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Chapter 16. Integration of Ordinary

Differential Equations

16.0 Introduction

Problems involving ordinary differential equations (ODEs) can always be
reduced to the study of sets of first-order differential equations. For example the
second-order equation

d2y

dx2
+ q(x)

dy

dx
= r(x) (16.0.1)

can be rewritten as two first-order equations

dy

dx
= z(x)

dz

dx
= r(x) − q(x)z(x)

(16.0.2)

where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivatives of each other (and
of the original variable). Occasionally, it is useful to incorporate into their definition
some other factors in the equation, or some powers of the independent variable,
for the purpose of mitigating singular behavior that could result in overflows or
increased roundoff error. Let common sense be your guide: If you find that the
original variables are smooth in a solution, while your auxiliary variables are doing
crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the
study of a set of N coupled first-order differential equations for the functions
yi, i = 1, 2, . . . , N , having the general form

dyi(x)
dx

= fi(x, y1, . . . , yN), i = 1, . . . , N (16.0.3)

where the functions fi on the right-hand side are known.
A problem involving ODEs is not completely specified by its equations. Even

more crucial in determining how to attack the problem numerically is the nature of
the problem’s boundary conditions. Boundary conditions are algebraic conditions
on the values of the functions yi in (16.0.3). In general they can be satisfied at
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discrete specified points, but do not hold between those points, i.e., are not preserved
automatically by the differential equations. Boundary conditions can be as simple as
requiring that certain variables have certain numerical values, or as complicated as
a set of nonlinear algebraic equations among the variables.

Usually, it is the nature of the boundary conditions that determines which
numerical methods will be feasible. Boundary conditions divide into two broad
categories.

• In initial value problems all the yi are given at some starting value xs, and
it is desired to find the yi’s at some final point xf , or at some discrete list
of points (for example, at tabulated intervals).

• In two-point boundary value problems, on the other hand, boundary
conditions are specified at more than one x. Typically, some of the
conditions will be specified at xs and the remainder at xf .

This chapter will consider exclusively the initial value problem, deferring two-
point boundary value problems, which are generally more difficult, to Chapter 17.

The underlying idea of any routine for solving the initial value problem is always
this: Rewrite the dy’s and dx’s in (16.0.3) as finite steps ∆y and ∆x, and multiply the
equations by ∆x. This gives algebraic formulas for the change in the functions when
the independent variable x is “stepped” by one “stepsize” ∆x. In the limit of making
the stepsize very small, a good approximation to the underlying differential equation
is achieved. Literal implementation of this procedure results in Euler’s method
(16.1.1, below), which is, however, not recommended for any practical use. Euler’s
method is conceptually important, however; one way or another, practical methods all
come down to this same idea: Add small increments to your functions corresponding
to derivatives (right-hand sides of the equations) multiplied by stepsizes.

In this chapter we consider three major types of practical numerical methods
for solving initial value problems for ODEs:

• Runge-Kutta methods
• Richardson extrapolation and its particular implementation as the Bulirsch-

Stoer method
• predictor-corrector methods.
A brief description of each of these types follows.
1. Runge-Kutta methods propagate a solution over an interval by combining

the information from several Euler-style steps (each involving one evaluation of the
right-hand f ’s), and then using the information obtained to match a Taylor series
expansion up to some higher order.

2. Richardson extrapolation uses the powerful idea of extrapolating a computed
result to the value that would have been obtained if the stepsize had been very
much smaller than it actually was. In particular, extrapolation to zero stepsize is
the desired goal. The first practical ODE integrator that implemented this idea was
developed by Bulirsch and Stoer, and so extrapolation methods are often called
Bulirsch-Stoer methods.

3. Predictor-corrector methods store the solution along the way, and use
those results to extrapolate the solution one step advanced; they then correct the
extrapolation using derivative information at the new point. These are best for
very smooth functions.

Runge-Kutta is what you use when (i) you don’t know any better, or (ii) you
have an intransigent problem where Bulirsch-Stoer is failing, or (iii) you have a trivial
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problem where computational efficiency is of no concern. Runge-Kutta succeeds
virtually always; but it is not usually fastest, except when evaluating f i is cheap and
moderate accuracy (<∼ 10−5) is required. Predictor-corrector methods, since they
use past information, are somewhat more difficult to start up, but, for many smooth
problems, they are computationally more efficient than Runge-Kutta. In recent years
Bulirsch-Stoer has been replacing predictor-corrector in many applications, but it
is too soon to say that predictor-corrector is dominated in all cases. However, it
appears that only rather sophisticated predictor-corrector routines are competitive.
Accordingly, we have chosen not to give an implementation of predictor-corrector
in this book. We discuss predictor-corrector further in §16.7, so that you can use
a canned routine should you encounter a suitable problem. In our experience, the
relatively simple Runge-Kutta and Bulirsch-Stoer routines we give are adequate
for most problems.

Each of the three types of methods can be organized to monitor internal
consistency. This allows numerical errors which are inevitably introduced into
the solution to be controlled by automatic, (adaptive) changing of the fundamental
stepsize. We always recommend that adaptive stepsize control be implemented,
and we will do so below.

In general, all three types of methods can be applied to any initial value
problem. Each comes with its own set of debits and credits that must be understood
before it is used.

We have organized the routines in this chapter into three nested levels. The
lowest or “nitty-gritty” level is the piece we call the algorithm routine. This
implements the basic formulas of the method, starts with dependent variables y i at x,
and returns new values of the dependent variables at the value x + h. The algorithm
routine also yields up some information about the quality of the solution after the
step. The routine is dumb, however, and it is unable to make any adaptive decision
about whether the solution is of acceptable quality or not.

That quality-control decision we encode in a stepper routine. The stepper
routine calls the algorithm routine. It may reject the result, set a smaller stepsize, and
call the algorithm routine again, until compatibility with a predetermined accuracy
criterion has been achieved. The stepper’s fundamental task is to take the largest
stepsize consistent with specified performance. Only when this is accomplished does
the true power of an algorithm come to light.

Above the stepper is the driver routine, which starts and stops the integration,
stores intermediate results, and generally acts as an interface with the user. There is
nothing at all canonical about our driver routines. You should consider them to be
examples, and you can customize them for your particular application.

Of the routines that follow, rk4, rkck, mmid, stoerm, and simpr are algorithm
routines; rkqs, bsstep, stiff, and stifbs are steppers; rkdumb and odeint
are drivers.

Section 16.6 of this chapter treats the subject of stiff equations, relevant both to
ordinary differential equations and also to partial differential equations (Chapter 19).
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16.1 Runge-Kutta Method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) (16.1.1)

which advances a solution from xn to xn+1 ≡ xn+h. The formula is unsymmetrical:
It advances the solution through an interval h, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power of h smaller
than the correction, i.e O(h2) added to (16.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of both x and y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

k1 = hf(xn, yn)

k2 = hf
(
xn + 1

2h, yn + 1
2k1

)

yn+1 = yn + k2 + O(h3)

(16.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the method second order. [A method is conventionally called nth
order if its error term is O(hn+1).] In fact, (16.1.2) is called the second-order
Runge-Kutta or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(x, y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Stegun [1], and Gear [2], give various specific formulas that derive from this basic
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y(x)

1

2

x1 x2 x3 x

Figure 16.1.1. Euler’s method. In this simplest (and least accurate) method for integrating an ODE,
the derivative at the starting point of each interval is extrapolated to find the next function value. The
method has first-order accuracy.

y(x)

1

2

x1 x2 x3 x

3

4

5

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at
each step to find a point halfway across the interval, then using the midpoint derivative across the full
width of the interval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.

idea. By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(h5) (16.1.3)

The fourth-order Runge-Kutta method requires four evaluations of the right-
hand side per step h (see Figure 16.1.3). This will be superior to the midpoint
method (16.1.2) if at least twice as large a step is possible with (16.1.3) for the same
accuracy. Is that so? The answer is: often, perhaps even usually, but surely not
always! This takes us back to a central theme, namely that high order does not always
mean high accuracy. The statement “ fourth-order Runge-Kutta is generally superior
to second-order” is a true one, but you should recognize it as a statement about the
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1

2

3

4

yn + 1

yn

Figure 16.1.3. Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the initial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives the
final function value (shown as a filled dot) is calculated. (See text for details.)

contemporary practice of science rather than as a statement about strict mathematics.
That is, it reflects the nature of the problems that contemporary scientists like to solve.

For many scientific users, fourth-order Runge-Kutta is not just the first word on
ODE integrators, but the last word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive stepsize algorithm. Keep
in mind, however, that the old workhorse’s last trip may well be to take you to the
poorhouse: Bulirsch-Stoer or predictor-corrector methods can be very much more
efficient for problems where very high accuracy is a requirement. Those methods
are the high-strung racehorses. Runge-Kutta is for ploughing the fields. However,
even the old workhorse is more nimble with new horseshoes. In §16.2 we will give
a modern implementation of a Runge-Kutta method that is quite competitive as long
as very high accuracy is not required. An excellent discussion of the pitfalls in
constructing a good Runge-Kutta code is given in [3].

Here is the routine for carrying out one classical Runge-Kutta step on a set
of n differential equations. You input the values of the independent variables, and
you get out new values which are stepped by a stepsize h (which can be positive or
negative). You will notice that the routine requires you to supply not only function
derivs for calculating the right-hand side, but also values of the derivatives at the
starting point. Why not let the routine call derivs for this first value? The answer
will become clear only in the next section, but in brief is this: This call may not be
your only one with these starting conditions. You may have taken a previous step
with too large a stepsize, and this is your replacement. In that case, you do not
want to call derivs unnecessarily at the start. Note that the routine that follows
has, therefore, only three calls to derivs.

SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs)
INTEGER n,NMAX
REAL h,x,dydx(n),y(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=50) Set to the maximum number of functions.

Given values for the variables y(1:n) and their derivatives dydx(1:n) known at x, use
the fourth-order Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout(1:n), which need not be a distinct array from y. The
user supplies the subroutine derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER i
REAL h6,hh,xh,dym(NMAX),dyt(NMAX),yt(NMAX)
hh=h*0.5
h6=h/6.
xh=x+hh
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do 11 i=1,n First step.
yt(i)=y(i)+hh*dydx(i)

enddo 11

call derivs(xh,yt,dyt) Second step.
do 12 i=1,n

yt(i)=y(i)+hh*dyt(i)
enddo 12

call derivs(xh,yt,dym) Third step.
do 13 i=1,n

yt(i)=y(i)+h*dym(i)
dym(i)=dyt(i)+dym(i)

enddo 13

call derivs(x+h,yt,dyt) Fourth step.
do 14 i=1,n Accumulate increments with proper weights.

yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.*dym(i))
enddo 14

return
END

The Runge-Kutta method treats every step in a sequence of steps in identical
manner. Prior behavior of a solution is not used in its propagation. This is
mathematically proper, since any point along the trajectory of an ordinary differential
equation can serve as an initial point. The fact that all steps are treated identically also
makes it easy to incorporate Runge-Kutta into relatively simple “driver” schemes.

We consider adaptive stepsize control, discussed in the next section, an essential
for serious computing. Occasionally, however, you just want to tabulate a function at
equally spaced intervals, and without particularly high accuracy. In the most common
case, you want to produce a graph of the function. Then all you need may be a
simple driver program that goes from an initial xs to a final xf in a specified number
of steps. To check accuracy, double the number of steps, repeat the integration, and
compare results. This approach surely does not minimize computer time, and it can
fail for problems whose nature requires a variable stepsize, but it may well minimize
user effort. On small problems, this may be the paramount consideration.

Here is such a driver, self-explanatory, which tabulates the integrated functions
in a common block path.

SUBROUTINE rkdumb(vstart,nvar,x1,x2,nstep,derivs)
INTEGER nstep,nvar,NMAX,NSTPMX
PARAMETER (NMAX=50,NSTPMX=200) Maximum number of functions and

maximum number of values to
be stored.

REAL x1,x2,vstart(nvar),xx(NSTPMX),y(NMAX,NSTPMX)
EXTERNAL derivs
COMMON /path/ xx,y Storage of results.

C USES rk4
Starting from initial values vstart(1:nvar) known at x1 use fourth-order Runge-Kutta to
advance nstep equal increments to x2. The user-supplied subroutine derivs(x,v,dvdx)
evaluates derivatives. Results are stored in the common block path. Be sure to dimension
the common block appropriately.

INTEGER i,k
REAL h,x,dv(NMAX),v(NMAX)
do 11 i=1,nvar Load starting values.

v(i)=vstart(i)
y(i,1)=v(i)

enddo 11

xx(1)=x1
x=x1
h=(x2-x1)/nstep
do 13 k=1,nstep Take nstep steps.

call derivs(x,v,dv)
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call rk4(v,dv,nvar,x,h,v,derivs)
if(x+h.eq.x)pause ’stepsize not significant in rkdumb’
x=x+h
xx(k+1)=x Store intermediate steps.
do 12 i=1,nvar

y(i,k+1)=v(i)
enddo 12

enddo 13

return
END
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matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.5. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), Chapter 2. [2]

Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software III, J.R. Rice, ed. (New York: Aca-
demic Press), pp. 257–275; 1979, Applied Mathematics and Computation, vol. 5, pp. 93–
121. [3]

Rice, J.R. 1983, Numerical Methods, Software, and Analysis (New York: McGraw-Hill), §9.2.

16.2 Adaptive Stepsize Control for Runge-Kutta

A good ODE integrator should exert some adaptive control over its own progress,
making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two;
they can sometimes be factors of ten, a hundred, or more. Sometimes accuracy
may be demanded not directly in the solution itself, but in some related conserved
quantity that can be monitored.

Implementation of adaptive stepsize control requires that the stepping algorithm
return information about its performance,most important, an estimate of its truncation
error. In this section we will learn how such information can be obtained. Obviously,
the calculation of this information will add to the computational overhead, but the
investment will generally be repaid handsomely.

With fourth-order Runge-Kutta, the most straightforward technique by far is
step doubling (see, e.g., [1]). We take each step twice, once as a full step, then,
independently, as two half steps (see Figure 16.2.1). How much overhead is this,
say in terms of the number of evaluations of the right-hand sides? Each of the three
separate Runge-Kutta steps in the procedure requires 4 evaluations, but the single
and double sequences share a starting point, so the total is 11. This is to be compared
not to 4, but to 8 (the two half-steps), since — stepsize control aside — we are
achieving the accuracy of the smaller (half) stepsize. The overhead cost is therefore
a factor 1.375. What does it buy us?
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two small steps

big step

x

Figure 16.2.1. Step-doubling as a means for adaptive stepsize control in fourth-order Runge-Kutta.
Points where the derivative is evaluated are shown as filled circles. The open circle represents the same
derivatives as the filled circle immediately above it, so the total number of evaluations is 11 per two steps.
Comparing the accuracy of the big step with the two small steps gives a criterion for adjusting the stepsize
on the next step, or for rejecting the current step as inaccurate.

Let us denote the exact solution for an advance from x to x + 2h by y(x + 2h)
and the two approximate solutions by y1 (one step 2h) and y2 (2 steps each of size
h). Since the basic method is fourth order, the true solution and the two numerical
approximations are related by

y(x + 2h) = y1 + (2h)5φ + O(h6) + . . .

y(x + 2h) = y2 + 2(h5)φ + O(h6) + . . .
(16.2.1)

where, to order h5, the value φ remains constant over the step. [Taylor series
expansion tells us the φ is a number whose order of magnitude is y (5)(x)/5!.] The
first expression in (16.2.1) involves (2h)5 since the stepsize is 2h, while the second
expression involves 2(h5) since the error on each step is h5φ. The difference between
the two numerical estimates is a convenient indicator of truncation error

∆ ≡ y2 − y1 (16.2.2)

It is this difference that we shall endeavor to keep to a desired degree of accuracy,
neither too large nor too small. We do this by adjusting h.

It might also occur to you that, ignoring terms of order h 6 and higher, we can
solve the two equations in (16.2.1) to improve our numerical estimate of the true
solution y(x + 2h), namely,

y(x + 2h) = y2 +
∆
15

+ O(h6) (16.2.3)

This estimate is accurate to fifth order, one order higher than the original Runge-
Kutta steps. However, we can’t have our cake and eat it: (16.2.3) may be fifth-order
accurate, but we have no way of monitoring its truncation error. Higher order is
not always higher accuracy! Use of (16.2.3) rarely does harm, but we have no
way of directly knowing whether it is doing any good. Therefore we should use
∆ as the error estimate and take as “gravy” any additional accuracy gain derived
from (16.2.3). In the technical literature, use of a procedure like (16.2.3) is called
“local extrapolation.”

An alternative stepsize adjustment algorithm is based on the embedded Runge-
Kutta formulas, originally invented by Fehlberg. An interesting fact about Runge-
Kutta formulas is that for orders M higher than four, more than M function
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evaluations (though never more than M + 2) are required. This accounts for the
popularity of the classical fourth-order method: It seems to give the most bang
for the buck. However, Fehlberg discovered a fifth-order method with six function
evaluations where another combination of the six functions gives a fourth-order
method. The difference between the two estimates of y(x + h) can then be used as
an estimate of the truncation error to adjust the stepsize. Since Fehlberg’s original
formula, several other embedded Runge-Kutta formulas have been found.

Many practitioners were at one time wary of the robustness of Runge-Kutta-
Fehlberg methods. The feeling was that using the same evaluation points to advance
the function and to estimate the error was riskier than step-doubling, where the error
estimate is based on independent function evaluations. However, experience has
shown that this concern is not a problem in practice. Accordingly, embedded Runge-
Kutta formulas, which are roughly a factor of two more efficient, have superseded
algorithms based on step-doubling.

The general form of a fifth-order Runge-Kutta formula is

k1 = hf(xn, yn)

k2 = hf(xn + a2h, yn + b21k1)

· · ·
k6 = hf(xn + a6h, yn + b61k1 + · · · + b65k5)

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 + O(h6)

(16.2.4)

The embedded fourth-order formula is

y∗
n+1 = yn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6 + O(h5) (16.2.5)

and so the error estimate is

∆ ≡ yn+1 − y∗
n+1 =

6∑
i=1

(ci − c∗i )ki (16.2.6)

The particular values of the various constants that we favor are those found by Cash
and Karp [2], and given in the accompanying table. These give a more efficient
method than Fehlberg’s original values, with somewhat better error properties.

Now that we know, at least approximately, what our error is, we need to
consider how to keep it within desired bounds. What is the relation between ∆
and h? According to (16.2.4) – (16.2.5), ∆ scales as h 5. If we take a step h1

and produce an error ∆1, therefore, the step h0 that would have given some other
value ∆0 is readily estimated as

h0 = h1

∣∣∣∣
∆0

∆1

∣∣∣∣
0.2

(16.2.7)

Henceforth we will let ∆0 denote the desired accuracy. Then equation (16.2.7) is
used in two ways: If ∆1 is larger than ∆0 in magnitude, the equation tells how
much to decrease the stepsize when we retry the present (failed) step. If ∆1 is
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Cash-Karp Parameters for Embedded Runga-Kutta Method

i ai bij ci c∗i

1 37
378

2825
27648

2 1
5

1
5 0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10 − 9

10
6
5

125
594

13525
55296

5 1 − 11
54

5
2 − 70

27
35
27 0 277

14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

j = 1 2 3 4 5

smaller than ∆0, on the other hand, then the equation tells how much we can safely
increase the stepsize for the next step. Local extrapolation consists in accepting
the fifth order value yn+1, even though the error estimate actually applies to the
fourth order value y∗

n+1.
Our notation hides the fact that ∆0 is actually a vector of desired accuracies,

one for each equation in the set of ODEs. In general, our accuracy requirement will
be that all equations are within their respective allowed errors. In other words, we
will rescale the stepsize according to the needs of the “worst-offender” equation.

How is ∆0, the desired accuracy, related to some looser prescription like “get a
solution good to one part in 106”? That can be a subtle question, and it depends on
exactly what your application is! You may be dealing with a set of equations whose
dependent variables differ enormously in magnitude. In that case, you probably
want to use fractional errors, ∆0 = εy, where ε is the number like 10−6 or whatever.
On the other hand, you may have oscillatory functions that pass through zero but
are bounded by some maximum values. In that case you probably want to set ∆ 0

equal to ε times those maximum values.
A convenient way to fold these considerations into a generally useful stepper

routine is this: One of the arguments of the routine will of course be the vector of
dependent variables at the beginning of a proposed step. Call that y(1:n). Let us
require the user to specify for each step another, corresponding, vector argument
yscal(1:n), and also an overall tolerance level eps. Then the desired accuracy
for the ith equation will be taken to be

∆0 = eps× yscal(i) (16.2.8)

If you desire constant fractional errors, plug y into the yscal calling slot (no need
to copy the values into a different array). If you desire constant absolute errors
relative to some maximum values, set the elements of yscal equal to those maximum
values. A useful “trick” for getting constant fractional errors except “very” near
zero crossings is to set yscal(i) equal to |y(i)| + |h × dydx(i)|. (The routine
odeint, below, does this.)

Here is a more technical point. We have to consider one additional possibility
for yscal. The error criteria mentioned thus far are “local,” in that they bound the
error of each step individually. In some applications you may be unusually sensitive
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about a “global” accumulation of errors, from beginning to end of the integration
and in the worst possible case where the errors all are presumed to add with the
same sign. Then, the smaller the stepsize h, the smaller the value ∆0 that you will
need to impose. Why? Because there will be more steps between your starting
and ending values of x. In such cases you will want to set yscal proportional to
h, typically to something like

∆0 = εh × dydx(i) (16.2.9)

This enforces fractional accuracy ε not on the values of y but (much more stringently)
on the increments to those values at each step. But now look back at (16.2.7). If ∆ 0

has an implicit scaling with h, then the exponent 0.20 is no longer correct: When
the stepsize is reduced from a too-large value, the new predicted value h 1 will fail to
meet the desired accuracy when yscal is also altered to this new h1 value. Instead
of 0.20 = 1/5, we must scale by the exponent 0.25 = 1/4 for things to work out.

The exponents 0.20 and 0.25 are not really very different. This motivates us
to adopt the following pragmatic approach, one that frees us from having to know
in advance whether or not you, the user, plan to scale your yscal’s with stepsize.
Whenever we decrease a stepsize, let us use the larger value of the exponent (whether
we need it or not!), and whenever we increase a stepsize, let us use the smaller
exponent. Furthermore, because our estimates of error are not exact, but only
accurate to the leading order in h, we are advised to put in a safety factor S which is
a few percent smaller than unity. Equation (16.2.7) is thus replaced by

h0 =




Sh1

∣∣∣∣
∆0

∆1

∣∣∣∣
0.20

∆0 ≥ ∆1

Sh1

∣∣∣∣
∆0

∆1

∣∣∣∣
0.25

∆0 < ∆1

(16.2.10)

We have found this prescription to be a reliable one in practice.
Here, then, is a stepper program that takes one “quality-controlled” Runge-

Kutta step.

SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER n,NMAX
REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n)
EXTERNAL derivs
PARAMETER (NMAX=50) Maximum number of equations.

C USES derivs,rkck
Fifth-order Runge-Kutta step with monitoring of local truncation error to ensure accuracy
and adjust stepsize. Input are the dependent variable vector y(1:n) and its derivative
dydx(1:n) at the starting value of the independent variable x. Also input are the stepsize
to be attempted htry, the required accuracy eps, and the vector yscal(1:n) against
which the error is scaled. On output, y and x are replaced by their new values, hdid is the
stepsize that was actually accomplished, and hnext is the estimated next stepsize. derivs
is the user-supplied subroutine that computes the right-hand side derivatives.

INTEGER i
REAL errmax,h,htemp,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW,

* PSHRNK,ERRCON
PARAMETER (SAFETY=0.9,PGROW=-.2,PSHRNK=-.25,ERRCON=1.89e-4)

The value ERRCON equals (5/SAFETY)**(1/PGROW), see use below.
h=htry Set stepsize to the initial trial value.

1 call rkck(y,dydx,n,x,h,ytemp,yerr,derivs) Take a step.
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errmax=0. Evaluate accuracy.
do 11 i=1,n

errmax=max(errmax,abs(yerr(i)/yscal(i)))
enddo 11

errmax=errmax/eps Scale relative to required tolerance.
if(errmax.gt.1.)then Truncation error too large, reduce stepsize.

htemp=SAFETY*h*(errmax**PSHRNK)
h=sign(max(abs(htemp),0.1*abs(h)),h) No more than a factor of 10.
xnew=x+h
if(xnew.eq.x)pause ’stepsize underflow in rkqs’
goto 1 For another try.

else Step succeeded. Compute size of next step.
if(errmax.gt.ERRCON)then

hnext=SAFETY*h*(errmax**PGROW)
else No more than a factor of 5 increase.

hnext=5.*h
endif
hdid=h
x=x+h
do 12 i=1,n

y(i)=ytemp(i)
enddo 12

return
endif
END

The routine rkqs calls the routine rkck to take a Cash-Karp Runge-Kutta step:

SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs)
INTEGER n,NMAX
REAL h,x,dydx(n),y(n),yerr(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=50) Set to the maximum number of functions.

C USES derivs
Given values for n variables y and their derivatives dydx known at x, use the fifth-order
Cash-Karp Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout. Also return an estimate of the local truncation er-
ror in yout using the embedded fourth-order method. The user supplies the subroutine
derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER i
REAL ak2(NMAX),ak3(NMAX),ak4(NMAX),ak5(NMAX),ak6(NMAX),

* ytemp(NMAX),A2,A3,A4,A5,A6,B21,B31,B32,B41,B42,B43,B51,
* B52,B53,B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3,
* DC4,DC5,DC6

PARAMETER (A2=.2,A3=.3,A4=.6,A5=1.,A6=.875,B21=.2,B31=3./40.,
* B32=9./40.,B41=.3,B42=-.9,B43=1.2,B51=-11./54.,B52=2.5,
* B53=-70./27.,B54=35./27.,B61=1631./55296.,B62=175./512.,
* B63=575./13824.,B64=44275./110592.,B65=253./4096.,
* C1=37./378.,C3=250./621.,C4=125./594.,C6=512./1771.,
* DC1=C1-2825./27648.,DC3=C3-18575./48384.,
* DC4=C4-13525./55296.,DC5=-277./14336.,DC6=C6-.25)

do 11 i=1,n First step.
ytemp(i)=y(i)+B21*h*dydx(i)

enddo 11

call derivs(x+A2*h,ytemp,ak2) Second step.
do 12 i=1,n

ytemp(i)=y(i)+h*(B31*dydx(i)+B32*ak2(i))
enddo 12

call derivs(x+A3*h,ytemp,ak3) Third step.
do 13 i=1,n

ytemp(i)=y(i)+h*(B41*dydx(i)+B42*ak2(i)+B43*ak3(i))
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enddo 13

call derivs(x+A4*h,ytemp,ak4) Fourth step.
do 14 i=1,n

ytemp(i)=y(i)+h*(B51*dydx(i)+B52*ak2(i)+B53*ak3(i)+
* B54*ak4(i))

enddo 14

call derivs(x+A5*h,ytemp,ak5) Fifth step.
do 15 i=1,n

ytemp(i)=y(i)+h*(B61*dydx(i)+B62*ak2(i)+B63*ak3(i)+
* B64*ak4(i)+B65*ak5(i))

enddo 15

call derivs(x+A6*h,ytemp,ak6) Sixth step.
do 16 i=1,n Accumulate increments with proper weights.

yout(i)=y(i)+h*(C1*dydx(i)+C3*ak3(i)+C4*ak4(i)+
* C6*ak6(i))

enddo 16

do 17 i=1,n
Estimate error as difference between fourth and fifth order methods.
yerr(i)=h*(DC1*dydx(i)+DC3*ak3(i)+DC4*ak4(i)+DC5*ak5(i)

* +DC6*ak6(i))
enddo 17

return
END

Noting that the above routines are all in single precision, don’t be too greedy in
specifying eps. The punishment for excessive greediness is interesting and worthy of
Gilbert and Sullivan’s Mikado: The routine can always achieve an apparent zero error
by making the stepsize so small that quantities of order hy ′ add to quantities of order
y as if they were zero. Then the routine chugs happily along taking infinitely many
infinitesimal steps and never changing the dependent variables one iota. (You guard
against this catastrophic loss of your computer budget by signaling on abnormally
small stepsizes or on the dependent variable vector remaining unchanged from step
to step. On a personal workstation you guard against it by not taking too long a
lunch hour while your program is running.)

Here is a full-fledged “driver” for Runge-Kutta with adaptive stepsize control.
We warmly recommend this routine, or one like it, for a variety of problems, notably
including garden-variety ODEs or sets of ODEs, and definite integrals (augmenting
the methods of Chapter 4). For storage of intermediate results (if you desire to
inspect them) we assume a common block path, which can hold up to KMAXX steps.
Because steps occur at unequal intervals results are stored only at intervals greater
than dxsav. Also in the block is kmax, indicating the number of steps that can be
stored. If kmax=0 there is no intermediate storage, and the rest of the common block
need not exist. Otherwise you should set kmax = KMAXX. Storage of steps stops
if kmax is exceeded, except that the ending values are always stored. Again, these
controls are merely indicative of what you might need. The routine odeint should
be customized to the problem at hand.

SUBROUTINE odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad,derivs,rkqs)
INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX
REAL eps,h1,hmin,x1,x2,ystart(nvar),TINY
EXTERNAL derivs,rkqs
PARAMETER (MAXSTP=10000,NMAX=50,KMAXX=200,TINY=1.e-30)

Runge-Kutta driver with adaptive stepsize control. Integrate the starting values ystart(1:nvar)
from x1 to x2 with accuracy eps, storing intermediate results in the common block /path/.
h1 should be set as a guessed first stepsize, hmin as the minimum allowed stepsize (can
be zero). On output nok and nbad are the number of good and bad (but retried and
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fixed) steps taken, and ystart is replaced by values at the end of the integration interval.
derivs is the user-supplied subroutine for calculating the right-hand side derivative, while
rkqs is the name of the stepper routine to be used. /path/ contains its own information
about how often an intermediate value is to be stored.

INTEGER i,kmax,kount,nstp
REAL dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),xp(KMAXX),y(NMAX),

* yp(NMAX,KMAXX),yscal(NMAX)
COMMON /path/ kmax,kount,dxsav,xp,yp

User storage for intermediate results. Preset dxsav and kmax.
x=x1
h=sign(h1,x2-x1)
nok=0
nbad=0
kount=0
do 11 i=1,nvar

y(i)=ystart(i)
enddo 11

if (kmax.gt.0) xsav=x-2.*dxsav Assures storage of first step.
do 16 nstp=1,MAXSTP Take at most MAXSTP steps.

call derivs(x,y,dydx)
do 12 i=1,nvar

Scaling used to monitor accuracy. This general-purpose choice can be modified if need
be.
yscal(i)=abs(y(i))+abs(h*dydx(i))+TINY

enddo 12

if(kmax.gt.0)then
if(abs(x-xsav).gt.abs(dxsav)) then Store intermediate results.

if(kount.lt.kmax-1)then
kount=kount+1
xp(kount)=x
do 13 i=1,nvar

yp(i,kount)=y(i)
enddo 13

xsav=x
endif

endif
endif
if((x+h-x2)*(x+h-x1).gt.0.) h=x2-x If stepsize can overshoot, decrease.
call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,derivs)
if(hdid.eq.h)then

nok=nok+1
else

nbad=nbad+1
endif
if((x-x2)*(x2-x1).ge.0.)then Are we done?

do 14 i=1,nvar
ystart(i)=y(i)

enddo 14

if(kmax.ne.0)then
kount=kount+1 Save final step.
xp(kount)=x
do 15 i=1,nvar

yp(i,kount)=y(i)
enddo 15

endif
return Normal exit.

endif
if(abs(hnext).lt.hmin) pause ’stepsize smaller than minimum in odeint’
h=hnext

enddo 16

pause ’too many steps in odeint’
return
END
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16.3 Modified Midpoint Method

This section discusses the modified midpoint method, which advances a vector
of dependent variables y(x) from a point x to a point x + H by a sequence of n
substeps each of size h,

h = H/n (16.3.1)

In principle, one could use the modified midpoint method in its own right as an ODE
integrator. In practice, the method finds its most important application as a part of
the more powerful Bulirsch-Stoer technique, treated in §16.4. You can therefore
consider this section as a preamble to §16.4.

The number of right-hand side evaluations required by the modified midpoint
method is n + 1. The formulas for the method are

z0 ≡ y(x)

z1 = z0 + hf(x, z0)

zm+1 = zm−1 + 2hf(x + mh, zm) for m = 1, 2, . . . , n − 1

y(x + H) ≈ yn ≡ 1
2
[zn + zn−1 + hf(x + H, zn)]

(16.3.2)

Here the z’s are intermediate approximations which march along in steps of h, while
yn is the final approximation to y(x + H). The method is basically a “centered
difference” or “midpoint” method (compare equation 16.1.2), except at the first and
last points. Those give the qualifier “modified.”

The modified midpoint method is a second-order method, like (16.1.2), but with
the advantage of requiring (asymptotically for large n) only one derivative evaluation
per step h instead of the two required by second-order Runge-Kutta. Perhaps there
are applications where the simplicity of (16.3.2), easily coded in-line in some other
program, recommends it. In general, however, use of the modified midpoint method
by itself will be dominated by the embedded Runge-Kutta method with adaptive
stepsize control, as implemented in the preceding section.

The usefulness of the modified midpoint method to the Bulirsch-Stoer technique
(§16.4) derives from a “deep” result about equations (16.3.2), due to Gragg. It turns
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out that the error of (16.3.2), expressed as a power series in h, the stepsize, contains
only even powers of h,

yn − y(x + H) =
∞∑

i=1

αih
2i (16.3.3)

where H is held constant, but h changes by varying n in (16.3.1). The importance
of this even power series is that, if we play our usual tricks of combining steps to
knock out higher-order error terms, we can gain two orders at a time!

For example, suppose n is even, and let yn/2 denote the result of applying
(16.3.1) and (16.3.2) with half as many steps, n → n/2. Then the estimate

y(x + H) ≈ 4yn − yn/2

3
(16.3.4)

is fourth-order accurate, the same as fourth-order Runge-Kutta, but requires only
about 1.5 derivative evaluations per step h instead of Runge-Kutta’s 4 evaluations.
Don’t be too anxious to implement (16.3.4), since we will soon do even better.

Now would be a good time to look back at the routine qsimp in §4.2, and
especially to compare equation (4.2.4) with equation (16.3.4) above. You will see
that the transition in Chapter 4 to the idea of Richardson extrapolation, as embodied
in Romberg integration of §4.3, is exactly analogous to the transition in going from
this section to the next one.

Here is the routine that implements the modified midpoint method, which will
be used below.

SUBROUTINE mmid(y,dydx,nvar,xs,htot,nstep,yout,derivs)
INTEGER nstep,nvar,NMAX
REAL htot,xs,dydx(nvar),y(nvar),yout(nvar)
EXTERNAL derivs
PARAMETER (NMAX=50)

Modified midpoint step. Dependent variable vector y(1:nvar) and its derivative vector
dydx(1:nvar) are input at xs. Also input is htot, the total step to be made, and nstep,
the number of substeps to be used. The output is returned as yout(1:nvar), which need
not be a distinct array from y; if it is distinct, however, then y and dydx are returned
undamaged.

INTEGER i,n
REAL h,h2,swap,x,ym(NMAX),yn(NMAX)
h=htot/nstep Stepsize this trip.
do 11 i=1,nvar

ym(i)=y(i)
yn(i)=y(i)+h*dydx(i) First step.

enddo 11

x=xs+h
call derivs(x,yn,yout) Will use yout for temporary storage of derivatives.
h2=2.*h
do 13 n=2,nstep General step.

do 12 i=1,nvar
swap=ym(i)+h2*yout(i)
ym(i)=yn(i)
yn(i)=swap

enddo 12

x=x+h
call derivs(x,yn,yout)
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enddo 13

do 14 i=1,nvar Last step.
yout(i)=0.5*(ym(i)+yn(i)+h*yout(i))

enddo 14

return
END

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.4.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§7.2.12.

16.4 Richardson Extrapolation and the
Bulirsch-Stoer Method

The techniques described in this section are not for differential equations
containing nonsmooth functions. For example, you might have a differential
equation whose right-hand side involves a function that is evaluated by table look-up
and interpolation. If so, go back to Runge-Kutta with adaptive stepsize choice:
That method does an excellent job of feeling its way through rocky or discontinuous
terrain. It is also an excellent choice for quick-and-dirty, low-accuracy solution
of a set of equations. A second warning is that the techniques in this section are
not particularly good for differential equations that have singular points inside the
interval of integration. A regular solution must tiptoe very carefully across such
points. Runge-Kutta with adaptive stepsize can sometimes effect this; more generally,
there are special techniques available for such problems, beyond our scope here.

Apart from those two caveats, we believe that the Bulirsch-Stoer method,
discussed in this section, is the best known way to obtain high-accuracy solutions
to ordinary differential equations with minimal computational effort. (A possible
exception, infrequently encountered in practice, is discussed in §16.7.)

Three key ideas are involved. The first is Richardson’s deferred approach
to the limit, which we already met in §4.3 on Romberg integration. The idea is
to consider the final answer of a numerical calculation as itself being an analytic
function (if a complicated one) of an adjustable parameter like the stepsize h. That
analytic function can be probed by performing the calculation with various values
of h, none of them being necessarily small enough to yield the accuracy that we
desire. When we know enough about the function, we fit it to some analytic form,
and then evaluate it at that mythical and golden point h = 0 (see Figure 16.4.1).
Richardson extrapolation is a method for turning straw into gold! (Lead into gold
for alchemist readers.)

The second idea has to do with what kind of fitting function is used. Bulirsch and
Stoer first recognized the strength of rational function extrapolation in Richardson-
type applications. That strength is to break the shackles of the power series and its
limited radius of convergence, out only to the distance of the first pole in the complex
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6 steps

2 steps 4 steps ⊗

extrapolation
to ∞ steps

x x + H

y

Figure 16.4.1. Richardson extrapolation as used in the Bulirsch-Stoer method. A large interval H is
spanned by different sequences of finer and finer substeps. Their results are extrapolated to an answer
that is supposed to correspond to infinitely fine substeps. In the Bulirsch-Stoer method, the integrations
are done by the modified midpoint method, and the extrapolation technique is rational function or
polynomial extrapolation.

plane. Rational function fits can remain good approximations to analytic functions
even after the various terms in powers of h all have comparable magnitudes. In
other words, h can be so large as to make the whole notion of the “order” of the
method meaningless — and the method can still work superbly. Nevertheless, more
recent experience suggests that for smooth problems straightforward polynomial
extrapolation is slightly more efficient than rational function extrapolation. We will
accordingly adopt polynomial extrapolation as the default, but the routine bsstep
below allows easy substitution of one kind of extrapolation for the other. You
might wish at this point to review §3.1–§3.2, where polynomial and rational function
extrapolation were already discussed.

The third idea was discussed in the section before this one, namely to use
a method whose error function is strictly even, allowing the rational function or
polynomial approximation to be in terms of the variable h 2 instead of just h.

Put these ideas together and you have the Bulirsch-Stoer method [1]. A single
Bulirsch-Stoer step takes us from x to x+H , where H is supposed to be quite a large
— not at all infinitesimal — distance. That single step is a grand leap consisting
of many (e.g., dozens to hundreds) substeps of modified midpoint method, which
are then extrapolated to zero stepsize.

The sequence of separate attempts to cross the interval H is made with increasing
values of n, the number of substeps. Bulirsch and Stoer originally proposed the
sequence

n = 2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, . . . , [nj = 2nj−2], . . . (16.4.1)

More recent work by Deuflhard [2,3] suggests that the sequence

n = 2, 4, 6, 8, 10, 12, 14, . . . , [nj = 2j], . . . (16.4.2)

is usually more efficient. For each step, we do not know in advance how far up this
sequence we will go. After each successive n is tried, a polynomial extrapolation is
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attempted. That extrapolation returns both extrapolated values and error estimates.
If the errors are not satisfactory, we go higher in n. If they are satisfactory, we go
on to the next step and begin anew with n = 2.

Of course there must be some upper limit, beyond which we conclude that there
is some obstacle in our path in the interval H , so that we must reduce H rather than
just subdivide it more finely. In the implementations below, the maximum number
of n’s to be tried is called KMAXX. For reasons described below we usually take this
equal to 8; the 8th value of the sequence (16.4.2) is 16, so this is the maximum
number of subdivisions of H that we allow.

We enforce error control, as in the Runge-Kutta method, by monitoring internal
consistency, and adapting stepsize to match a prescribed bound on the local truncation
error. Each new result from the sequence of modified midpoint integrations allows a
tableau like that in §3.1 to be extended by one additional set of diagonals. The size of
the new correction added at each stage is taken as the (conservative) error estimate.
How should we use this error estimate to adjust the stepsize? The best strategy now
known is due to Deuflhard [2,3]. For completeness we describe it here:

Suppose the absolute value of the error estimate returned from the kth column (and hence
the k + 1st row) of the extrapolation tableau is εk+1,k. Error control is enforced by requiring

εk+1,k < ε (16.4.3)

as the criterion for accepting the current step, where ε is the required tolerance. For the even
sequence (16.4.2) the order of the method is 2k + 1:

εk+1,k ∼ H2k+1 (16.4.4)

Thus a simple estimate of a new stepsize Hk to obtain convergence in a fixed column k would be

Hk = H

(
ε

εk+1,k

)1/(2k+1)

(16.4.5)

Which column k should we aim to achieve convergence in? Let’s compare the work
required for different k. Suppose Ak is the work to obtain row k of the extrapolation tableau,
so Ak+1 is the work to obtain column k. We will assume the work is dominated by the cost
of evaluating the functions defining the right-hand sides of the differential equations. For nk

subdivisions in H , the number of function evaluations can be found from the recurrence

A1 = n1 + 1

Ak+1 = Ak + nk+1

(16.4.6)

The work per unit step to get column k is Ak+1/Hk, which we nondimensionalize with a
factor of H and write as

Wk =
Ak+1

Hk
H (16.4.7)

= Ak+1

( εk+1,k

ε

)1/(2k+1)

(16.4.8)

The quantities Wk can be calculated during the integration. The optimal column index q
is then defined by

Wq = min
k=1,...,kf

Wk (16.4.9)

where kf is the final column, in which the error criterion (16.4.3) was satisfied. The q
determined from (16.4.9) defines the stepsize Hq to be used as the next basic stepsize, so that
we can expect to get convergence in the optimal column q.

Two important refinements have to be made to the strategy outlined so far:
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• If the current H is “too small,” then kf will be “too small,” and so q remains
“too small.” It may be desirable to increase H and aim for convergence in a
column q > kf .

• If the current H is “too big,” we may not converge at all on the current step and we
will have to decrease H . We would like to detect this by monitoring the quantities
εk+1,k for each k so we can stop the current step as soon as possible.

Deuflhard’s prescription for dealing with these two problems uses ideas from communi-
cation theory to determine the “average expected convergence behavior” of the extrapolation.
His model produces certain correction factors α(k, q) by which Hk is to be multiplied to try
to get convergence in column q. The factors α(k, q) depend only on ε and the sequence {ni}
and so can be computed once during initialization:

α(k, q) = ε
Ak+1−Aq+1

(2k+1)(Aq+1−A1+1) for k < q (16.4.10)

with α(q, q) = 1.
Now to handle the first problem, suppose convergence occurs in column q = kf . Then

rather than taking Hq for the next step, we might aim to increase the stepsize to get convergence
in column q + 1. Since we don’t have Hq+1 available from the computation, we estimate it as

Hq+1 = Hqα(q, q + 1) (16.4.11)

By equation (16.4.7) this replacement is efficient, i.e., reduces the work per unit step, if

Aq+1

Hq
>

Aq+2

Hq+1
(16.4.12)

or
Aq+1α(q, q + 1) > Aq+2 (16.4.13)

During initialization, this inequality can be checked for q = 1, 2, . . . to determine kmax, the
largest allowed column. Then when (16.4.12) is satisfied it will always be efficient to use
Hq+1. (In practice we limit kmax to 8 even when ε is very small as there is very little further
gain in efficiency whereas roundoff can become a problem.)

The problem of stepsize reduction is handled by computing stepsize estimates

H̄k ≡ Hkα(k, q), k = 1, . . . , q − 1 (16.4.14)

during the current step. The H̄’s are estimates of the stepsize to get convergence in the optimal
column q. If any H̄k is “too small,” we abandon the current step and restart using H̄k. The
criterion of being “too small” is taken to be

Hkα(k, q + 1) < H (16.4.15)

The α’s satisfy α(k, q + 1) > α(k, q).
During the first step, when we have no information about the solution, the stepsize

reduction check is made for all k. Afterwards, we test for convergence and for possible
stepsize reduction only in an “order window”

max(1, q − 1) ≤ k ≤ min(kmax, q + 1) (16.4.16)

The rationale for the order window is that if convergence appears to occur for k < q − 1 it
is often spurious, resulting from some fortuitously small error estimate in the extrapolation.
On the other hand, if you need to go beyond k = q + 1 to obtain convergence, your local
model of the convergence behavior is obviously not very good and you need to cut the
stepsize and reestablish it.

In the routine bsstep, these various tests are actually carried out using quantities

ε(k) ≡ H

Hk
=

( εk+1,k

ε

)1/(2k+1)

(16.4.17)

called err(k) in the code. As usual, we include a “safety factor” in the stepsize selection.
This is implemented by replacing ε by 0.25ε. Other safety factors are explained in the
program comments.

Note that while the optimal convergence column is restricted to increase by at most one
on each step, a sudden drop in order is allowed by equation (16.4.9). This gives the method
a degree of robustness for problems with discontinuities.
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Let us remind you once again that scaling of the variables is often crucial for
successful integration of differential equations. The scaling “trick” suggested in
the discussion following equation (16.2.8) is a good general purpose choice, but
not foolproof. Scaling by the maximum values of the variables is more robust, but
requires you to have some prior information.

The following implementation of a Bulirsch-Stoer step has exactly the same
calling sequence as the quality-controlled Runge-Kutta stepper rkqs. This means
that the driver odeint in §16.2 can be used for Bulirsch-Stoer as well as Runge-
Kutta: Just substitute bsstep for rkqs in odeint’s argument list. The routine
bsstep calls mmid to take the modified midpoint sequences, and calls pzextr, given
below, to do the polynomial extrapolation.

SUBROUTINE bsstep(y,dydx,nv,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER nv,NMAX,KMAXX,IMAX
REAL eps,hdid,hnext,htry,x,dydx(nv),y(nv),yscal(nv),SAFE1,

* SAFE2,REDMAX,REDMIN,TINY,SCALMX
PARAMETER (NMAX=50,KMAXX=8,IMAX=KMAXX+1,SAFE1=.25,SAFE2=.7,

* REDMAX=1.e-5,REDMIN=.7,TINY=1.e-30,SCALMX=.1)
C USES derivs,mmid,pzextr

Bulirsch-Stoer step with monitoring of local truncation error to ensure accuracy and adjust
stepsize. Input are the dependent variable vector y(1:nv) and its derivative dydx(1:nv)
at the starting value of the independent variable x. Also input are the stepsize to be at-
tempted htry, the required accuracy eps, and the vector yscal(1:nv) against which the
error is scaled. On output, y and x are replaced by their new values, hdid is the stepsize
that was actually accomplished, and hnext is the estimated next stepsize. derivs is the
user-supplied subroutine that computes the right-hand side derivatives. Be sure to set htry
on successive steps to the value of hnext returned from the previous step, as is the case
if the routine is called by odeint.
Parameters: NMAX is the maximum value of nv; KMAXX is the maximum row number used
in the extrapolation; IMAX is the next row number; SAFE1 and SAFE2 are safety factors;
REDMAX is the maximum factor used when a stepsize is reduced, REDMIN the minimum;
TINY prevents division by zero; 1/SCALMX is the maximum factor by which a stepsize can
be increased.

INTEGER i,iq,k,kk,km,kmax,kopt,nseq(IMAX)
REAL eps1,epsold,errmax,fact,h,red,scale,work,wrkmin,xest,

* xnew,a(IMAX),alf(KMAXX,KMAXX),err(KMAXX),yerr(NMAX),
* ysav(NMAX),yseq(NMAX)

LOGICAL first,reduct
SAVE a,alf,epsold,first,kmax,kopt,nseq,xnew
EXTERNAL derivs
DATA first/.true./,epsold/-1./
DATA nseq /2,4,6,8,10,12,14,16,18/
if(eps.ne.epsold)then A new tolerance, so reinitialize.

hnext=-1.e29 “Impossible” values.
xnew=-1.e29
eps1=SAFE1*eps
a(1)=nseq(1)+1 Compute work coefficients Ak.
do 11 k=1,KMAXX

a(k+1)=a(k)+nseq(k+1)
enddo 11

do 13 iq=2,KMAXX Compute α(k, q).
do 12 k=1,iq-1

alf(k,iq)=eps1**((a(k+1)-a(iq+1))/
* ((a(iq+1)-a(1)+1.)*(2*k+1)))

enddo 12

enddo 13

epsold=eps
do 14 kopt=2,KMAXX-1 Determine optimal row number for conver-

gence.if(a(kopt+1).gt.a(kopt)*alf(kopt-1,kopt))goto 1
enddo 14
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1 kmax=kopt
endif
h=htry
do 15 i=1,nv Save the starting values.

ysav(i)=y(i)
enddo 15

if(h.ne.hnext.or.x.ne.xnew)then A new stepsize or a new integration: re-establish
the order window.first=.true.

kopt=kmax
endif
reduct=.false.

2 do 17 k=1,kmax Evaluate the sequence of modified midpoint
integrations.xnew=x+h

if(xnew.eq.x)pause ’step size underflow in bsstep’
call mmid(ysav,dydx,nv,x,h,nseq(k),yseq,derivs)
xest=(h/nseq(k))**2 Squared, since error series is even.
call pzextr(k,xest,yseq,y,yerr,nv) Perform extrapolation.
if(k.ne.1)then Compute normalized error estimate ε(k).

errmax=TINY
do 16 i=1,nv

errmax=max(errmax,abs(yerr(i)/yscal(i)))
enddo 16

errmax=errmax/eps Scale error relative to tolerance.
km=k-1
err(km)=(errmax/SAFE1)**(1./(2*km+1))

endif
if(k.ne.1.and.(k.ge.kopt-1.or.first))then In order window.

if(errmax.lt.1.)goto 4 Converged.
if(k.eq.kmax.or.k.eq.kopt+1)then Check for possible stepsize reduction.

red=SAFE2/err(km)
goto 3

else if(k.eq.kopt)then
if(alf(kopt-1,kopt).lt.err(km))then

red=1./err(km)
goto 3

endif
else if(kopt.eq.kmax)then

if(alf(km,kmax-1).lt.err(km))then
red=alf(km,kmax-1)*

* SAFE2/err(km)
goto 3

endif
else if(alf(km,kopt).lt.err(km))then

red=alf(km,kopt-1)/err(km)
goto 3

endif
endif

enddo 17

3 red=min(red,REDMIN) Reduce stepsize by at least REDMIN and at
most REDMAX.red=max(red,REDMAX)

h=h*red
reduct=.true.
goto 2 Try again.

4 x=xnew Successful step taken.
hdid=h
first=.false.
wrkmin=1.e35 Compute optimal row for convergence and

corresponding stepsize.do 18 kk=1,km
fact=max(err(kk),SCALMX)
work=fact*a(kk+1)
if(work.lt.wrkmin)then

scale=fact
wrkmin=work
kopt=kk+1
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endif
enddo 18

hnext=h/scale
if(kopt.ge.k.and.kopt.ne.kmax.and..not.reduct)then Check for possible order in-

crease, but not if step-
size was just reduced.

fact=max(scale/alf(kopt-1,kopt),SCALMX)
if(a(kopt+1)*fact.le.wrkmin)then

hnext=h/fact
kopt=kopt+1

endif
endif
return
END

The polynomial extrapolation routine is based on the same algorithm as polint
§3.1. It is simpler in that it is always extrapolating to zero, rather than to an arbitrary
value. However, it is more complicated in that it must individually extrapolate each
component of a vector of quantities.

SUBROUTINE pzextr(iest,xest,yest,yz,dy,nv)
INTEGER iest,nv,IMAX,NMAX
REAL xest,dy(nv),yest(nv),yz(nv)
PARAMETER (IMAX=13,NMAX=50)

Use polynomial extrapolation to evaluate nv functions at x = 0 by fitting a polynomial to a
sequence of estimates with progressively smaller values x = xest, and corresponding func-
tion vectors yest(1:nv). This call is number iest in the sequence of calls. Extrapolated
function values are output as yz(1:nv), and their estimated error is output as dy(1:nv).
Parameters: Maximum expected value of iest is IMAX; of nv is NMAX.

INTEGER j,k1
REAL delta,f1,f2,q,d(NMAX),qcol(NMAX,IMAX),x(IMAX)
SAVE qcol,x
x(iest)=xest Save current independent variable.
do 11 j=1,nv

dy(j)=yest(j)
yz(j)=yest(j)

enddo 11

if(iest.eq.1) then Store first estimate in first column.
do 12 j=1,nv

qcol(j,1)=yest(j)
enddo 12

else
do 13 j=1,nv

d(j)=yest(j)
enddo 13

do 15 k1=1,iest-1
delta=1./(x(iest-k1)-xest)
f1=xest*delta
f2=x(iest-k1)*delta
do 14 j=1,nv Propagate tableau 1 diagonal more.

q=qcol(j,k1)
qcol(j,k1)=dy(j)
delta=d(j)-q
dy(j)=f1*delta
d(j)=f2*delta
yz(j)=yz(j)+dy(j)

enddo 14

enddo 15

do 16 j=1,nv
qcol(j,iest)=dy(j)

enddo 16

endif
return
END
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Current wisdom favors polynomial extrapolation over rational function extrap-
olation in the Bulirsch-Stoer method. However, our feeling is that this view is guided
more by the kinds of problems used for tests than by one method being actually
“better.” Accordingly, we provide the optional routine rzextr for rational function
extrapolation, an exact substitution for pzextr above.

SUBROUTINE rzextr(iest,xest,yest,yz,dy,nv)
INTEGER iest,nv,IMAX,NMAX
REAL xest,dy(nv),yest(nv),yz(nv)
PARAMETER (IMAX=13,NMAX=50)

Exact substitute for pzextr, but uses diagonal rational function extrapolation instead of
polynomial extrapolation.

INTEGER j,k
REAL b,b1,c,ddy,v,yy,d(NMAX,IMAX),fx(IMAX),x(IMAX)
SAVE d,x
x(iest)=xest Save current independent variable.
if(iest.eq.1) then

do 11 j=1,nv
yz(j)=yest(j)
d(j,1)=yest(j)
dy(j)=yest(j)

enddo 11

else
do 12 k=1,iest-1

fx(k+1)=x(iest-k)/xest
enddo 12

do 14 j=1,nv Evaluate next diagonal in tableau.
yy=yest(j)
v=d(j,1)
c=yy
d(j,1)=yy
do 13 k=2,iest

b1=fx(k)*v
b=b1-c
if(b.ne.0.) then

b=(c-v)/b
ddy=c*b
c=b1*b

else Care needed to avoid division by 0.
ddy=v

endif
if (k.ne.iest) v=d(j,k)
d(j,k)=ddy
yy=yy+ddy

enddo 13

dy(j)=ddy
yz(j)=yy

enddo 14

endif
return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§7.2.14. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Deuflhard, P. 1983, Numerische Mathematik, vol. 41, pp. 399–422. [2]

Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505–535. [3]
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16.5 Second-Order Conservative Equations

Usually when you have a system of high-order differential equations to solve it is best
to reformulate them as a system of first-order equations, as discussed in §16.0. There is
a particular class of equations that occurs quite frequently in practice where you can gain
about a factor of two in efficiency by differencing the equations directly. The equations are
second-order systems where the derivative does not appear on the right-hand side:

y′′ = f(x, y), y(x0) = y0, y′(x0) = z0 (16.5.1)

As usual, y can denote a vector of values.
Stoermer’s rule, dating back to 1907, has been a popular method for discretizing such

systems. With h = H/m we have

y1 = y0 + h[z0 + 1
2
hf(x0, y0)]

yk+1 − 2yk + yk−1 = h2f(x0 + kh, yk), k = 1, . . . , m − 1

zm = (ym − ym−1)/h + 1
2
hf(x0 + H,ym)

(16.5.2)

Here zm is y′(x0 + H). Henrici showed how to rewrite equations (16.5.2) to reduce roundoff
error by using the quantities ∆k ≡ yk+1 − yk. Start with

∆0 = h[z0 + 1
2
hf(x0, y0)]

y1 = y0 + ∆0

(16.5.3)

Then for k = 1, . . . , m − 1, set

∆k = ∆k−1 + h2f(x0 + kh, yk)

yk+1 = yk + ∆k

(16.5.4)

Finally compute the derivative from

zm = ∆m−1/h + 1
2
hf(x0 + H,ym) (16.5.5)

Gragg again showed that the error series for equations (16.5.3)–(16.5.5) contains only
even powers of h, and so the method is a logical candidate for extrapolation à la Bulirsch-Stoer.
We replace mmid by the following routine stoerm:

SUBROUTINE stoerm(y,d2y,nv,xs,htot,nstep,yout,derivs)
INTEGER nstep,nv,NMAX
REAL htot,xs,d2y(nv),y(nv),yout(nv)
EXTERNAL derivs
PARAMETER (NMAX=50) Maximum value of nv.

C USES derivs
Stoermer’s rule for integrating y′′ = f(x, y) for a system of n = nv/2 equations. On input
y(1:nv) contains y in its first n elements and y′ in its second n elements, all evaluated
at xs. d2y(1:nv) contains the right-hand side function f (also evaluated at xs) in its
first n elements. Its second n elements are not referenced. Also input is htot, the total
step to be taken, and nstep, the number of substeps to be used. The output is returned
as yout(1:nv), with the same storage arrangement as y. derivs is the user-supplied
subroutine that calculates f .

INTEGER i,n,neqns,nn
REAL h,h2,halfh,x,ytemp(NMAX)
h=htot/nstep Stepsize this trip.
halfh=0.5*h
neqns=nv/2 Number of equations.
do 11 i=1,neqns First step.

n=neqns+i
ytemp(n)=h*(y(n)+halfh*d2y(i))
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ytemp(i)=y(i)+ytemp(n)
enddo 11

x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
h2=h*h
do 13 nn=2,nstep General step.

do 12 i=1,neqns
n=neqns+i
ytemp(n)=ytemp(n)+h2*yout(i)
ytemp(i)=ytemp(i)+ytemp(n)

enddo 12

x=x+h
call derivs(x,ytemp,yout)

enddo 13

do 14 i=1,neqns Last step.
n=neqns+i
yout(n)=ytemp(n)/h+halfh*yout(i)
yout(i)=ytemp(i)

enddo 14

return
END

Note that for compatibility with bsstep the arrays y and d2y are of length 2n for a
system of n second-order equations. The values of y are stored in the first n elements of y,
while the first derivatives are stored in the second n elements. The right-hand side f is stored
in the first n elements of the array d2y; the second n elements are unused. With this storage
arrangement you can use bsstep simply by replacing the call to mmid with one to stoerm
using the same arguments; just be sure that the argument nv of bsstep is set to 2n. You
should also use the more efficient sequence of stepsizes suggested by Deuflhard:

n = 1, 2, 3, 4, 5, . . . (16.5.6)

and set KMAXX = 12 in bsstep.

CITED REFERENCES AND FURTHER READING:

Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505–535.

16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of a stiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing. For example, consider the following set
of equations [1]:

u′ = 998u + 1998v

v′ = −999u− 1999v
(16.6.1)

with boundary conditions

u(0) = 1 v(0) = 0 (16.6.2)
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x

y

Figure 16.6.1. Example of an instability encountered in integrating a stiff equation (schematic). Here
it is supposed that the equation has two solutions, shown as solid and dashed lines. Although the initial
conditions are such as to give the solid solution, the stability of the integration (shown as the unstable
dotted sequence of segments) is determined by the more rapidly varying dashed solution, even after that
solution has effectively died away to zero. Implicit integration methods are the cure.

By means of the transformation

u = 2y − z v = −y + z (16.6.3)

we find the solution

u = 2e−x − e−1000x

v = −e−x + e−1000x
(16.6.4)

If we integrated the system (16.6.1) with any of the methods given so far in this
chapter, the presence of the e−1000x term would require a stepsize h � 1/1000 for
the method to be stable (the reason for this is explained below). This is so even
though the e−1000x term is completely negligible in determining the values of u and
v as soon as one is away from the origin (see Figure 16.6.1).

This is the generic disease of stiff equations: we are required to follow the
variation in the solution on the shortest length scale to maintain stability of the
integration, even though accuracy requirements allow a much larger stepsize.

To see how we might cure this problem, consider the single equation

y′ = −cy (16.6.5)

where c > 0 is a constant. The explicit (or forward) Euler scheme for integrating
this equation with stepsize h is

yn+1 = yn + hy′
n = (1 − ch)yn (16.6.6)

The method is called explicit because the new value yn+1 is given explicitly in
terms of the old value yn. Clearly the method is unstable if h > 2/c, for then
|yn| → ∞ as n → ∞.
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The simplest cure is to resort to implicit differencing, where the right-hand side
is evaluated at the new y location. In this case, we get the backward Euler scheme:

yn+1 = yn + hy′
n+1 (16.6.7)

or

yn+1 =
yn

1 + ch
(16.6.8)

The method is absolutely stable: even as h → ∞, yn+1 → 0, which is in fact the
correct solution of the differential equation. If we think of x as representing time,
then the implicit method converges to the true equilibrium solution (i.e., the solution
at late times) for large stepsizes. This nice feature of implicit methods holds only
for linear systems, but even in the general case implicit methods give better stability.
Of course, we give up accuracy in following the evolution towards equilibrium if
we use large stepsizes, but we maintain stability.

These considerations can easily be generalized to sets of linear equations with
constant coefficients:

y′ = −C · y (16.6.9)

where C is a positive definite matrix. Explicit differencing gives

yn+1 = (1 − Ch) · yn (16.6.10)

Now a matrix An tends to zero as n → ∞ only if the largest eigenvalue of A
has magnitude less than unity. Thus yn is bounded as n → ∞ only if the largest
eigenvalue of 1 − Ch is less than 1, or in other words

h <
2

λmax
(16.6.11)

where λmax is the largest eigenvalue of C.
On the other hand, implicit differencing gives

yn+1 = yn + hy′n+1 (16.6.12)
or

yn+1 = (1 + Ch)−1 · yn (16.6.13)

If the eigenvalues of C are λ, then the eigenvalues of (1 + Ch)−1 are (1 + λh)−1,
which has magnitude less than one for all h. (Recall that all the eigenvalues of a
positive definite matrix are nonnegative.) Thus the method is stable for all stepsizes
h. The penalty we pay for this stability is that we are required to invert a matrix
at each step.

Not all equations are linear with constant coefficients, unfortunately! For
the system

y′ = f(y) (16.6.14)

implicit differencing gives

yn+1 = yn + hf(yn+1) (16.6.15)
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In general this is some nasty set of nonlinear equations that has to be solved iteratively
at each step. Suppose we try linearizing the equations, as in Newton’s method:

yn+1 = yn + h

[
f(yn) +

∂f
∂y

∣∣∣∣
y

n

· (yn+1 − yn)

]
(16.6.16)

Here ∂f/∂y is the matrix of the partial derivatives of the right-hand side (the Jacobian
matrix). Rearrange equation (16.6.16) into the form

yn+1 = yn + h

[
1 − h

∂f
∂y

]−1

· f(yn) (16.6.17)

If h is not too big, only one iteration of Newton’s method may be accurate enough
to solve equation (16.6.15) using equation (16.6.17). In other words, at each step
we have to invert the matrix

1 − h
∂f
∂y

(16.6.18)

to find yn+1. Solving implicit methods by linearization is called a “semi-implicit”
method, so equation (16.6.17) is the semi-implicit Euler method. It is not guaranteed
to be stable, but it usually is, because the behavior is locally similar to the case of
a constant matrix C described above.

So far we have dealt only with implicit methods that are first-order accurate.
While these are very robust, most problems will benefit from higher-order methods.
There are three important classes of higher-order methods for stiff systems:

• Generalizations of the Runge-Kutta method, of which the most useful
are the Rosenbrock methods. The first practical implementation of these
ideas was by Kaps and Rentrop, and so these methods are also called
Kaps-Rentrop methods.

• Generalizations of the Bulirsch-Stoer method, in particular a semi-implicit
extrapolation method due to Bader and Deuflhard.

• Predictor-corrector methods, most of which are descendants of Gear’s
backward differentiation method.

We shall give implementations of the first two methods. Note that systems where
the right-hand side depends explicitly on x, f(y, x), can be handled by adding x to
the list of dependent variables so that the system to be solved is(

y
x

)′
=
(

f
1

)
(16.6.19)

In both the routines to be given in this section, we have explicitly carried out this
replacement for you, so the routines can handle right-hand sides of the form f(y, x)
without any special effort on your part.

We now mention an important point: It is absolutely crucial to scale your vari-
ables properly when integrating stiff problems with automatic stepsize adjustment.
As in our nonstiff routines, you will be asked to supply a vector y scal with which
the error is to be scaled. For example, to get constant fractional errors, simply set
yscal = |y|. You can get constant absolute errors relative to some maximum values
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by setting yscal equal to those maximum values. In stiff problems, there are often
strongly decreasing pieces of the solution which you are not particularly interested
in following once they are small. You can control the relative error above some
threshold C and the absolute error below the threshold by setting

yscal = max(C, |y|) (16.6.20)

If you are using appropriate nondimensional units, then each component of C should
be of order unity. If you are not sure what values to take for C, simply try
setting each component equal to unity. We strongly advocate the choice (16.6.20)
for stiff problems.

One final warning: Solving stiff problems can sometimes lead to catastrophic
precision loss. Be alert for situations where double precision is necessary.

Rosenbrock Methods

These methods have the advantage of being relatively simple to understand and imple-
ment. For moderate accuracies (ε <∼ 10−4 – 10−5 in the error criterion) and moderate-sized
systems (N <∼ 10), they are competitive with the more complicated algorithms. For more
stringent parameters, Rosenbrock methods remain reliable; they merely become less efficient
than competitors like the semi-implicit extrapolation method (see below).

A Rosenbrock method seeks a solution of the form

y(x0 + h) = y0 +
s∑

i=1

ciki (16.6.21)

where the corrections ki are found by solving s linear equations that generalize the structure
in (16.6.17):

(1 − γhf ′) · ki = hf

(
y0 +

i−1∑
j=1

αijkj

)
+ hf ′ ·

i−1∑
j=1

γijkj , i = 1, . . . , s (16.6.22)

Here we denote the Jacobian matrix by f′. The coefficients γ, ci, αij , and γij are fixed
constants independent of the problem. If γ = γij = 0, this is simply a Runge-Kutta scheme.
Equations (16.6.22) can be solved successively for k1, k2, . . . .

Crucial to the success of a stiff integration scheme is an automatic stepsize adjustment
algorithm. Kaps and Rentrop [2] discovered an embedded or Runge-Kutta-Fehlberg method
as described in §16.2: Two estimates of the form (16.6.21) are computed, the “real” one y and
a lower-order estimate ŷ with different coefficients ĉi, i = 1, . . . , ŝ, where ŝ < s but the ki

are the same. The difference between y and ŷ leads to an estimate of the local truncation error,
which can then be used for stepsize control. Kaps and Rentrop showed that the smallest value
of s for which embedding is possible is s = 4, ŝ = 3, leading to a fourth-order method.

To minimize the matrix-vector multiplications on the right-hand side of (16.6.22), we
rewrite the equations in terms of quantities

gi =

i−1∑
j=1

γijkj + γki (16.6.23)

The equations then take the form

(1/γh − f ′) · g1 = f(y0)

(1/γh − f ′) · g2 = f(y0 + a21g1) + c21g1/h

(1/γh − f ′) · g3 = f(y0 + a31g1 + a32g2) + (c31g1 + c32g2)/h

(1/γh − f ′) · g4 = f(y0 + a41g1 + a42g2 + a43g3) + (c41g1 + c42g2 + c43g3)/h

(16.6.24)
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In our implementation stiff of the Kaps-Rentrop algorithm, we have carried out the
replacement (16.6.19) explicitly in equations (16.6.24), so you need not concern yourself
about it. Simply provide a subroutine (called derivs in stiff) that returns f (called dydx)
as a function of x and y. Also supply a subroutine jacobn that returns f′ (dfdy) and ∂f/∂x
(dfdx) as functions of x and y. If x does not occur explicitly on the right-hand side, then dfdx
will be zero. Usually the Jacobian matrix will be available to you by analytic differentiation of
the right-hand side f. If not, your subroutine will have to compute it by numerical differencing
with appropriate increments ∆y.

Kaps and Rentrop gave two different sets of parameters, which have slightly different
stability properties. Several other sets have been proposed. Our default choice is that of
Shampine [3], but we also give you one of the Kaps-Rentrop sets as an option. Some proposed
parameter sets require function evaluations outside the domain of integration; we prefer to
avoid that complication.

The calling sequence of stiff is exactly the same as the nonstiff routines given earlier
in this chapter. It is thus “plug-compatible” with them in the general ODE integrating routine
odeint. This compatibility requires, unfortunately, one slight anomaly: While the user-
supplied routine derivs is a dummy argument (which can therefore have any actual name),
the other user-supplied routine is not an argument and must be named (exactly) jacobn.

stiff begins by saving the initial values, in case the step has to be repeated because
the error tolerance is exceeded. The linear equations (16.6.24) are solved by first computing
the LU decomposition of the matrix 1/γh − f′ using the routine ludcmp. Then the four
gi are found by back-substitution of the four different right-hand sides using lubksb. Note
that each step of the integration requires one call to jacobn and three calls to derivs (one
call to get dydx before calling stiff, and two calls inside stiff). The reason only three
calls are needed and not four is that the parameters have been chosen so that the last two
calls in equation (16.6.24) are done with the same arguments. Counting the evaluation of
the Jacobian matrix as roughly equivalent to N evaluations of the right-hand side f, we see
that the Kaps-Rentrop scheme involves about N + 3 function evaluations per step. Note that
if N is large and the Jacobian matrix is sparse, you should replace the LU decomposition
by a suitable sparse matrix procedure.

Stepsize control depends on the fact that

yexact = y + O(h5)

yexact = ŷ + O(h4)
(16.6.25)

Thus

|y − ŷ| = O(h4) (16.6.26)

Referring back to the steps leading from equation (16.2.4) to equation (16.2.10), we see
that the new stepsize should be chosen as in equation (16.2.10) but with the exponents 1/4
and 1/5 replaced by 1/3 and 1/4, respectively. Also, experience shows that it is wise to
prevent too large a stepsize change in one step, otherwise we will probably have to undo
the large change in the next step. We adopt 0.5 and 1.5 as the maximum allowed decrease
and increase of h in one step.

SUBROUTINE stiff(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER n,NMAX,MAXTRY
REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n),SAFETY,GROW,

* PGROW,SHRNK,PSHRNK,ERRCON,GAM,A21,A31,A32,A2X,A3X,C21,
* C31,C32,C41,C42,C43,B1,B2,B3,B4,E1,E2,E3,E4,C1X,C2X,C3X,
* C4X

EXTERNAL derivs
PARAMETER (NMAX=50,SAFETY=0.9,GROW=1.5,PGROW=-.25,

* SHRNK=0.5,PSHRNK=-1./3.,ERRCON=.1296,MAXTRY=40)
PARAMETER (GAM=1./2.,A21=2.,A31=48./25.,A32=6./25.,C21=-8.,

* C31=372./25.,C32=12./5.,C41=-112./125.,C42=-54./125.,
* C43=-2./5.,B1=19./9.,B2=1./2.,B3=25./108.,B4=125./108.,
* E1=17./54.,E2=7./36.,E3=0.,E4=125./108.,C1X=1./2.,
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* C2X=-3./2.,C3X=121./50.,C4X=29./250.,A2X=1.,A3X=3./5.)
C USES derivs,jacobn,lubksb,ludcmp

Fourth-order Rosenbrock step for integrating stiff o.d.e.’s, with monitoring of local trun-
cation error to adjust stepsize. Input are the dependent variable vector y(1:n) and its
derivative dydx(1:n) at the starting value of the independent variable x. Also input are
the stepsize to be attempted htry, the required accuracy eps, and the vector yscal(1:n)
against which the error is scaled. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.
derivs is a user-supplied subroutine that computes the derivatives of the right-hand side
with respect to x, while jacobn (a fixed name) is a user-supplied subroutine that computes
the Jacobi matrix of derivatives of the right-hand side with respect to the components of y.
Parameters: NMAX is the maximum value of n; GROW and SHRNK are the largest and smallest
factors by which stepsize can change in one step; ERRCON=(GROW/SAFETY)**(1/PGROW)
and handles the case when errmax � 0.

INTEGER i,j,jtry,indx(NMAX)
REAL d,errmax,h,xsav,a(NMAX,NMAX),dfdx(NMAX),dfdy(NMAX,NMAX),

* dysav(NMAX),err(NMAX),g1(NMAX),g2(NMAX),g3(NMAX),
* g4(NMAX),ysav(NMAX)

xsav=x Save initial values.
do 11 i=1,n

ysav(i)=y(i)
dysav(i)=dydx(i)

enddo 11

call jacobn(xsav,ysav,dfdx,dfdy,n,NMAX)
The user must supply this subroutine to return the n-by-n matrix dfdy and the vector dfdx.

h=htry Set stepsize to the initial trial value.
do 23 jtry=1,MAXTRY

do 13 i=1,n Set up the matrix 1 − γhf′.
do 12 j=1,n

a(i,j)=-dfdy(i,j)
enddo 12

a(i,i)=1./(GAM*h)+a(i,i)
enddo 13

call ludcmp(a,n,NMAX,indx,d) LU decomposition of the matrix.
do 14 i=1,n Set up right-hand side for g1.

g1(i)=dysav(i)+h*C1X*dfdx(i)
enddo 14

call lubksb(a,n,NMAX,indx,g1) Solve for g1.
do 15 i=1,n Compute intermediate values of y and x.

y(i)=ysav(i)+A21*g1(i)
enddo 15

x=xsav+A2X*h
call derivs(x,y,dydx) Compute dydx at the intermediate values.
do 16 i=1,n Set up right-hand side for g2.

g2(i)=dydx(i)+h*C2X*dfdx(i)+C21*g1(i)/h
enddo 16

call lubksb(a,n,NMAX,indx,g2) Solve for g2.
do 17 i=1,n Compute intermediate values of y and x.

y(i)=ysav(i)+A31*g1(i)+A32*g2(i)
enddo 17

x=xsav+A3X*h
call derivs(x,y,dydx) Compute dydx at the intermediate values.
do 18 i=1,n Set up right-hand side for g3.

g3(i)=dydx(i)+h*C3X*dfdx(i)+(C31*g1(i)+
* C32*g2(i))/h

enddo 18

call lubksb(a,n,NMAX,indx,g3) Solve for g3.
do 19 i=1,n Set up right-hand side for g4.

g4(i)=dydx(i)+h*C4X*dfdx(i)+(C41*g1(i)+
* C42*g2(i)+C43*g3(i))/h

enddo 19

call lubksb(a,n,NMAX,indx,g4) Solve for g4.
do 21 i=1,n Get fourth-order estimate of y and error estimate.

y(i)=ysav(i)+B1*g1(i)+B2*g2(i)+B3*g3(i)+B4*g4(i)
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err(i)=E1*g1(i)+E2*g2(i)+E3*g3(i)+E4*g4(i)
enddo 21

x=xsav+h
if(x.eq.xsav)pause ’stepsize not significant in stiff’
errmax=0. Evaluate accuracy.
do 22 i=1,n

errmax=max(errmax,abs(err(i)/yscal(i)))
enddo 22

errmax=errmax/eps Scale relative to required tolerance.
if(errmax.le.1.)then Step succeeded. Compute size of next step and re-

turn.hdid=h
if(errmax.gt.ERRCON)then

hnext=SAFETY*h*errmax**PGROW
else

hnext=GROW*h
endif
return

else Truncation error too large, reduce stepsize.
hnext=SAFETY*h*errmax**PSHRNK
h=sign(max(abs(hnext),SHRNK*abs(h)),h)

endif
enddo 23 Go back and re-try step.
pause ’exceeded MAXTRY in stiff’
END

Here are the Kaps-Rentrop parameters, which can be substituted for those of Shampine
simply by replacing the PARAMETER statement:

PARAMETER (GAM=.231,A21=2.,A31=4.52470820736,A32=4.16352878860,
* C21=-5.07167533877,C31=6.02015272865,C32=.159750684673,
* C41=-1.856343618677,C42=-8.50538085819,C43=
* -2.08407513602,B1=3.95750374663,B2=4.62489238836,B3=
* .617477263873,B4=1.282612945268,E1=-2.30215540292,
* E2=-3.07363448539,E3=.873280801802,E4=1.282612945268,
* C1X=GAM,C2X=-.396296677520e-01,C3X=.550778939579,
* C4X=-.553509845700e-01,A2X=.462,A3X=.880208333333)

As an example of how stiff is used, one can solve the system

y′
1 = −.013y1 − 1000y1y3

y′
2 = −2500y2y3

y′
3 = −.013y1 − 1000y1y3 − 2500y2y3

(16.6.27)

with initial conditions

y1(0) = 1, y2(0) = 1, y3(0) = 0 (16.6.28)

(This is test problem D4 in [4].) We integrate the system up to x = 50 with an initial stepsize
of h = 2.9 × 10−4 using odeint. The components of C in (16.6.20) are all set to unity.
The routines derivs and jacobn for this problem are given below. Even though the ratio
of largest to smallest decay constants for this problem is around 106, stiff succeeds in
integrating this set in only 29 steps with ε = 10−4. By contrast, the Runge-Kutta routine
rkqs requires 51,012 steps!

SUBROUTINE jacobn(x,y,dfdx,dfdy,n,nmax)
INTEGER n,nmax,i
REAL x,y(*),dfdx(*),dfdy(nmax,nmax)
do 11 i=1,3

dfdx(i)=0.
enddo 11
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dfdy(1,1)=-.013-1000.*y(3)
dfdy(1,2)=0.
dfdy(1,3)=-1000.*y(1)
dfdy(2,1)=0.
dfdy(2,2)=-2500.*y(3)
dfdy(2,3)=-2500.*y(2)
dfdy(3,1)=-.013-1000.*y(3)
dfdy(3,2)=-2500.*y(3)
dfdy(3,3)=-1000.*y(1)-2500.*y(2)
return
END

SUBROUTINE derivs(x,y,dydx)
REAL x,y(*),dydx(*)
dydx(1)=-.013*y(1)-1000.*y(1)*y(3)
dydx(2)=-2500.*y(2)*y(3)
dydx(3)=-.013*y(1)-1000.*y(1)*y(3)-2500.*y(2)*y(3)
return
END

Semi-implicit Extrapolation Method

The Bulirsch-Stoer method, which discretizes the differential equation using the modified
midpoint rule, does not work for stiff problems. Bader and Deuflhard [5] discovered a semi-
implicit discretization that works very well and that lends itself to extrapolation exactly as
in the original Bulirsch-Stoer method.

The starting point is an implicit form of the midpoint rule:

yn+1 − yn−1 = 2hf
(

yn+1 + yn−1

2

)
(16.6.29)

Convert this equation into semi-implicit form by linearizing the right-hand side about f(yn).
The result is the semi-implicit midpoint rule:[

1 − h
∂f
∂y

]
· yn+1 =

[
1 + h

∂f
∂y

]
· yn−1 + 2h

[
f(yn) − ∂f

∂y
· yn

]
(16.6.30)

It is used with a special first step, the semi-implicit Euler step (16.6.17), and a special
“smoothing” last step in which the last yn is replaced by

yn ≡ 1
2
(yn+1 + yn−1) (16.6.31)

Bader and Deuflhard showed that the error series for this method once again involves only
even powers of h.

For practical implementation, it is better to rewrite the equations using ∆k ≡ yk+1 − yk.
With h = H/m, start by calculating

∆0 =

[
1 − h

∂f
∂y

]−1

· hf(y0)

y1 = y0 + ∆0

(16.6.32)

Then for k = 1, . . . , m − 1, set

∆k = ∆k−1 + 2

[
1 − h

∂f
∂y

]−1

· [hf(yk) − ∆k−1]

yk+1 = yk + ∆k

(16.6.33)
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Finally compute

∆m =

[
1 − h

∂f
∂y

]−1

· [hf(ym) − ∆m−1]

ym = ym + ∆m

(16.6.34)

It is easy to incorporate the replacement (16.6.19) in the above formulas. The additional
terms in the Jacobian that come from ∂f/∂x all cancel out of the semi-implicit midpoint rule
(16.6.30). In the special first step (16.6.17), and in the corresponding equation (16.6.32), the
term hf becomes hf + h2∂f/∂x. The remaining equations are all unchanged.

This algorithm is implemented in the routine simpr:

SUBROUTINE simpr(y,dydx,dfdx,dfdy,nmax,n,xs,htot,nstep,yout,
* derivs)

INTEGER n,nmax,nstep,NMAXX
REAL htot,xs,dfdx(n),dfdy(nmax,nmax),dydx(n),y(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAXX=50) Maximum expected value of n.

C USES derivs,lubksb,ludcmp
Performs one step of semi-implicit midpoint rule. Input are the dependent variable y(1:n),
its derivative dydx(1:n), the derivative of the right-hand side with respect to x, dfdx(1:n),
and the Jacobian dfdy(1:nmax,1:nmax) at xs. Also input are htot, the total step
to be taken, and nstep, the number of substeps to be used. The output is returned as
yout(1:n). derivs is the user-supplied subroutine that calculates dydx.

INTEGER i,j,nn,indx(NMAXX)
REAL d,h,x,a(NMAXX,NMAXX),del(NMAXX),ytemp(NMAXX)
h=htot/nstep Stepsize this trip.
do 12 i=1,n Set up the matrix 1 − hf′.

do 11 j=1,n
a(i,j)=-h*dfdy(i,j)

enddo 11

a(i,i)=a(i,i)+1.
enddo 12

call ludcmp(a,n,NMAXX,indx,d) LU decomposition of the matrix.
do 13 i=1,n Set up right-hand side for first step. Use yout for

temporary storage.yout(i)=h*(dydx(i)+h*dfdx(i))
enddo 13

call lubksb(a,n,NMAXX,indx,yout)
do 14 i=1,n First step.

del(i)=yout(i)
ytemp(i)=y(i)+del(i)

enddo 14

x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
do 17 nn=2,nstep General step.

do 15 i=1,n Set up right-hand side for general step.
yout(i)=h*yout(i)-del(i)

enddo 15

call lubksb(a,n,NMAXX,indx,yout)
do 16 i=1,n

del(i)=del(i)+2.*yout(i)
ytemp(i)=ytemp(i)+del(i)

enddo 16

x=x+h
call derivs(x,ytemp,yout)

enddo 17

do 18 i=1,n Set up right-hand side for last step.
yout(i)=h*yout(i)-del(i)

enddo 18

call lubksb(a,n,NMAXX,indx,yout)
do 19 i=1,n Take last step.

yout(i)=ytemp(i)+yout(i)
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enddo 19

return
END

The routine simpr is intended to be used in a routine stifbs that is almost exactly the
same as bsstep. The only differences are:

• The stepsize sequence is

n = 2, 6, 10, 14, 22, 34, 50, . . . , (16.6.35)

where each member differs from its predecessor by the smallest multiple of 4 that
makes the ratio of successive terms be ≤ 5

7
. The parameter KMAXX is taken to be 7.

• The work per unit step now includes the cost of Jacobian evaluations as well
as function evaluations. We count one Jacobian evaluation as equivalent to N
function evaluations, where N is the number of equations.

• Once again the user-supplied routine derivs is a dummy argument and so can have
any name. However, to maintain “plug-compatibility” with rkqs, bsstep and
stiff, the routine jacobn is not an argument and must have exactly this name. It
is called once per step to return f′ (dfdy) and ∂f/∂x (dfdx) as functions of x and y.

Here is the routine, with comments pointing out only the differences from bsstep:

SUBROUTINE stifbs(y,dydx,nv,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER nv,NMAX,KMAXX,IMAX
REAL eps,hdid,hnext,htry,x,dydx(nv),y(nv),yscal(nv),SAFE1,

* SAFE2,REDMAX,REDMIN,TINY,SCALMX
EXTERNAL derivs
PARAMETER (NMAX=50,KMAXX=7,IMAX=KMAXX+1,SAFE1=.25,SAFE2=.7,

* REDMAX=1.e-5,REDMIN=.7,TINY=1.e-30,SCALMX=.1)
C USES derivs,jacobn,simpr,pzextr

Semi-implicit extrapolation step for integrating stiff o.d.e.’s, with monitoring of local trun-
cation error to adjust stepsize. Input are the dependent variable vector y(1:nv) and its
derivative dydx(1:nv) at the starting value of the independent variable x. Also input are
the stepsize to be attempted htry, the required accuracy eps, and the vector yscal(1:nv)
against which the error is scaled. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.
derivs is a user-supplied subroutine that computes the derivatives of the right-hand side
with respect to x, while jacobn (a fixed name) is a user-supplied subroutine that computes
the Jacobi matrix of derivatives of the right-hand side with respect to the components of y.
Be sure to set htry on successive steps to the value of hnext returned from the previous
step, as is the case if the routine is called by odeint.

INTEGER i,iq,k,kk,km,kmax,kopt,nvold,nseq(IMAX)
REAL eps1,epsold,errmax,fact,h,red,scale,work,wrkmin,xest,xnew,

* a(IMAX),alf(KMAXX,KMAXX),dfdx(NMAX),dfdy(NMAX,NMAX),
* err(KMAXX),yerr(NMAX),ysav(NMAX),yseq(NMAX)

LOGICAL first,reduct
SAVE a,alf,epsold,first,kmax,kopt,nseq,nvold,xnew
DATA first/.true./,epsold/-1./,nvold/-1/
DATA nseq /2,6,10,14,22,34,50,70/ Sequence is different from bsstep.
if(eps.ne.epsold.or.nv.ne.nvold)then Reinitialize also if nv has changed.

hnext=-1.e29
xnew=-1.e29
eps1=SAFE1*eps
a(1)=nseq(1)+1
do 11 k=1,KMAXX

a(k+1)=a(k)+nseq(k+1)
enddo 11

do 13 iq=2,KMAXX
do 12 k=1,iq-1

alf(k,iq)=eps1**((a(k+1)-a(iq+1))/
* ((a(iq+1)-a(1)+1.)*(2*k+1)))

enddo 12

enddo 13
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epsold=eps
nvold=nv Save nv.
a(1)=nv+a(1) Add cost of Jacobian evaluations to work co-

efficients.do 14 k=1,KMAXX
a(k+1)=a(k)+nseq(k+1)

enddo 14

do 15 kopt=2,KMAXX-1
if(a(kopt+1).gt.a(kopt)*alf(kopt-1,kopt))goto 1

enddo 15

1 kmax=kopt
endif
h=htry
do 16 i=1,nv

ysav(i)=y(i)
enddo 16

call jacobn(x,y,dfdx,dfdy,nv,nmax) Evaluate Jacobian.
if(h.ne.hnext.or.x.ne.xnew)then

first=.true.
kopt=kmax

endif
reduct=.false.

2 do 18 k=1,kmax
xnew=x+h
if(xnew.eq.x)pause ’stepsize underflow in stifbs’
call simpr(ysav,dydx,dfdx,dfdy,nmax,nv,x,h,nseq(k),yseq,

* derivs) Semi-implicit midpoint rule.
xest=(h/nseq(k))**2 The rest of the routine is identical to bsstep.
call pzextr(k,xest,yseq,y,yerr,nv)
if(k.ne.1)then

errmax=TINY
do 17 i=1,nv

errmax=max(errmax,abs(yerr(i)/yscal(i)))
enddo 17

errmax=errmax/eps
km=k-1
err(km)=(errmax/SAFE1)**(1./(2*km+1))

endif
if(k.ne.1.and.(k.ge.kopt-1.or.first))then

if(errmax.lt.1.)goto 4
if(k.eq.kmax.or.k.eq.kopt+1)then

red=SAFE2/err(km)
goto 3

else if(k.eq.kopt)then
if(alf(kopt-1,kopt).lt.err(km))then

red=1./err(km)
goto 3

endif
else if(kopt.eq.kmax)then

if(alf(km,kmax-1).lt.err(km))then
red=alf(km,kmax-1)*

* SAFE2/err(km)
goto 3

endif
else if(alf(km,kopt).lt.err(km))then

red=alf(km,kopt-1)/err(km)
goto 3

endif
endif

enddo 18

3 red=min(red,REDMIN)
red=max(red,REDMAX)
h=h*red
reduct=.true.
goto 2
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4 x=xnew
hdid=h
first=.false.
wrkmin=1.e35
do 19 kk=1,km

fact=max(err(kk),SCALMX)
work=fact*a(kk+1)
if(work.lt.wrkmin)then

scale=fact
wrkmin=work
kopt=kk+1

endif
enddo 19

hnext=h/scale
if(kopt.ge.k.and.kopt.ne.kmax.and..not.reduct)then

fact=max(scale/alf(kopt-1,kopt),SCALMX)
if(a(kopt+1)*fact.le.wrkmin)then

hnext=h/fact
kopt=kopt+1

endif
endif
return
END

The routine stifbs is an excellent routine for all stiff problems, competitive with
the best Gear-type routines. stiff is comparable in execution time for moderate N and
ε <∼ 10−4. By the time ε ∼ 10−8, stifbs is roughly an order of magnitude faster. There
are further improvements that could be applied to stifbs to make it even more robust. For
example, very occasionally ludcmp in simpr will encounter a singular matrix. You could
arrange for the stepsize to be reduced, say by a factor of the current nseq(k). There are
also certain stability restrictions on the stepsize that come into play on some problems. For
a discussion of how to implement these automatically, see [6].
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16.7 Multistep, Multivalue, and
Predictor-Corrector Methods

The terms multistep and multivalue describe two different ways of implementing
essentially the same integration technique for ODEs. Predictor-corrector is a partic-
ular subcategrory of these methods — in fact, the most widely used. Accordingly,
the name predictor-corrector is often loosely used to denote all these methods.

We suspect that predictor-corrector integrators have had their day, and that they
are no longer the method of choice for most problems in ODEs. For high-precision
applications, or applications where evaluations of the right-hand sides are expensive,
Bulirsch-Stoer dominates. For convenience, or for low precision, adaptive-stepsize
Runge-Kutta dominates. Predictor-corrector methods have been, we think, squeezed
out in the middle. There is possibly only one exceptional case: high-precision
solution of very smooth equations with very complicated right-hand sides, as we
will describe later.

Nevertheless, these methods have had a long historical run. Textbooks are
full of information on them, and there are a lot of standard ODE programs around
that are based on predictor-corrector methods. Many capable researchers have a
lot of experience with predictor-corrector routines, and they see no reason to make
a precipitous change of habit. It is not a bad idea for you to be familiar with the
principles involved, and even with the sorts of bookkeeping details that are the bane
of these methods. Otherwise there will be a big surprise in store when you first have
to fix a problem in a predictor-corrector routine.

Let us first consider the multistep approach. Think about how integrating an
ODE is different from finding the integral of a function: For a function, the integrand
has a known dependence on the independent variable x, and can be evaluated at
will. For an ODE, the “integrand” is the right-hand side, which depends both on
x and on the dependent variables y. Thus to advance the solution of y ′ = f(x, y)
from xn to x, we have

y(x) = yn +
∫ x

xn

f(x′, y) dx′ (16.7.1)

In a single-step method like Runge-Kutta or Bulirsch-Stoer, the value yn+1 at xn+1

depends only on yn. In a multistep method, we approximate f(x, y) by a polynomial
passing through several previous points xn, xn−1, . . . and possibly also through
xn+1. The result of evaluating the integral (16.7.1) at x = xn+1 is then of the form

yn+1 = yn + h(β0y
′
n+1 + β1y

′
n + β2y

′
n−1 + β3y

′
n−2 + · · ·) (16.7.2)

where y′
n denotes f(xn, yn), and so on. If β0 = 0, the method is explicit; otherwise

it is implicit. The order of the method depends on how many previous steps we
use to get each new value of y.

Consider how we might solve an implicit formula of the form (16.7.2) for y n+1.
Two methods suggest themselves: functional iteration and Newton’s method. In
functional iteration, we take some initial guess for yn+1, insert it into the right-hand
side of (16.7.2) to get an updated value of yn+1, insert this updated value back into
the right-hand side, and continue iterating. But how are we to get an initial guess for
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yn+1? Easy! Just use someexplicit formula of the same form as (16.7.2). This is
called thepredictor step. In the predictor step we are essentiallyextrapolating the
polynomial fit to the derivative from the previous points to the new pointx n+1 and
then doing the integral (16.7.1) in a Simpson-like manner fromx n to xn+1. The
subsequent Simpson-like integration, using the prediction step’s value ofy n+1 to
interpolate the derivative, is called thecorrector step. The difference between the
predicted and corrected function values supplies information on the local truncation
error that can be used to control accuracy and to adjust stepsize.

If one corrector step is good, aren’t many better? Why not use each corrector
as an improved predictor and iterate to convergence on each step? Answer: Even if
you had aperfect predictor, the step would still be accurate only to the finite order
of the corrector. This incurable error term is on the same order as that which your
iteration is supposed to cure, so you are at best changing only the coefficient in front
of the error term by a fractional amount. So dubious an improvement is certainly not
worth the effort. Your extra effort would be better spent in taking a smaller stepsize.

As described so far, you might think it desirable or necessary to predict several
intervals ahead at each step, then to use all these intervals, with various weights, in
a Simpson-like corrector step. That is not a good idea. Extrapolation is the least
stable part of the procedure, and it is desirable to minimize its effect. Therefore, the
integration steps of a predictor-corrector method are overlapping, each one involving
several stepsize intervalsh, but extending just one such interval farther than the
previous ones. Only that one extended interval is extrapolated by each predictor step.

The most popular predictor-corrector methods are probably the Adams-
Bashforth-Moulton schemes, which have good stability properties. The Adams-
Bashforth part is the predictor. For example, the third-order case is

predictor: yn+1 = yn +
h

12
(23y′

n − 16y′
n−1 + 5y′

n−2) + O(h4) (16.7.3)

Here information at the current pointxn, together with the two previous pointsxn−1

andxn−2 (assumed equally spaced), is used to predict the valueyn+1 at the next
point,xn+1. The Adams-Moulton part is the corrector. The third-order case is

corrector: yn+1 = yn +
h

12
(5y′

n+1 + 8y′
n − y′

n−1) + O(h4) (16.7.4)

Without the trial value ofyn+1 from the predictor step to insert on the right-hand
side, the corrector would be a nasty implicit equation foryn+1.

There are actually three separate processes occurring in a predictor-corrector
method: the predictor step, which we call P, the evaluation of the derivativey ′

n+1

from the latest value ofy, which we call E, and the corrector step, which we call
C. In this notation, iteratingm times with the corrector (a practice we inveighed
against earlier) would be written P(EC)m. One also has the choice of finishing with
a C or an E step. The lore is that a final E is superior, so the strategy usually
recommended is PECE.

Notice that a PC method with a fixed number of iterations (say, one) is an
explicit method! When we fix the number of iterations in advance, then the final
value ofyn+1 can be written as some complicated function of known quantities. Thus
fixed iteration PC methods lose the strong stability properties of implicit methods
and should only be used for nonstiff problems.
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For stiff problems wemust use an implicit method if we want to avoid having
tiny stepsizes. (Not all implicit methods are good for stiff problems, but fortunately
some good ones such as the Gear formulas are known.) We then appear to have two
choices for solving the implicit equations: functional iteration to convergence, or
Newton iteration. However, it turns out that for stiff problems functional iteration will
not even converge unless we use tiny stepsizes, no matter how close our prediction
is! Thus Newton iteration is usually an essential part of a multistep stiff solver. For
convergence, Newton’s method doesn’t particularly care what the stepsize is, as long
as the prediction is accurate enough.

Multistep methods, as we have described them so far, suffer from two serious
difficulties when one tries to implement them:

• Since the formulas require results from equally spaced steps, adjusting
the stepsize is difficult.

• Starting and stopping present problems. For starting, we need the initial
values plus several previous steps to prime the pump. Stopping is a
problem because equal steps are unlikely to land directly on the desired
termination point.

Older implementations of PC methods have various cumbersome ways of
dealing with these problems. For example, they might use Runge-Kutta to start
and stop. Changing the stepsize requires considerable bookkeeping to do some
kind of interpolation procedure. Fortunately both these drawbacks disappear with
the multivalue approach.

For multivalue methods the basic data available to the integrator are the first
few terms of the Taylor series expansion of the solution at the current pointx n. The
aim is to advance the solution and obtain the expansion coefficients at the next point
xn+1. This is in contrast to multistep methods, where the data are the values of
the solution atxn, xn−1, . . . . We’ll illustrate the idea by considering a four-value
method, for which the basic data are

yn ≡




yn

hy′
n

(h2/2)y′′
n

(h3/6)y′′′
n


 (16.7.5)

It is also conventional to scale the derivatives with the powers ofh = xn+1 − xn as
shown. Note that here we use the vector notationy to denote the solution and its
first few derivatives at a point, not the fact that we are solving a system of equations
with many componentsy.

In terms of the data in (16.7.5), we can approximate the value of the solution
y at some pointx:

y(x) = yn + (x − xn)y′
n +

(x − xn)2

2
y′′

n +
(x − xn)3

6
y′′′

n (16.7.6)

Setx = xn+1 in equation (16.7.6) to get an approximation toyn+1. Differentiate
equation (16.7.6) and setx = xn+1 to get an approximation toy ′

n+1, and similarly for
y′′

n+1 andy′′′
n+1. Call the resulting approximatioñyn+1, where the tilde is a reminder
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that all we have done so far is a polynomial extrapolation of the solution and its
derivatives; we have not yet used the differential equation. You can easily verify that

ỹn+1 = B · yn (16.7.7)

where the matrixB is

B =




1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1


 (16.7.8)

We now write the actual approximation toyn+1 that we will use by adding a
correction to ỹn+1:

yn+1 = ỹn+1 + αr (16.7.9)

Herer will be a fixed vector of numbers, in the same way thatB is a fixed matrix.
We fix α by requiring that the differential equation

y′
n+1 = f(xn+1, yn+1) (16.7.10)

be satisfied. The second of the equations in (16.7.9) is

hy′
n+1 = hỹ ′

n+1 + αr2 (16.7.11)

and this will be consistent with (16.7.10) provided

r2 = 1, α = hf(xn+1, yn+1) − hỹ ′
n+1 (16.7.12)

The values ofr1, r3, andr4 are free for the inventor of a given four-value method to
choose. Different choices give different orders of method (i.e., through what order
in h the final expression 16.7.9 actually approximates the solution), and different
stability properties.

An interesting result, not obvious from our presentation, is that multivalue and
multistep methods are entirely equivalent. In other words, the valuey n+1 given by
a multivalue method with givenB andr is exactly the same value given by some
multistep method with givenβ’s in equation (16.7.2). For example, it turns out
that the Adams-Bashforth formula (16.7.3) corresponds to a four-value method with
r1 = 0, r3 = 3/4, andr4 = 1/6. The method is explicit becauser1 = 0. The
Adams-Moulton method (16.7.4) corresponds to the implicit four-value method with
r1 = 5/12, r3 = 3/4, andr4 = 1/6. Implicit multivalue methods are solved the
same way as implicit multistep methods: either by a predictor-corrector approach
using an explicit method for the predictor, or by Newton iteration for stiff systems.

Why go to all the trouble of introducing a whole new method that turns out
to be equivalent to a method you already knew? The reason is that multivalue
methods allow an easy solution to the two difficulties we mentioned above in actually
implementing multistep methods.

Consider first the question of stepsize adjustment. To change stepsize fromh
to h′ at some pointxn, simply multiply the components ofyn in (16.7.5) by the
appropriate powers ofh′/h, and you are ready to continue toxn + h′.
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Multivalue methods also allow a relatively easy change in theorder of the
method: Simply changer. The usual strategy for this is first to determine the new
stepsize with the current order from the error estimate. Then check what stepsize
would be predicted using an order one greater and one smaller than the current
order. Choose the order that allows you to take the biggest next step. Being able to
change order also allows an easy solution to the starting problem: Simply start with
a first-order method and let the order automatically increase to the appropriate level.

For low accuracy requirements, a Runge-Kutta routine likerkqs is almost
always the most efficient choice. For high accuracy,bsstep is both robust and
efficient. For very smooth functions, a variable-order PC method can invoke very
high orders. If the right-hand side of the equation is relatively complicated, so that
the expense of evaluating it outweighs the bookkeeping expense, then the best PC
packages can outperform Bulirsch-Stoer on such problems. As you can imagine,
however, such a variable-stepsize, variable-order method is not trivial to program. If
you suspect that your problem is suitable for this treatment, we recommend use of a
canned PC package. For further details consult Gear[1] or Shampine and Gordon[2].

Our prediction, nevertheless, is that, as extrapolation methods like Bulirsch-
Stoer continue to gain sophistication, they will eventually beat out PC methods in
all applications. We are willing, however, to be corrected.
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