The
subroutine red eliminates leading columns of the s matrix using results from prior blocks.
pinvs diagonalizes the square subsection of s and stores unreduced coefficients. bksub carries
out the backsubstitution step. The user of solvde must understand the calling arguments,
as described below, and supply a subroutine difeq, called by solvde, that evaluates the
s matrix for each block.

Most of the arguments in the call to solvde have already been described, but some
require discussion. Array y(j,k) contains the initial guess for the solution, with j labeling
the dependent variables at mesh points k. The problem involves ne FDEs spanning points
k=1,..., m. nb boundary conditions apply at the first point k=1. The array indexv(j)
establishes the correspondence between columns of the s matrix, equations (17.3.8), (17.3.10),

758 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

(a)

(b)

D
D
D

1
0
0

D
D
D

0
1
0

D
D
D

0
0
1

A
A
A

S
S
S

A
A
A

S
S
S

V
V
V

V
V
V

A
A
A

S
S
S

Figure 17.3.3. Reduction process for the first (upper left) block of the matrix in Figure 17.3.1. (a)
Original form of the block, (b) final form. (See text for explanation.)

(a) 1
0
0
Z
Z
Z
Z
Z

V
V
V
V
V
V
V
V

S
S
S
A
A
A
A
A

(b) 1
0
0
0
0
0
0
0

0
0
1
0
0

V
V
V
V
V
V
V
V

S
S
S
S
S
S
S
S

0
1
0
Z
Z
Z
Z
Z

0
0
1
Z
Z
Z
Z
Z

S
S
S
D
D
D
D
D

S
S
S
D
D
D
D
D

D
D
D
D
D

D
D
D
D
D

D
D
D
D
D

A
A
A
A
A

A
A
A
A
A

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

S
S
S
1
0
0
0
0

S
S
S
0
1
0
0
0

0
0
0
1
0

0
0
0
0
1

S
S
S
S
S

S
S
S
S
S

Figure 17.3.4. Reduction process for intermediate blocks of the matrix in Figure 17.3.1. (a) Original
form, (b) final form. (See text for explanation.)

(a) 0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0
Z
Z

0
0
0
1
0
Z
Z

0
0
0
0
1
Z
Z

S
S
S
S
S
D
D

S
S
S
S
S
D
D

V
V
V
V
V
V
V

S
S
S
S
S
A
A

(b) 0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0
0
0

0
0
0
1
0
0
0

0
0
0
0
1
0
0

S
S
S
S
S
1
0

S
S
S
S
S
0
1

V
V
V
V
V
V
V

S
S
S
S
S
S
S

Figure 17.3.5. Reduction process for the last (lower right) block of the matrix in Figure 17.3.1. (a)
Original form, (b) final form. (See text for explanation.)

17.3 Relaxation Methods 759

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

and (17.3.12), and the dependent variables. As described above it is essential that the nb
boundary conditions at k=1 involve the dependent variables referenced by the first nb columns
of the s matrix. Thus, columns j of the s matrix can be ordered by the user in difeq to refer
to derivatives with respect to the dependent variable indexv(j).

The subroutine only attempts itmax correction cycles before returning, even if the
solution has not converged. The parameters conv, slowc, scalv relate to convergence.
Each inversion of the matrix produces corrections for ne variables at m mesh points. We want
these to become vanishingly small as the iterations proceed, but we must define a measure for
the size of corrections. This error “norm” is very problem specific, so the user might wish
to rewrite this section of the code as appropriate. In the program below we compute a value
for the average correction err by summing the absolute value of all corrections, weighted by
a scale factor appropriate to each type of variable:

err =
1

m× ne

m∑
k=1

ne∑
j=1

|∆Y (j,k)|
scalv(j)

(17.3.13)

When err≤conv, the method has converged. Note that the user gets to supply an array scalv
which measures the typical size of each variable.

Obviously, if err is large, we are far from a solution, and perhaps it is a bad idea
to believe that the corrections generated from a first-order Taylor series are accurate. The
number slowc modulates application of corrections. After each iteration we apply only a
fraction of the corrections found by matrix inversion:

Y (j,k) → Y (j,k) +
slowc

max(slowc,err)
∆Y (j,k) (17.3.14)

Thus, when err>slowc only a fraction of the corrections are used, but when err≤slowc
the entire correction gets applied.

The call statement also supplies solvde with the array y(1:nyj,1:nyk) containing
the initial trial solution, and workspace arrays c(1:nci,1:ncj,1:nck), s(1:nsi,1:nsj).
The array c is the blockbuster: It stores the unreduced elements of the matrix built up for the
backsubstitution step. If there are m mesh points, then there will be nck=m+1 blocks, each
requiring nci=ne rows and ncj=ne-nb+1 columns. Although large, this is small compared
with (ne×m)2 elements required for the whole matrix if we did not break it into blocks.

We now describe the workings of the user-supplied subroutine difeq. The parameters
of the subroutine are given by

SUBROUTINE difeq(k,k1,k2,jsf,is1,isf,indexv,ne,s,nsi,nsj,y,nyj,nyk)

The only information returned from difeq to solvde is the matrix of derivatives
s(i,j); all other arguments are input to difeq and should not be altered. k indicates the
current mesh point, or block number. k1,k2 label the first and last point in the mesh. If k=k1
or k>k2, the block involves the boundary conditions at the first or final points; otherwise the
block acts on FDEs coupling variables at points k-1, k.

The convention on storing information into the array s(i,j) follows that used in
equations (17.3.8), (17.3.10), and (17.3.12): Rows i label equations, columns j refer to
derivatives with respect to dependent variables in the solution. Recall that each equation will
depend on the ne dependent variables at either one or two points. Thus, j runs from 1 to
either ne or 2*ne. The column ordering for dependent variables at each point must agree
with the list supplied in indexv(j). Thus, for a block not at a boundary, the first column
multiplies ∆Y (l=indexv(1),k-1), and the column ne+1 multiplies ∆Y (l=indexv(1),k).
is1,isf give the numbers of the starting and final rows that need to be filled in the s matrix
for this block. jsf labels the column in which the difference equations Ej,k of equations
(17.3.3)–(17.3.5) are stored. Thus, −s(i,jsf) is the vector on the right-hand side of the
matrix. The reason for the minus sign is that difeq supplies the actual difference equation,
Ej,k, not its negative. Note that solvde supplies a value for jsf such that the difference
equation is put in the column just after all derivatives in the s matrix. Thus, difeq expects to
find values entered into s(i,j) for rows is1 ≤ i ≤ isf and 1 ≤ j ≤ jsf.

760 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Finally, s(1:nsi,1:nsj) and y(1:nyj,1:nyk) supply difeq with storage for s and
the solution variables y for this iteration. An example of how to use this routine is given
in the next section.

Many ideas in the following code are due to Eggleton [1].

SUBROUTINE solvde(itmax,conv,slowc,scalv,indexv,ne,nb,m,
* y,nyj,nyk,c,nci,ncj,nck,s,nsi,nsj)

INTEGER itmax,m,nb,nci,ncj,nck,ne,nsi,nsj,
* nyj,nyk,indexv(nyj),NMAX

REAL conv,slowc,c(nci,ncj,nck),s(nsi,nsj),
* scalv(nyj),y(nyj,nyk)

PARAMETER (NMAX=10) Largest expected value of ne.
C USES bksub,difeq,pinvs,red

Driver routine for solution of two point boundary value problems by relaxation. itmax is the
maximum number of iterations. conv is the convergence criterion (see text). slowc con-
trols the fraction of corrections actually used after each iteration. scalv(1:nyj) contains
typical sizes for each dependent variable, used to weight errors. indexv(1:nyj) lists the
column ordering of variables used to construct the matrix s of derivatives. (The nb boundary
conditions at the first mesh point must contain some dependence on the first nb variables
listed in indexv.) The problem involves ne equations for ne adjustable dependent variables
at each point. At the first mesh point there are nb boundary conditions. There are a total
of m mesh points. y(1:nyj,1:nyk) is the two-dimensional array that contains the initial
guess for all the dependent variables at each mesh point. On each iteration, it is updated by
the calculated correction. The arrays c(1:nci,1:ncj,1:nck), s(1:nsi,1:nsj) sup-
ply dummy storage used by the relaxation code; the minimum dimensions must satisfy:
nci=ne, ncj=ne-nb+1, nck=m+1, nsi=ne, nsj=2*ne+1.

INTEGER ic1,ic2,ic3,ic4,it,j,j1,j2,j3,j4,j5,j6,j7,j8,
* j9,jc1,jcf,jv,k,k1,k2,km,kp,nvars,kmax(NMAX)

REAL err,errj,fac,vmax,vz,ermax(NMAX)
k1=1 Set up row and column markers.
k2=m
nvars=ne*m
j1=1
j2=nb
j3=nb+1
j4=ne
j5=j4+j1
j6=j4+j2
j7=j4+j3
j8=j4+j4
j9=j8+j1
ic1=1
ic2=ne-nb
ic3=ic2+1
ic4=ne
jc1=1
jcf=ic3
do 16 it=1,itmax Primary iteration loop.

k=k1 Boundary conditions at first point.
call difeq(k,k1,k2,j9,ic3,ic4,indexv,ne,s,nsi,nsj,y,nyj,nyk)
call pinvs(ic3,ic4,j5,j9,jc1,k1,c,nci,ncj,nck,s,nsi,nsj)
do 11 k=k1+1,k2 Finite difference equations at all point pairs.

kp=k-1
call difeq(k,k1,k2,j9,ic1,ic4,indexv,ne,s,nsi,nsj,y,nyj,nyk)
call red(ic1,ic4,j1,j2,j3,j4,j9,ic3,jc1,jcf,kp,

* c,nci,ncj,nck,s,nsi,nsj)
call pinvs(ic1,ic4,j3,j9,jc1,k,c,nci,ncj,nck,s,nsi,nsj)

enddo 11

k=k2+1 Final boundary conditions.
call difeq(k,k1,k2,j9,ic1,ic2,indexv,ne,s,nsi,nsj,y,nyj,nyk)
call red(ic1,ic2,j5,j6,j7,j8,j9,ic3,jc1,jcf,k2,

* c,nci,ncj,nck,s,nsi,nsj)
call pinvs(ic1,ic2,j7,j9,jcf,k2+1,c,nci,ncj,nck,s,nsi,nsj)

17.3 Relaxation Methods 761

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

call bksub(ne,nb,jcf,k1,k2,c,nci,ncj,nck) Backsubstitution.
err=0.
do 13 j=1,ne Convergence check, accumulate average error.

jv=indexv(j)
errj=0.
km=0
vmax=0.
do 12 k=k1,k2 Find point with largest error, for each dependent variable.

vz=abs(c(jv,1,k))
if(vz.gt.vmax) then

vmax=vz
km=k

endif
errj=errj+vz

enddo 12

err=err+errj/scalv(j) Note weighting for each dependent variable.
ermax(j)=c(jv,1,km)/scalv(j)
kmax(j)=km

enddo 13

err=err/nvars
fac=slowc/max(slowc,err) Reduce correction applied when error is large.
do 15 j=1,ne Apply corrections.

jv=indexv(j)
do 14 k=k1,k2

y(j,k)=y(j,k)-fac*c(jv,1,k)
enddo 14

enddo 15

write(*,100) it,err,fac Summary of corrections for this step. Point with largest
error for each variable can be monitored by writ-
ing out kmax and ermax.

if(err.lt.conv) return
enddo 16

pause ’itmax exceeded in solvde’ Convergence failed.
100 format(1x,i4,2f12.6)

return
END

SUBROUTINE bksub(ne,nb,jf,k1,k2,c,nci,ncj,nck)
INTEGER jf,k1,k2,nb,nci,ncj,nck,ne
REAL c(nci,ncj,nck)

Backsubstitution, used internally by solvde.
INTEGER i,im,j,k,kp,nbf
REAL xx
nbf=ne-nb
im=1
do 13 k=k2,k1,-1 Use recurrence relations to eliminate remaining dependences.

if (k.eq.k1) im=nbf+1 Special handling of first point.
kp=k+1
do 12 j=1,nbf

xx=c(j,jf,kp)
do 11 i=im,ne

c(i,jf,k)=c(i,jf,k)-c(i,j,k)*xx
enddo 11

enddo 12

enddo 13

do 16 k=k1,k2 Reorder corrections to be in column 1.
kp=k+1
do 14 i=1,nb

c(i,1,k)=c(i+nbf,jf,k)
enddo 14

do 15 i=1,nbf
c(i+nb,1,k)=c(i,jf,kp)

enddo 15

enddo 16

return
END

762 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

SUBROUTINE pinvs(ie1,ie2,je1,jsf,jc1,k,c,nci,ncj,nck,s,nsi,nsj)
INTEGER ie1,ie2,jc1,je1,jsf,k,nci,ncj,nck,nsi,nsj,NMAX
REAL c(nci,ncj,nck),s(nsi,nsj)
PARAMETER (NMAX=10)

Diagonalize the square subsection of the s matrix, and store the recursion coefficients in
c; used internally by solvde.

INTEGER i,icoff,id,ipiv,irow,j,jcoff,je2,jp,jpiv,js1,indxr(NMAX)
REAL big,dum,piv,pivinv,pscl(NMAX)
je2=je1+ie2-ie1
js1=je2+1
do 12 i=ie1,ie2 Implicit pivoting, as in §2.1.

big=0.
do 11 j=je1,je2

if(abs(s(i,j)).gt.big) big=abs(s(i,j))
enddo 11

if(big.eq.0.) pause ’singular matrix, row all 0 in pinvs’
pscl(i)=1./big
indxr(i)=0

enddo 12

do 18 id=ie1,ie2
piv=0.
do 14 i=ie1,ie2 Find pivot element.

if(indxr(i).eq.0) then
big=0.
do 13 j=je1,je2

if(abs(s(i,j)).gt.big) then
jp=j
big=abs(s(i,j))

endif
enddo 13

if(big*pscl(i).gt.piv) then
ipiv=i
jpiv=jp
piv=big*pscl(i)

endif
endif

enddo 14

if(s(ipiv,jpiv).eq.0.) pause ’singular matrix in pinvs’
indxr(ipiv)=jpiv In place reduction. Save column ordering.
pivinv=1./s(ipiv,jpiv)
do 15 j=je1,jsf Normalize pivot row.

s(ipiv,j)=s(ipiv,j)*pivinv
enddo 15

s(ipiv,jpiv)=1.
do 17 i=ie1,ie2 Reduce nonpivot elements in column.

if(indxr(i).ne.jpiv) then
if(s(i,jpiv).ne.0.) then

dum=s(i,jpiv)
do 16 j=je1,jsf

s(i,j)=s(i,j)-dum*s(ipiv,j)
enddo 16

s(i,jpiv)=0.
endif

endif
enddo 17

enddo 18

jcoff=jc1-js1 Sort and store unreduced coefficients.
icoff=ie1-je1
do 21 i=ie1,ie2

irow=indxr(i)+icoff
do 19 j=js1,jsf

c(irow,j+jcoff,k)=s(i,j)
enddo 19

enddo 21

17.3 Relaxation Methods 763

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

return
END

SUBROUTINE red(iz1,iz2,jz1,jz2,jm1,jm2,jmf,ic1,jc1,jcf,kc,
* c,nci,ncj,nck,s,nsi,nsj)

INTEGER ic1,iz1,iz2,jc1,jcf,jm1,jm2,jmf,jz1,jz2,kc,nci,ncj,
* nck,nsi,nsj

REAL c(nci,ncj,nck),s(nsi,nsj)
Reduce columns jz1-jz2 of the s matrix, using previous results as stored in the c matrix.
Only columns jm1-jm2,jmf are affected by the prior results. red is used internally by
solvde.

INTEGER i,ic,j,l,loff
REAL vx
loff=jc1-jm1
ic=ic1
do 14 j=jz1,jz2 Loop over columns to be zeroed.

do 12 l=jm1,jm2 Loop over columns altered.
vx=c(ic,l+loff,kc)
do 11 i=iz1,iz2 Loop over rows.

s(i,l)=s(i,l)-s(i,j)*vx
enddo 11

enddo 12

vx=c(ic,jcf,kc)
do 13 i=iz1,iz2 Plus final element.

s(i,jmf)=s(i,jmf)-s(i,j)*vx
enddo 13

ic=ic+1
enddo 14

return
END

“Algebraically Difficult” Sets of Differential Equations

Relaxation methods allow you to take advantage of an additional opportunity that, while
not obvious, can speed up some calculations enormously. It is not necessary that the set
of variables yj,k correspond exactly with the dependent variables of the original differential
equations. They can be related to those variables through algebraic equations. Obviously, it
is necessary only that the solution variables allow us to evaluate the functions y, g, B, C that
are used to construct the FDEs from the ODEs. In some problems g depends on functions of
y that are known only implicitly, so that iterative solutions are necessary to evaluate functions
in the ODEs. Often one can dispense with this “internal” nonlinear problem by defining
a new set of variables from which both y, g and the boundary conditions can be obtained
directly. A typical example occurs in physical problems where the equations require solution
of a complex equation of state that can be expressed in more convenient terms using variables
other than the original dependent variables in the ODE. While this approach is analogous to
performing an analytic change of variables directly on the original ODEs, such an analytic
transformation might be prohibitively complicated. The change of variables in the relaxation
method is easy and requires no analytic manipulations.

CITED REFERENCES AND FURTHER READING:

Eggleton, P.P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364. [1]

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

764 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

17.4 A Worked Example: Spheroidal Harmonics

The best way to understand the algorithms of the previous sections is to see
them employed to solve an actual problem. As a sample problem, we have selected
the computation of spheroidal harmonics. (The more common name is spheroidal
angle functions, but we prefer the explicit reminder of the kinship with spherical
harmonics.) We will show how to find spheroidal harmonics, first by the method
of relaxation (§17.3), and then by the methods of shooting (§17.1) and shooting
to a fitting point (§17.2).

Spheroidal harmonics typically arise when certain partial differential
equations are solved by separation of variables in spheroidal coordinates. They
satisfy the following differential equation on the interval −1 ≤ x ≤ 1:

d

dx

[
(1 − x2)

dS

dx

]
+

(
λ − c2x2 − m2

1 − x2

)
S = 0 (17.4.1)

Here m is an integer, c is the “oblateness parameter,” and λ is the eigenvalue. Despite
the notation, c2 can be positive or negative. For c2 > 0 the functions are called
“prolate,” while if c2 < 0 they are called “oblate.” The equation has singular points
at x = ±1 and is to be solved subject to the boundary conditions that the solution be
regular at x = ±1. Only for certain values of λ, the eigenvalues, will this be possible.

If we consider first the spherical case, where c = 0, we recognize the differential
equation for Legendre functions P m

n (x). In this case the eigenvalues are λmn =
n(n + 1), n = m, m + 1, The integer n labels successive eigenvalues for
fixed m: When n = m we have the lowest eigenvalue, and the corresponding
eigenfunction has no nodes in the interval −1 < x < 1; when n = m + 1 we have
the next eigenvalue, and the eigenfunction has one node inside (−1, 1); and so on.

A similar situation holds for the general case c2 �= 0. We write the eigenvalues
of (17.4.1) as λmn(c) and the eigenfunctions as Smn(x; c). For fixed m, n =
m, m + 1, . . . labels the successive eigenvalues.

The computation of λmn(c) and Smn(x; c) traditionally has been quite difficult.
Complicated recurrence relations, power series expansions, etc., can be found
in references [1-3]. Cheap computing makes evaluation by direct solution of the
differential equation quite feasible.

The first step is to investigate the behavior of the solution near the singular
points x = ±1. Substituting a power series expansion of the form

S = (1 ± x)α
∞∑

k=0

ak(1 ± x)k (17.4.2)

in equation (17.4.1), we find that the regular solution has α = m/2. (Without loss
of generality we can take m ≥ 0 since m → −m is a symmetry of the equation.)
We get an equation that is numerically more tractable if we factor out this behavior.
Accordingly we set

S = (1 − x2)m/2y (17.4.3)

We then find from (17.4.1) that y satisfies the equation

(1 − x2)
d2y

dx2
− 2(m + 1)x

dy

dx
+ (µ − c2x2)y = 0 (17.4.4)

17.4 A Worked Example: Spheroidal Harmonics 765

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

where

µ ≡ λ − m(m + 1) (17.4.5)

Both equations (17.4.1) and (17.4.4) are invariant under the replacement
x → −x. Thus the functions S and y must also be invariant, except possibly for an
overall scale factor. (Since the equations are linear, a constant multiple of a solution
is also a solution.) Because the solutions will be normalized, the scale factor can
only be ±1. If n−m is odd, there are an odd number of zeros in the interval (−1, 1).
Thus we must choose the antisymmetric solution y(−x) = −y(x) which has a zero
at x = 0. Conversely, if n − m is even we must have the symmetric solution. Thus

ymn(−x) = (−1)n−mymn(x) (17.4.6)

and similarly for Smn.
The boundary conditions on (17.4.4) require that y be regular at x = ±1. In

other words, near the endpoints the solution takes the form

y = a0 + a1(1 − x2) + a2(1 − x2)2 + . . . (17.4.7)

Substituting this expansion in equation (17.4.4) and letting x → 1, we find that

a1 = − µ − c2

4(m + 1)
a0 (17.4.8)

Equivalently,

y′(1) =
µ − c2

2(m + 1)
y(1) (17.4.9)

A similar equation holds at x = −1 with a minus sign on the right-hand side.
The irregular solution has a different relation between function and derivative at
the endpoints.

Instead of integrating the equation from −1 to 1, we can exploit the symmetry
(17.4.6) to integrate from 0 to 1. The boundary condition at x = 0 is

y(0) = 0, n − m odd

y′(0) = 0, n − m even
(17.4.10)

A third boundary condition comes from the fact that any constant multiple
of a solution y is a solution. We can thus normalize the solution. We adopt the
normalization that the function Smn has the same limiting behavior as P m

n at x = 1:

lim
x→1

(1 − x2)−m/2Smn(x; c) = lim
x→1

(1 − x2)−m/2Pm
n (x) (17.4.11)

Various normalization conventions in the literature are tabulated by Flammer [1].

766 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Imposing three boundary conditions for the second-order equation (17.4.4)
turns it into an eigenvalue problem for λ or equivalently for µ. We write it in the
standard form by setting

y1 = y (17.4.12)
y2 = y′ (17.4.13)
y3 = µ (17.4.14)

Then

y′
1 = y2 (17.4.15)

y′
2 =

1
1 − x2

[
2x(m + 1)y2 − (y3 − c2x2)y1

]
(17.4.16)

y′
3 = 0 (17.4.17)

The boundary condition at x = 0 in this notation is

y1 = 0, n − m odd

y2 = 0, n − m even
(17.4.18)

At x = 1 we have two conditions:

y2 =
y3 − c2

2(m + 1)
y1 (17.4.19)

y1 = lim
x→1

(1 − x2)−m/2Pm
n (x) =

(−1)m(n + m)!
2mm!(n − m)!

≡ γ (17.4.20)

We are now ready to illustrate the use of the methods of previous sections
on this problem.

Relaxation

If we just want a few isolated values of λ or S, shooting is probably the quickest
method. However, if we want values for a large sequence of values of c, relaxation
is better. Relaxation rewards a good initial guess with rapid convergence, and the
previous solution should be a good initial guess if c is changed only slightly.

For simplicity, we choose a uniform grid on the interval 0 ≤ x ≤ 1. For a
total of M mesh points, we have

h =
1

M − 1
(17.4.21)

xk = (k − 1)h, k = 1, 2, . . . , M (17.4.22)

At interior points k = 2, 3, . . . , M , equation (17.4.15) gives

E1,k = y1,k − y1,k−1 − h

2
(y2,k + y2,k−1) (17.4.23)

17.4 A Worked Example: Spheroidal Harmonics 767

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Equation (17.4.16) gives

E2,k = y2,k − y2,k−1 − βk

×
[
(xk + xk−1)(m + 1)(y2,k + y2,k−1)

2
− αk

(y1,k + y1,k−1)
2

] (17.4.24)

where

αk =
y3,k + y3,k−1

2
− c2(xk + xk−1)2

4
(17.4.25)

βk =
h

1 − 1
4 (xk + xk−1)2

(17.4.26)

Finally, equation (17.4.17) gives

E3,k = y3,k − y3,k−1 (17.4.27)

Now recall that the matrix of partial derivatives Si,j of equation (17.3.8) is
defined so that i labels the equation and j the variable. In our case, j runs from 1 to
3 for yj at k − 1 and from 4 to 6 for yj at k. Thus equation (17.4.23) gives

S1,1 = −1, S1,2 = −h

2
, S1,3 = 0

S1,4 = 1, S1,5 = −h

2
, S1,6 = 0

(17.4.28)

Similarly equation (17.4.24) yields

S2,1 = αkβk/2, S2,2 = −1 − βk(xk + xk−1)(m + 1)/2,

S2,3 = βk(y1,k + y1,k−1)/4 S2,4 = S2,1,

S2,5 = 2 + S2,2, S2,6 = S2,3

(17.4.29)
while from equation (17.4.27) we find

S3,1 = 0, S3,2 = 0, S3,3 = −1
S3,4 = 0, S3,5 = 0, S3,6 = 1

(17.4.30)

At x = 0 we have the boundary condition

E3,1 =
{

y1,1, n − m odd

y2,1, n − m even
(17.4.31)

Recall the convention adopted in the solvde routine that for one boundary condition
at k = 1 only S3,j can be nonzero. Also, j takes on the values 4 to 6 since the
boundary condition involves only yk, not yk−1. Accordingly, the only nonzero
values of S3,j at x = 0 are

S3,4 = 1, n − m odd

S3,5 = 1, n − m even
(17.4.32)

768 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

At x = 1 we have

E1,M+1 = y2,M − y3,M − c2

2(m + 1)
y1,M (17.4.33)

E2,M+1 = y1,M − γ (17.4.34)

Thus

S1,4 = −y3,M − c2

2(m + 1)
, S1,5 = 1, S1,6 = − y1,M

2(m + 1)
(17.4.35)

S2,4 = 1, S2,5 = 0, S2,6 = 0 (17.4.36)

Here now is the sample program that implements the above algorithm. We need
a main program, sfroid, that calls the routine solvde, and we must supply the
subroutine difeq called by solvde. For simplicity we choose an equally spaced
mesh of m = 41 points, that is, h = .025. As we shall see, this gives good accuracy
for the eigenvalues up to moderate values of n − m.

Since the boundary condition at x = 0 does not involve y 1 if n − m is even,
we have to use the indexv feature of solvde. Recall that the value of indexv(j)
describes which column of s(i,j) the variable y(j) has been put in. If n − m
is even, we need to interchange the columns for y1 and y2 so that there is not a
zero pivot element in s(i,j).

The program prompts for values of m and n. It then computes an initial guess
for y based on the Legendre function P m

n . It next prompts for c2, solves for y,
prompts for c2, solves for y using the previous values as an initial guess, and so on.

PROGRAM sfroid
INTEGER NE,M,NB,NCI,NCJ,NCK,NSI,NSJ,NYJ,NYK
COMMON /sfrcom/ x,h,mm,n,c2,anorm Communicates with difeq.
PARAMETER (NE=3,M=41,NB=1,NCI=NE,NCJ=NE-NB+1,NCK=M+1,NSI=NE,

* NSJ=2*NE+1,NYJ=NE,NYK=M)
C USES plgndr,solvde

Sample program using solvde. Computes eigenvalues of spheroidal harmonics Smn(x; c)
for m ≥ 0 and n ≥ m. In the program, m is mm, c2 is c2, and γ of equation (17.4.20)
is anorm.

INTEGER i,itmax,k,mm,n,indexv(NE)
REAL anorm,c2,conv,deriv,fac1,fac2,h,q1,slowc,

* c(NCI,NCJ,NCK),s(NSI,NSJ),scalv(NE),x(M),y(NE,M),plgndr
itmax=100
conv=5.e-6
slowc=1.
h=1./(M-1)
c2=0.
write(*,*)’ENTER M,N’
read(*,*)mm,n
if(mod(n+mm,2).eq.1)then No interchanges necessary.

indexv(1)=1
indexv(2)=2
indexv(3)=3

else Interchange y1 and y2.
indexv(1)=2
indexv(2)=1
indexv(3)=3

endif
anorm=1. Compute γ.

17.4 A Worked Example: Spheroidal Harmonics 769

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

if(mm.NE.0)then
q1=n
do 11 i=1,mm

anorm=-.5*anorm*(n+i)*(q1/i)
q1=q1-1.

enddo 11

endif
do 12 k=1,M-1 Initial guess.

x(k)=(k-1)*h
fac1=1.-x(k)**2
fac2=fac1**(-mm/2.)
y(1,k)=plgndr(n,mm,x(k))*fac2 P m

n from §6.8.
deriv=-((n-mm+1)*plgndr(n+1,mm,x(k))-(n+1)*

* x(k)*plgndr(n,mm,x(k)))/fac1 Derivative of P m
n from a recurrence re-

lation.y(2,k)=mm*x(k)*y(1,k)/fac1+deriv*fac2
y(3,k)=n*(n+1)-mm*(mm+1)

enddo 12

x(M)=1. Initial guess at x = 1 done separately.
y(1,M)=anorm
y(3,M)=n*(n+1)-mm*(mm+1)
y(2,M)=(y(3,M)-c2)*y(1,M)/(2.*(mm+1.))
scalv(1)=abs(anorm)
scalv(2)=max(abs(anorm),y(2,M))
scalv(3)=max(1.,y(3,M))

1 continue
write (*,*) ’ENTER C**2 OR 999 TO END’
read (*,*) c2
if (c2.eq.999.) stop
call solvde(itmax,conv,slowc,scalv,indexv,NE,NB,M,y,NYJ,NYK,

* c,NCI,NCJ,NCK,s,NSI,NSJ)
write (*,*) ’ M = ’,mm,’ N = ’,n,

* ’ C**2 = ’,c2,’ LAMBDA = ’,y(3,1)+mm*(mm+1)
goto 1 for another value of c2.
END

SUBROUTINE difeq(k,k1,k2,jsf,is1,isf,indexv,ne,s,nsi,nsj,y,nyj,nyk)
INTEGER is1,isf,jsf,k,k1,k2,ne,nsi,nsj,nyj,nyk,indexv(nyj),M
REAL s(nsi,nsj),y(nyj,nyk)
COMMON /sfrcom/ x,h,mm,n,c2,anorm
PARAMETER (M=41)

Returns matrix s(i,j) for solvde.
INTEGER mm,n
REAL anorm,c2,h,temp,temp2,x(M)
if(k.eq.k1) then Boundary condition at first point.

if(mod(n+mm,2).eq.1)then
s(3,3+indexv(1))=1. Equation (17.4.32).
s(3,3+indexv(2))=0.
s(3,3+indexv(3))=0.
s(3,jsf)=y(1,1) Equation (17.4.31).

else
s(3,3+indexv(1))=0. Equation (17.4.32).
s(3,3+indexv(2))=1.
s(3,3+indexv(3))=0.
s(3,jsf)=y(2,1) Equation (17.4.31).

endif
else if(k.gt.k2) then Boundary conditions at last point.

s(1,3+indexv(1))=-(y(3,M)-c2)/(2.*(mm+1.)) Equation (17.4.35).
s(1,3+indexv(2))=1.
s(1,3+indexv(3))=-y(1,M)/(2.*(mm+1.))
s(1,jsf)=y(2,M)-(y(3,M)-c2)*y(1,M)/(2.*(mm+1.)) Equation (17.4.33).
s(2,3+indexv(1))=1. Equation (17.4.36).
s(2,3+indexv(2))=0.

770 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

s(2,3+indexv(3))=0.
s(2,jsf)=y(1,M)-anorm Equation (17.4.34).

else Interior point.
s(1,indexv(1))=-1. Equation (17.4.28).
s(1,indexv(2))=-.5*h
s(1,indexv(3))=0.
s(1,3+indexv(1))=1.
s(1,3+indexv(2))=-.5*h
s(1,3+indexv(3))=0.
temp=h/(1.-(x(k)+x(k-1))**2*.25)
temp2=.5*(y(3,k)+y(3,k-1))-c2*.25*(x(k)+x(k-1))**2
s(2,indexv(1))=temp*temp2*.5 Equation (17.4.29).
s(2,indexv(2))=-1.-.5*temp*(mm+1.)*(x(k)+x(k-1))
s(2,indexv(3))=.25*temp*(y(1,k)+y(1,k-1))
s(2,3+indexv(1))=s(2,indexv(1))
s(2,3+indexv(2))=2.+s(2,indexv(2))
s(2,3+indexv(3))=s(2,indexv(3))
s(3,indexv(1))=0. Equation (17.4.30).
s(3,indexv(2))=0.
s(3,indexv(3))=-1.
s(3,3+indexv(1))=0.
s(3,3+indexv(2))=0.
s(3,3+indexv(3))=1.
s(1,jsf)=y(1,k)-y(1,k-1)-.5*h*(y(2,k)+y(2,k-1)) Equation (17.4.23).
s(2,jsf)=y(2,k)-y(2,k-1)-temp*((x(k)+x(k-1)) Equation (17.4.24).

* *.5*(mm+1.)*(y(2,k)+y(2,k-1))-temp2*
* .5*(y(1,k)+y(1,k-1)))

s(3,jsf)=y(3,k)-y(3,k-1) Equation (17.4.27).
endif
return
END

You can run the program and check it against values of λmn(c) given in
the tables at the back of Flammer’s book [1] or in Table 21.1 of Abramowitz and
Stegun [2]. Typically it converges in about 3 iterations. The table below gives a
few comparisons.

Selected Output of sfroid

m n c2 λexact λsfroid

2 2 0.1 6.01427 6.01427
1.0 6.14095 6.14095
4.0 6.54250 6.54253

2 5 1.0 30.4361 30.4372
16.0 36.9963 37.0135

4 11 −1.0 131.560 131.554

Shooting

To solve the same problem via shooting (§17.1), we supply a subroutine derivs
that implements equations (17.4.15)–(17.4.17). We will integrate the equations over
the range −1 ≤ x ≤ 0. We provide the subroutine load which sets the eigenvalue
y3 to its current best estimate, v(1). It also sets the boundary values of y1 and

17.4 A Worked Example: Spheroidal Harmonics 771

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

y2 using equations (17.4.20) and (17.4.19) (with a minus sign corresponding to
x = −1). Note that the boundary condition is actually applied a distance dx from
the boundary to avoid having to evaluate y ′

2 right on the boundary. The subroutine
score follows from equation (17.4.18).

PROGRAM sphoot
Sample program using shoot. Computes eigenvalues of spheroidal harmonics Smn(x; c) for
m ≥ 0 and n ≥ m. Be sure that routine funcv for newt is provided by shoot (§17.1).

INTEGER i,m,n,nvar,N2
PARAMETER (N2=1)
REAL c2,dx,gamma,q1,x1,x2,v(N2)
LOGICAL check
COMMON /sphcom/ c2,gamma,dx,m,n Communicates with load, score, and derivs.
COMMON /caller/ x1,x2,nvar Communicates with shoot.

C USES newt
dx=1.e-4 Avoid evaluating derivatives exactly at x = −1.
nvar=3 Number of equations.

1 write(*,*) ’input m,n,c-squared (999 to end)’
read(*,*) m,n,c2
if (c2.eq.999.) stop
if ((n.lt.m).or.(m.lt.0)) goto 1
gamma=1.0 Compute γ of equation (17.4.20).
q1=n
do 11 i=1,m

gamma=-0.5*gamma*(n+i)*(q1/i)
q1=q1-1.0

enddo 11

v(1)=n*(n+1)-m*(m+1)+c2/2.0 Initial guess for eigenvalue.
x1=-1.0+dx Set range of integration.
x2=0.0
call newt(v,N2,check) Find v that zeros function f in score.
if(check)then

write(*,*)’shoot failed; bad initial guess’
else

write(*,’(1x,t6,a)’) ’mu(m,n)’
write(*,’(1x,f12.6)’) v(1)
goto 1

endif
END

SUBROUTINE load(x1,v,y)
INTEGER m,n
REAL c2,dx,gamma,x1,y1,v(1),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Supplies starting values for integration at x = −1 + dx.
y(3)=v(1)
if(mod(n-m,2).eq.0)then

y1=gamma
else

y1=-gamma
endif
y(2)=-(y(3)-c2)*y1/(2*(m+1))
y(1)=y1+y(2)*dx
return
END

SUBROUTINE score(x2,y,f)
INTEGER m,n
REAL c2,dx,gamma,x2,f(1),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Tests whether boundary condition at x = 0 is satisfied.
if (mod(n-m,2).eq.0) then

f(1)=y(2)

772 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

else
f(1)=y(1)

endif
return
END

SUBROUTINE derivs(x,y,dydx)
INTEGER m,n
REAL c2,dx,gamma,x,dydx(3),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Evaluates derivatives for odeint.
dydx(1)=y(2)
dydx(2)=(2.0*x*(m+1.0)*y(2)-(y(3)-c2*x*x)*y(1))/(1.0-x*x)
dydx(3)=0.0
return
END

Shooting to a Fitting Point

For variety we illustrate shootf from §17.2 by integrating over the whole
range −1 + dx ≤ x ≤ 1 − dx, with the fitting point chosen to be at x = 0. The
routine derivs is identical to the one for shoot. Now, however, there are two load
routines. The routine load1 for x = −1 is essentially identical to load above. At
x = 1, load2 sets the function value y1 and the eigenvalue y3 to their best current
estimates, v2(1) and v2(2), respectively. If you quite sensibly make your initial
guess of the eigenvalue the same in the two intervals, then v1(1) will stay equal to
v2(2) during the iteration. The subroutine score simply checks whether all three
function values match at the fitting point.

PROGRAM sphfpt
Sample program using shootf. Computes eigenvalues of spheroidal harmonics Smn(x; c)
for m ≥ 0 and n ≥ m. Be sure that routine funcv for newt is provided by shootf (§17.2).
The routine derivs is the same as for sphoot.

INTEGER i,m,n,nvar,nn2,N1,N2,NTOT
REAL DXX
PARAMETER (N1=2,N2=1,NTOT=N1+N2,DXX=1.e-4)
REAL c2,dx,gamma,q1,x1,x2,xf,v1(N2),v2(N1),v(NTOT)
LOGICAL check
COMMON /sphcom/ c2,gamma,dx,m,n

Communicates with load1, load2, score, and derivs.
COMMON /caller/ x1,x2,xf,nvar,nn2 Communicates with shootf.
EQUIVALENCE (v1(1),v(1)),(v2(1),v(N2+1))

C USES newt
nvar=NTOT Number of equations.
nn2=N2
dx=DXX Avoid evaluating derivatives exactly at x = ±1.

1 write(*,*) ’input m,n,c-squared (999 to end)’
read(*,*) m,n,c2
if (c2.eq.999.) stop
if ((n.lt.m).or.(m.lt.0)) goto 1
gamma=1.0 Compute γ of equation (17.4.20).
q1=n
do 11 i=1,m

gamma=-0.5*gamma*(n+i)*(q1/i)
q1=q1-1.0

enddo 11

v1(1)=n*(n+1)-m*(m+1)+c2/2.0 Initial guess for eigenvalue and function value.
v2(2)=v1(1)

17.4 A Worked Example: Spheroidal Harmonics 773

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

v2(1)=gamma*(1.-(v2(2)-c2)*dx/(2*(m+1)))
x1=-1.0+dx Set range of integration.
x2=1.0-dx
xf=0. Fitting point.
call newt(v,NTOT,check) Find v that zeros function f in score.
if(check)then

write(*,*)’shootf failed; bad initial guess’
else

write(*,’(1x,t6,a)’) ’mu(m,n)’
write(*,’(1x,f12.6)’) v1(1)
goto 1

endif
END

SUBROUTINE load1(x1,v1,y)
INTEGER m,n
REAL c2,dx,gamma,x1,y1,v1(1),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Supplies starting values for integration at x = −1 + dx.
y(3)=v1(1)
if(mod(n-m,2).eq.0)then

y1=gamma
else

y1=-gamma
endif
y(2)=-(y(3)-c2)*y1/(2*(m+1))
y(1)=y1+y(2)*dx
return
END

SUBROUTINE load2(x2,v2,y)
INTEGER m,n
REAL c2,dx,gamma,x2,v2(2),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Supplies starting values for integration at x = 1 − dx.
y(3)=v2(2)
y(1)=v2(1)
y(2)=(y(3)-c2)*y(1)/(2*(m+1))
return
END

SUBROUTINE score(xf,y,f)
INTEGER i,m,n
REAL c2,gamma,dx,xf,f(3),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Tests whether solutions match at fitting point x = 0.
do 12 i=1,3

f(i)=y(i)
enddo 12

return
END

CITED REFERENCES AND FURTHER READING:

Flammer, C. 1957, Spheroidal Wave Functions (Stanford, CA: Stanford University Press). [1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §21. [2]

Morse, P.M., and Feshbach, H. 1953, Methods of Theoretical Physics, Part II (New York: McGraw-
Hill), pp. 1502ff. [3]

774 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

17.5 Automated Allocation of Mesh Points

In relaxation problems, you have to choose values for the independent variable at the
mesh points. This is called allocating the grid or mesh. The usual procedure is to pick
a plausible set of values and, if it works, to be content. If it doesn’t work, increasing the
number of points usually cures the problem.

If we know ahead of time where our solutions will be rapidly varying, we can put more
grid points there and less elsewhere. Alternatively, we can solve the problem first on a uniform
mesh and then examine the solution to see where we should add more points. We then repeat
the solution with the improved grid. The object of the exercise is to allocate points in such
a way as to represent the solution accurately.

It is also possible to automate the allocation of mesh points, so that it is done
“dynamically” during the relaxation process. This powerful technique not only improves
the accuracy of the relaxation method, but also (as we will see in the next section) allows
internal singularities to be handled in quite a neat way. Here we learn how to accomplish
the automatic allocation.

We want to focus attention on the independent variable x, and consider two alternative
reparametrizations of it. The first, we term q; this is just the coordinate corresponding to the
mesh points themselves, so that q = 1 at k = 1, q = 2 at k = 2, and so on. Between any two
mesh points we have ∆q = 1. In the change of independent variable in the ODEs from x to q,

dy
dx

= g (17.5.1)

becomes
dy
dq

= g
dx

dq
(17.5.2)

In terms of q, equation (17.5.2) as an FDE might be written

yk − yk−1 − 1
2

[(
g
dx

dq

)
k

+

(
g
dx

dq

)
k−1

]
= 0 (17.5.3)

or some related version. Note that dx/dq should accompany g. The transformation between
x and q depends only on the Jacobian dx/dq. Its reciprocal dq/dx is proportional to the
density of mesh points.

Now, given the function y(x), or its approximation at the current stage of relaxation,
we are supposed to have some idea of how we want to specify the density of mesh points.
For example, we might want dq/dx to be larger where y is changing rapidly, or near to the
boundaries, or both. In fact, we can probably make up a formula for what we would like
dq/dx to be proportional to. The problem is that we do not know the proportionality constant.
That is, the formula that we might invent would not have the correct integral over the whole
range of x so as to make q vary from 1 toM , according to its definition. To solve this problem
we introduce a second reparametrization Q(q), where Q is a new independent variable. The
relation between Q and q is taken to be linear, so that a mesh spacing formula for dQ/dx
differs only in its unknown proportionality constant. A linear relation implies

d2Q

dq2
= 0 (17.5.4)

or, expressed in the usual manner as coupled first-order equations,

dQ(x)

dq
= ψ

dψ

dq
= 0 (17.5.5)

where ψ is a new intermediate variable. We add these two equations to the set of ODEs
being solved.

Completing the prescription, we add a third ODE that is just our desired mesh-density
function, namely

φ(x) =
dQ

dx
=
dQ

dq

dq

dx
(17.5.6)

17.6 Handling Internal Boundary Conditions or Singular Points 775

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

whereφ(x) is chosen by us. Written in terms of the mesh variableq, this equation is

dx

dq
=

ψ

φ(x)
(17.5.7)

Notice thatφ(x) should be chosen to be positive definite, so that the density of mesh points
is everywhere positive. Otherwise (17.5.7) can have a zero in its denominator.

To use automated mesh spacing, you add the three ODEs (17.5.5) and (17.5.7) to your
set of equations, i.e., to the arrayy(j,k). Now x becomes a dependent variable!Q andψ
also become new dependent variables. Normally, evaluatingφ requires little extra work since
it will be composed from pieces of theg’s that exist anyway. The automated procedure allows
one to investigate quickly how the numerical results might be affected by various strategies
for mesh spacing. (A special case occurs if the desired mesh spacing functionQ can be found
analytically, i.e.,dQ/dx is directly integrable. Then, you need to add only two equations,
those in 17.5.5, and two new variablesx, ψ.)

As an example of a typical strategy for implementing this scheme, consider a system
with one dependent variabley(x). We could set

dQ =
dx

∆
+

|d ln y|
δ

(17.5.8)
or

φ(x) =
dQ

dx
=

1

∆
+

∣∣∣∣dy/dxyδ

∣∣∣∣ (17.5.9)

where∆ andδ are constants that we choose. The first term would give a uniform spacing
in x if it alone were present. The second term forces more grid points to be used wherey is
changing rapidly. The constants act to make every logarithmic change iny of an amountδ
about as “attractive” to a grid point as a change inx of amount∆. You adjust the constants
according to taste. Other strategies are possible, such as a logarithmic spacing inx, replacing
dx in the first term withd ln x.

CITED REFERENCES AND FURTHER READING:

Eggleton, P. P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364.

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

17.6 Handling Internal Boundary Conditions
or Singular Points

Singularities can occur in the interiors of two point boundary value problems. Typically,
there is a pointxs at which a derivative must be evaluated by an expression of the form

S(xs) =
N(xs, y)

D(xs, y)
(17.6.1)

where the denominatorD(xs, y) = 0. In physical problems with finite answers, singular
points usually come with their own cure: WhereD → 0, there the physical solutiony must
be such as to makeN → 0 simultaneously, in such a way that the ratio takes on a meaningful
value. This constraint on the solutiony is often called aregularity condition. The condition
thatD(xs, y) satisfy some special constraint atxs is entirely analogous to an extra boundary
condition, an algebraic relation among the dependent variables that must hold at a point.

We discussed a related situation earlier, in§17.2, when we described the “fitting point
method” to handle the task of integrating equations with singular behavior at the boundaries.
In those problems you are unable to integrate from one side of the domain to the other.

776 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

1

X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

V
V
V
V
V
V

B
B
B
B
B
B

1
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

V
V
V
V
V
V
V

V
V
V
V
V
V

V
V
V
V
V
V
V

X
X
X
X
X

X
X
X
X
X1

1
1

X

1

X
X
X
X
X

X
1

X
X
X
X
X

1

X
X
X
X
X1

1

X
X

1

X
X

1

X
X
1

1
1(b)

B
B
B
B
B
B
B

sp
ec

ial
 bl

oc
k

sp
ec

ial
 bl

oc
k

(a)

B
B
B
B
B
B
B
B
B
B
B
B
B

Figure 17.6.1. FDE matrix structure with an internal boundary condition. The internal condition
introduces a special block. (a) Original form, compare with Figure 17.3.1; (b) final form, compare
with Figure 17.3.2.

However, the ODEs do have well-behaved derivatives and solutions in the neighborhood of
the singularity, so it is readily possible to integrate away from the point. Both the relaxation
method and the method of “shooting” to a fitting point handle such problems easily. Also,
in those problems the presence of singular behavior served to isolate some special boundary
values that had to be satisfied to solve the equations.

The difference here is that we are concerned with singularities arising at intermediate
points, where the location of the singular point depends on the solution, so is not known a
priori. Consequently, we face a circular task: The singularity prevents us from finding a
numerical solution, but we need a numerical solution to find its location. Such singularities
are also associated with selecting a special value for some variable which allows the solution
to satisfy the regularity condition at the singular point. Thus, internal singularities take on
aspects of being internal boundary conditions.

One way of handling internal singularities is to treat the problem as a free boundary
problem, as discussed at the end of §17.0. Suppose, as a simple example, we consider
the equation

dy

dx
=
N(x, y)

D(x, y)
(17.6.2)

where N and D are required to pass through zero at some unknown point xs. We add
the equation

z ≡ xs − x1
dz

dx
= 0 (17.6.3)

17.6 Handling Internal Boundary Conditions or Singular Points 777

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

where xs is the unknown location of the singularity, and change the independent variable
to t by setting

x− x1 = tz, 0 ≤ t ≤ 1 (17.6.4)

The boundary conditions at t = 1 become

N(x, y) = 0, D(x, y) = 0 (17.6.5)

Use of an adaptive mesh as discussed in the previous section is another way to overcome
the difficulties of an internal singularity. For the problem (17.6.2), we add the mesh spacing
equations

dQ

dq
= ψ (17.6.6)

dψ

dq
= 0 (17.6.7)

with a simple mesh spacing function that maps x uniformly into q, where q runs from 1 to
M , the number of mesh points:

Q(x) = x− x1,
dQ

dx
= 1 (17.6.8)

Having added three first-order differential equations, we must also add their corresponding
boundary conditions. If there were no singularity, these could simply be

at q = 1 : x = x1, Q = 0 (17.6.9)

at q = M : x = x2 (17.6.10)

and a total of N values yi specified at q = 1. In this case the problem is essentially an
initial value problem with all boundary conditions specified at x1 and the mesh spacing
function is superfluous.

However, in the actual case at hand we impose the conditions

at q = 1 : x = x1, Q = 0 (17.6.11)

at q = M : N(x, y) = 0, D(x, y) = 0 (17.6.12)

and N − 1 values yi at q = 1. The “missing” yi is to be adjusted, in other words, so as
to make the solution go through the singular point in a regular (zero-over-zero) rather than
irregular (finite-over-zero) manner. Notice also that these boundary conditions do not directly
impose a value for x2, which becomes an adjustable parameter that the code varies in an
attempt to match the regularity condition.

In this example the singularity occurred at a boundary, and the complication arose
because the location of the boundary was unknown. In other problems we might wish to
continue the integration beyond the internal singularity. For the example given above, we
could simply integrate the ODEs to the singular point, then as a separate problem recommence
the integration from the singular point on as far we care to go. However, in other cases the
singularity occurs internally, but does not completely determine the problem: There are still
some more boundary conditions to be satisfied further along in the mesh. Such cases present
no difficulty in principle, but do require some adaptation of the relaxation code given in §17.3.
In effect all you need to do is to add a “special” block of equations at the mesh point where
the internal boundary conditions occur, and do the proper bookkeeping.

Figure 17.6.1 illustrates a concrete example where the overall problem contains 5
equations with 2 boundary conditions at the first point, one “internal” boundary condition, and
two final boundary conditions. The figure shows the structure of the overall matrix equations
along the diagonal in the vicinity of the special block. In the middle of the domain, blocks
typically involve 5 equations (rows) in 10 unknowns (columns). For each block prior to the
special block, the initial boundary conditions provided enough information to zero the first
two columns of the blocks. The five FDEs eliminate five more columns, and the final three
columns need to be stored for the backsubstitution step (as described in §17.3). To handle the
extra condition we break the normal cycle and add a special block with only one equation:

778 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

the internal boundary condition. This effectively reduces the required storage of unreduced
coefficients by one column for the rest of the grid, and allows us to reduce to zero the first three
columns of subsequent blocks. The subroutines red, pinvs, bksub can readily handle
these cases with minor recoding, but each problem makes for a special case, and you will
have to make the modifications as required.

CITED REFERENCES AND FURTHER READING:

London, R.A., and Flannery, B.P. 1982, Astrophysical Journal, vol. 258, pp. 260–269.

