Chapter 10. Minimization or
Maximization of Functions

10.0 Introduction

In anutshell: You are given a single function f that depends on one or more
independent variables. You want to find the value of those variables where f takes
on a maximum or a minimum value. You can then calculate what value of f is
achieved at the maximum or minimum. Thetasks of maximization and minimization
are trivially related to each other, since one person’s function f could just as well
be another's — f. The computational desiderata are the usual ones. Do it quickly,
cheaply, and in small memory. Often the computational effort is dominated by
the cost of evaluating f (and also perhaps its partial derivatives with respect to all
variables, if the chosen agorithm requires them). In such cases the desiderata are
sometimes replaced by the simple surrogate: Evaluate f as few times as possible.

An extremum (maximum or minimum point) can be either global (truly
the highest or lowest function value) or local (the highest or lowest in a finite
neighborhood and not on the boundary of that neighborhood). (See Figure 10.0.1.)
Finding a global extremum is, in general, a very difficult problem. Two standard
heuristics are widely used: (i) find local extrema starting from widely varying
starting values of the independent variables (perhaps chosen quasi-randomly, as in
§7.7), and then pick the most extreme of these (if they are not al the same); or
(i) perturb a local extremum by taking a finite amplitude step away from it, and
then see if your routine returns you to a better point, or “aways’ to the same
one. Relatively recently, so-called “simulated annealing methods’ (§10.9) have
demonstrated important successes on a variety of global extremization problems.

Our chapter title could just as well be optimization, which is the usual name
for this very large field of numerical research. The importance ascribed to the
various tasks in this field depends strongly on the particular interests of whom
you talk to. Economists, and some engineers, are particularly concerned with
constrained optimization, where there are a priori limitations on the allowed values
of independent variables. For example, the production of wheat in the U.S. must
be a nonnegative number. One particularly well-developed area of constrained
optimization is linear programming, where both the function to be optimized and
the constraints happen to be linear functions of the independent variables. Section
10.8, which is otherwise somewhat disconnected from the rest of the material that we
have chosen to include in this chapter, implements the so-called “ simplex algorithm”
for linear programming problems.

387

‘(eauBWY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dID3Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sq00q sadioay [ealswn 1apio 0] ‘pangiyold Apows si ‘1eindwod 1aaias Aue o} (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul 10} pajuelB si uoissiwiad

388 Chapter 10. Minimization or Maximization of Functions

X]_ XZ

Figure 10.0.1. Extrema of a function in an interval. Points A, C, and E are local, but not global
maxima. Points B and F' are local, but not global minima. The global maximum occurs at G, which
is on the boundary of the interval so that the derivative of the function need not vanish there. The
global minimum is at D. At point E, derivatives higher than the first vanish, a situation which can
cause difficulty for some algorithms. The points X, Y, and Z are said to “bracket” the minimum F',
since Y is less than both X and Z.

One other section, §10.9, also lies outside of our main thrust, but for a different
reason: so-called “annealing methods’ are relatively new, so we do not yet know
where they will ultimately fit into the scheme of things. However, these methods
have solved some problems previously thought to be practically insoluble; they
address directly the problem of finding global extrema in the presence of large
numbers of undesired local extrema.

The other sections in this chapter constitute a selection of the best established
algorithms in unconstrained minimization. (For definiteness, we will henceforth
regard the optimization problem as that of minimization.) These sections are
connected, with later ones depending on earlier ones. If you are just looking for
the one “perfect” algorithm to solve your particular application, you may feel that
we are telling you more than you want to know. Unfortunately, there is no perfect
optimization algorithm. Thisis a case where we strongly urge you to try more than
one method in comparative fashion. Your initial choice of method can be based
on the following considerations:

e You must choose between methods that need only evaluations of the
function to be minimized and methods that a so require evaluations of the
derivative of that function. In the multidimensional case, this derivative
is the gradient, a vector quantity. Algorithms using the derivative are
somewhat more powerful than those using only the function, but not
always enough so as to compensate for the additional calculations of
derivatives. We can easily construct examples favoring one approach or
favoring the other. However, if you can compute derivatives, be prepared
to try using them.

e For one-dimensional minimization (minimize a function of one variable)
without calculation of the derivative, bracket the minimum as described in
§10.1, and then use Brent’s method as described in §10.2. If your function
has a discontinuous second (or lower) derivative, then the parabolic

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

10.0 Introduction 389

interpolations of Brent’'s method are of no advantage, and you might wish
to use the ssimplest form of golden section search, as described in §10.1.

o For one-dimensional minimization with calculation of the derivative, §10.3
supplies a variant of Brent's method which makes limited use of the
first derivative information. We shy away from the alternative of using
derivative information to construct high-order interpolating polynomials.
In our experience the improvement in convergence very near a smooth,
analytic minimum does not make up for the tendency of polynomials
sometimes to give wildly wrong interpolations at early stages, especially
for functions that may have sharp, “exponential” features.

We now turn to the multidimensional case, both with and without computation
of first derivatives.

e You must choose between methods that require storage of order N 2 and
those that require only of order N, where N is the number of dimensions.
For moderate values of N and reasonable memory sizes this is not a
serious constraint. There will be, however, the occasional application
where storage may be critical.

e We give in §10.4 a sometimes overlooked downhill simplex method due
to Nelder and Mead. (This use of the word “simplex” is not to be
confused with the simplex method of linear programming.) This method
just crawls downhill in a straightforward fashion that makes almost no
special assumptions about your function. This can be extremely slow, but
it can also, in some cases, be extremely robust. Not to be overlooked is
the fact that the code is concise and completely self-contained: a general
N-dimensional minimization program in under 100 program lines! This
method is most useful when the minimization calculation is only an
incidental part of your overall problem. The storage requirement is of
order N2, and derivative calculations are not required.

e Section 10.5 deals with direction-set methods, of which Powell’s method
isthe prototype. These are the methods of choice when you cannot easily
calculate derivatives, and are not necessarily to be sneered at even if you
can. Although derivatives are not needed, the method does require a
one-dimensional minimization sub-algorithm such as Brent’'s method (see
above). Storage is of order N?2.

There are two magjor families of algorithms for multidimensional minimization
with calculation of first derivatives. Both families require a one-dimensional
minimization sub-algorithm, which can itself either use, or not use, the derivative
information, as you seefit (depending on therel ative effort of computing the function
and of its gradient vector). We do not think that either family dominatesthe other in
all applications; you should think of them as available aternatives:

e Thefirst family goes under the name conjugate gradient methods, as typi-
fied by the Fletcher-Reeves algorithm and the closely related and probably
superior Polak-Ribiere algorithm. Conjugate gradient methods require
only of order afew times N storage, require derivative calculations and

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

390 Chapter 10. Minimization or Maximization of Functions

one-dimensional sub-minimization. Turn to §10.6 for detailed discussion
and implementation.

e The second family goes under the names quasi-Newton or variable metric
methods, as typified by the Davidon-Fletcher-Powell (DFP) agorithm
(sometimes referred to just as Fletcher-Powell) or the closely related
Broyden-Fletcher-Gol dfarb-Shanno (BFGS) algorithm. These methods
require of order N2 storage, require derivative calculations and one-
dimensional sub-minimization. Details are in §10.7.

You are now ready to proceed with scaling the peaks (and/or plumbing the
depths) of practical optimization.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall).

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press).
Gill, PE., Murray, W., and Wright, M.H. 1981, Practical Optimization (New York: Academic Press).

Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 17.

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), Chapter Ill.1.

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall).

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 10.

10.1 Golden Section Search in One Dimension

Recall how the bisection method finds roots of functions in one dimension
(§9.1): The root is supposed to have been bracketed in an interval (a,b). One
then evaluates the function at an intermediate point 2 and obtains a new, smaller
bracketing interval, either (a, z) or (z, b). The process continues until the bracketing
interval is acceptably small. It is optimal to choose « to be the midpoint of (a, b)
so that the decrease in the interval length is maximized when the function is as
uncooperative as it can be, i.e., when the luck of the draw forces you to take the
bigger bisected segment.

Thereis a precise, though dlightly subtle, transation of these considerationsto
the minimization problem: What does it mean to bracket a minimum? A root of a
function is known to be bracketed by a pair of points, a and b, when the function
has opposite sign at those two points. A minimum, by contrast, is known to be
bracketed only when thereis atriplet of points,a < b < ¢ (or ¢ < b < a), such that
f(b) isless than both f(a) and f(c). In this case we know that the function (if it
is nonsingular) has a minimum in the interval (a, c).

The analog of bisection is to choose a new point x, either between a and b or
between b and ¢. Suppose, to be specific, that we make the latter choice. Then we
evauate f(x). If f(b) < f(x), then the new bracketing triplet of pointsis (a, b, x);

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

10.1 Golden Section Search in One Dimension 391

Figure 10.1.1. Successive bracketing of a minimum. The minimum is originally bracketed by points
1,3,2. The function is evaluated at 4, which replaces 2; then at 5, which replaces 1; then at 6, which
replaces 4. Therule at each stage isto keep a center point that islower than the two outside points. After
the steps shown, the minimum is bracketed by points 5,3,6.

contrariwise, if f(b) > f(x), then the new bracketing triplet is (b, z, ¢). Inall cases
the middle point of the new triplet isthe abscissawhose ordinateis the best minimum
achieved so far; see Figure 10.1.1. We continue the process of bracketing until the
distance between the two outer points of the triplet is tolerably small.

How small is “tolerably” small? For a minimum located at a value b, you
might naively think that you will be able to bracket it in as small a range as
(I —€)b < b < (1+ €)b, where e is your computer’s floating-point precision, a
number like 3 x 108 (single precision) or 10~ '° (double precision). Not so! In
general, the shape of your function f(x) near b will be given by Taylor’s theorem

Fla) ~) + 3 0)(w b (1011)

The second term will be negligible compared to the first (that is, will be a factor ¢
smaller and will act just like zero when added to it) whenever

|z — b| < elbl ;JJ{C,% (10.1.2)

The reason for writing the right-hand side in this way is that, for most functions,
the final square root is a number of order unity. Therefore, as a rule of thumb, it
is hopeless to ask for a bracketing interval of width less than /e times its central
value, a fractional width of only about 10 ~* (single precision) or 3 x 10~2 (double
precision). Knowing this inescapable fact will save you alot of useless bisections!
The minimum-finding routines of this chapter will often call for auser-supplied
argument tol, and return with an abscissa whose fractional precisionis about +tol
(bracketing interval of fractional size about 2xtol). Unless you have a better

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

392 Chapter 10. Minimization or Maximization of Functions

estimate for the right-hand side of equation (10.1.2), you should set tol equa to
(not much less than) the square root of your machine’s floating-point precision, since
smaller values will gain you nothing.
It remains to decide on a strategy for choosing the new point z, given (a, b, ¢).
Suppose that b is a fraction w of the way between a and ¢, i.e.
b—a c—b

=w
c—a c—a

1—w (10.1.3)

Also suppose that our next trial point z is an additional fraction z beyond b,

rT—b

10.1.4
c—a N ()
Then the next bracketing segment will either be of length w + = relative to the current
one, or else of length 1 — w. If we want to minimize the worst case possibility, then
we will choose z to make these equal, namely

z=1-2w (10.1.5)

We see at once that the new point is the symmetric point to b in the original interval,
namely with |b — a| equal to |x — ¢|. Thisimplies that the point « lies in the larger
of the two segments (z is positive only if w < 1/2).

But where in the larger segment? Where did the value of w itself come from?
Presumably from the previous stage of applying our same strategy. Therefore, if z
is chosen to be optimal, then so was w beforeit. This scale similarity implies that
2 should be the same fraction of the way from b to ¢ (if that is the bigger segment)
as was b from a to ¢, in other words,

=w (10.1.6)
Equations (10.1.5) and (10.1.6) give the quadratic equation

w?> —3w+1=0 yielding w = 3_2\/5

~ 0.38197 (10.1.7)

In other words, the optimal bracketing interval (a, b, ¢) has its middle point b a
fractional distance 0.38197 from one end (say, a), and 0.61803 from the other end
(say, b). These fractions are those of the so-called golden mean or golden section,
whose supposedly aesthetic properties hark back to the ancient Pythagoreans. This
optimal method of function minimization, the analog of the bisection method for
finding zeros, is thus called the golden section search, summarized as follows:

Given, at each stage, a bracketing triplet of points, the next point to be tried
is that which is a fraction 0.38197 into the larger of the two intervals (measuring
from the central point of the triplet). If you start out with a bracketing triplet whose
segments are not in the golden ratios, the procedure of choosing successive points
at the golden mean point of the larger segment will quickly converge you to the
proper, self-replicating ratios.

The golden section search guarantees that each new function evaluation will
(after self-replicating ratios have been achieved) bracket the minimum to an interval

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.1 Golden Section Search in One Dimension 393

just 0.61803 times the size of the preceding interval. Thisis comparable to, but not
quite as good as, the 0.50000 that holds when finding roots by bisection. Note that
the convergence is linear (in the language of Chapter 9), meaning that successive
significant figures are won linearly with additional function evaluations. In the
next section we will give a superlinear method, where the rate at which successive
significant figures are liberated increases with each successive function evaluation.

Routine for Initially Bracketing a Minimum

The preceding discussion has assumed that you are abl e to bracket the minimum
in the first place. We consider this initial bracketing to be an essentia part of any
one-dimensional minimization. There are some one-dimensiona algorithms that
do not require a rigorous initial bracketing. However, we would never trade the
secure feeling of knowing that a minimum is “in there somewhere” for the dubious
reduction of function evaluations that these nonbracketing routines may promise.
Please bracket your minima (or, for that matter, your zeros) beforeisolating them!

There is not much theory as to how to do this bracketing. Obviously you want
to step downhill. But how far? We like to take larger and larger steps, starting with
some (wild?) initial guess and then increasing the stepsize at each step either by
a constant factor, or else by the result of a parabolic extrapolation of the preceding
points that is designed to take us to the extrapolated turning point. It doesn’t much
matter if the steps get big. After al, we are stepping downhill, so we aready have
the left and middle points of the bracketing triplet. We just need to take a big enough
step to stop the downhill trend and get a high third point.

Our standard routine is this:

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)

REAL ax,bx,cx,fa,fb,fc,func,GOLD,GLIMIT,TINY

EXTERNAL func

PARAMETER (GOLD=1.618034, GLIMIT=100., TINY=1.e-20)
Given a function func, and given distinct initial points ax and bx, this routine searches
in the downhill direction (defined by the function as evaluated at the initial points) and
returns new points ax, bx, cx that bracket a minimum of the function. Also returned are
the function values at the three points, fa, fb, and fc.
Parameters: GOLD is the default ratio by which successive intervals are magnified; GLIMIT
is the maximum magpnification allowed for a parabolic-fit step.

REAL dum,fu,q,r,u,ulim

fa=func(ax)

fb=func (bx)

if (fb.gt.fa)then Switch roles of a and b so that we can go downhill in the
dum=ax direction from a to b.
ax=bx
bx=dum
dum=£fb
fb=fa
fa=dum

endif

cx=bx+GOLD* (bx-ax) First guess for c.

fc=func(cx)

if (fb.ge.fc)then “do while": keep returning here until we bracket.
r=(bx-ax)* (fb-fc) Compute u by parabolic extrapolation from a, b, c. TINY
q=(bx-cx) *(fb-fa) is used to prevent any possible division by zero.
u=bx- ((bx-cx) *q- (bx-ax)*r) /(2. *sign(max (abs(q-r) ,TINY) ,q-r))
ulim=bx+GLIMIT* (cx-bx) We won't go farther than this. Test various possibilities:

if ((bx-u)*(u-cx).gt.0.)then Parabolic u is between b and c: try it.
fu=func(u)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

394 Chapter 10. Minimization or Maximization of Functions

if (fu.lt.fc)then Got a minimum between b and c.
ax=bx
fa=fb
bx=u
fb=fu
return
else if(fu.gt.fb)then Got a minimum between between a and u.
cx=u
fc=fu
return
endif
u=cx+GOLD* (cx-bx) Parabolic fit was no use. Use default magnification.
fu=func(u)
else if ((cx-u)*(u-ulim).gt.0.)then Parabolic fit is between ¢ and its allowed
fu=func (u) limit.
if (fu.lt.fc)then
bx=cx
cX=u
u=cx+GOLD* (cx-bx)
fb=fc
fc=fu
fu=func (u)
endif
else if ((u-ulim)*(ulim-cx).ge.0.)then Limit parabolic v to maximum allowed
u=ulim value.
fu=func(u)
else Reject parabolic u, use default magnification.
u=cx+GOLD* (cx-bx)
fu=func(u)
endif
ax=bx Eliminate oldest point and continue.
bx=cx
cx=u
fa=fb
fb=fc
fc=fu
goto 1
endif
return
END

(Because of the housekeeping involved in moving around three or four points and
their function values, the above program ends up looking deceptively formidable.
That is true of several other programsin this chapter as well. The underlying ideas,
however, are quite simple.)

Routine for Golden Section Search

FUNCTION golden(ax,bx,cx,f,tol,xmin)

REAL golden,ax,bx,cx,tol,xmin,f,R,C

EXTERNAL f

PARAMETER (R=.61803399,C=1.-R)
Given a function £, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
between ax and cx, and £ (bx) is less than both f (ax) and £ (cx)), this routine performs
a golden section search for the minimum, isolating it to a fractional precision of about
tol. The abscissa of the minimum is returned as xmin, and the minimum function value
is returned as golden, the returned function value.
Parameters: The golden ratios.

REAL f1,f2,x0,x1,x2,x3

x0=ax At any given time we will keep track of four points, x0,x1,x2,x3.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.2 Parabolic Interpolation and Brent's Method 395

x3=cx
if (abs(cx-bx) .gt.abs(bx-ax))then Make x0 to x1 the smaller segment,
x1=bx
x2=bx+C* (cx-bx) and fill in the new point to be tried.
else
x2=bx
x1=bx-C* (bx-ax)
endif
f1=f(x1) The initial function evaluations. Note that we never need to
£2=£ (x2) evaluate the function at the original endpoints.
if (abs(x3-x0) .gt.tol*(abs(x1)+abs(x2)))then Do-while loop: we keep returning here.
if(f2.1t.f1)then One possible outcome,
x0=x1 its housekeeping,
x1=x2
x2=R*x1+C*x3
f1=£f2
£2=f (x2) and a new function evaluation.
else The other outcome,
x3=x2
x2=x1
x1=R*x2+C*x0
f2=f1
f1=f(x1) and its new function evaluation.
endif
goto 1 Back to see if we are done.
endif
if (f1.1t.f2)then We are done. Output the best of the two current values.
golden=£f1
xmin=x1
else
golden=£f2
xmin=x2
endif
return
END

10.2 Parabolic Interpolation and Brent’s Method
in One Dimension

We already tipped our hand about the desirability of parabolic interpolation in
the previous section’s mnbrak routine, but it is now time to be more explicit. A
golden section search is designed to handle, in effect, the worst possible case of
function minimization, with the uncooperative minimum hunted down and cornered
like a scared rabbit. But why assume the worst? If the function is nicely parabolic
near to the minimum — surely the generic case for sufficiently smooth functions —
then the parabola fitted through any three points ought to take us in a single leap
to the minimum, or at least very near to it (see Figure 10.2.1). Since we want to
find an abscissa rather than an ordinate, the procedure is technically called inverse
parabolic interpolation.

The formulafor the abscissa x that is the minimum of a parabolathrough three

points f(a), f(b), and f(c) is
1 (b—a)?[f(b) = f(e)] = (b= c)*[f(b) — f(a)]

r=b——

(
2 (b=a)[f(b) = f()] = (b=)[f(b) = f(a)]

(10.2.1)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

396 Chapter 10. Minimization or Maximization of Functions

_______ parabolathrough @) 2) (3)
............... parabolathrough) 2 @)

Figure 10.2.1. Convergence to aminimum by inverse parabolic interpolation. A parabola (dashed line) is
drawn through the three original points 1,2,3 on the given function (solid line). The function is evaluated
a the parabola’'s minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through
points 1,4,2. The minimum of this parabolaisat 5, which is close to the minimum of the function.

as you can easily derive. This formula fails only if the three points are collinear,
in which case the denominator is zero (minimum of the parabola is infinitely far
away). Note, however, that (10.2.1) is as happy jumping to a parabolic maximum
asto aminimum. No minimization scheme that depends solely on (10.2.1) is likely
to succeed in practice.

The exacting task is to invent a scheme that relies on a sure-but-slow technique,
like golden section search, when the function is not cooperative, but that switches
over to (10.2.1) when the function alows. The task is nontrivial for severa
reasons, including these: (i) The housekeeping needed to avoid unnecessary function
evaluations in switching between the two methods can be complicated. (ii) Careful
attention must be given to the “endgame,” where the function is being evaluated
very near to the roundoff limit of equation (10.1.2). (iii) The scheme for detecting a
cooperative versus noncooperative function must be very robust.

Brent’s method [1] is up to the task in al particulars. At any particular stage,
it is keeping track of six function points (not necessarily al distinct), a, b, u, v,
w and z, defined as follows: the minimum is bracketed between o and b; «x is the
point with the very least function value found so far (or the most recent one in
case of atie); w is the point with the second least function value; v is the previous
value of w; u isthe point at which the function was evaluated most recently. Also
appearing in the algorithm is the point x,,,, the midpoint between a and b; however,
the function is not evaluated there.

You can read the code below to understand the method's logical organization.
Mention of a few genera principles here may, however, be helpful: Parabolic
interpolation is attempted, fitting through the points x, v, and w. To be acceptable,
the parabolic step must (i) fall within the bounding interva (a, b), and (ii) imply a
movement from the best current value x that is less than half the movement of the
step before last. This second criterion insures that the parabolic steps are actually

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.2 Parabolic Interpolation and Brent’'s Method 397

converging to something, rather than, say, bouncing around in some nonconvergent
limit cycle. In the worst possible case, where the parabolic steps are acceptable but
usel ess, the method will approximately alternate between parabolic steps and golden
sections, converging in due course by virtue of the latter. The reason for comparing
to the step before last seems essentially heuristic: Experience shows that it is better
not to “ punish” the algorithm for asingle bad step if it can makeit up on the next one.

Another principle exemplified in the code is never to evaluate the function less
than a distance tol from a point already evaluated (or from a known bracketing
point). The reason is that, as we saw in equation (10.1.2), there is ssimply no
information content in doing so: the function will differ from the value already
evaluated only by an amount of order the roundoff error. Thereforein the code below
you will find several tests and modifications of a potential new point, imposing this
restriction. This restriction also interacts subtly with the test for “doneness,” which
the method takes into account.

A typical ending configurationfor Brent’'smethod isthat « andb are2 x x x tol
apart, with z (the best abscissa) at the midpoint of a and b, and therefore fractionally
accurate to +tol.

Indulge us a final reminder that tol should generally be no smaller than the
square root of your machine's floating-point precision.

FUNCTION brent(ax,bx,cx,f,tol,xmin)

INTEGER ITMAX

REAL brent,ax,bx,cx,tol,xmin,f,CGOLD,ZEPS

EXTERNAL f

PARAMETER (ITMAX=100,CGOLD=.3819660,ZEPS=1.0e-10)
Given a function £, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
between ax and cx, and £ (bx) is less than both f (ax) and f(cx)), this routine isolates
the minimum to a fractional precision of about tol using Brent’'s method. The abscissa of
the minimum is returned as xmin, and the minimum function value is returned as brent,
the returned function value.
Parameters: Maximum allowed number of iterations; golden ratio; and a small number that
protects against trying to achieve fractional accuracy for a minimum that happens to be
exactly zero.

INTEGER iter

REAL a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,toll,tol2,u,v,w,x,xm

a=min(ax,cx) a and b must be in ascending order, though the input
b=max (ax,cx) abscissas need not be.

v=bx Initializations...

W=V

X=v

e=0. This will be the distance moved on the step before last.
fx=f(x)

fv=£fx

fu=fx

do 11 iter=1,ITMAX Main program loop.

xm=0.5% (a+b)
toll=tol*abs (x)+ZEPS
tol2=2.%toll
if (abs(x-xm) .le. (tol2-.5%(b-a))) goto 3 Test for done here.
if(abs(e).gt.toll) then Construct a trial parabolic fit.
r=(x-w)*(£x-fv)
q=(x-v) * (fx-fw)
p=(x-v)*q- (x-w) *r
q=2.*(q-r)
if(q.gt.0.) p=-p
g=abs(q)
etemp=e
e=d

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

398

Chapter 10. Minimization or Maximization of Functions

if (abs(p) .ge.abs(.5*g*etemp) .or.p.le.q*(a-x).or.
p.ge.q*(b-x)) goto 1
The above conditions determine the acceptability of the parabolic fit. Here it is o.k.:

d=p/q Take the parabolic step.
u=x+d
if (u-a.lt.tol2 .or. b-u.lt.tol2) d=sign(toll,xm-x)
goto 2 Skip over the golden section step.
endif
if(x.ge.xm) then We arrive here for a golden section step, which we take
e=a-x into the larger of the two segments.
else
e=b-x
endif
d=CGOLD*e Take the golden section step.
if (abs(d).ge.toll) then Arrive here with d computed either from parabolic fit, or
u=x+d else from golden section.
else
u=x+sign(toll,d)
endif
fu=f (u) This is the one function evaluation per iteration,
if (fu.le.fx) then and now we have to decide what to do with our function
if(u.ge.x) then evaluation. Housekeeping follows:
a=x
else
b=x
endif
v=w
fv=fw
W=X
fu=fx
x=u
fx=fu
else
if(u.1t.x) then
a=u
else
b=u
endif
if(fu.le.fw .or. w.eq.x) then
v=u
fv=fw
w=u
fu=fu
else if(fu.le.fv .or. v.eq.x .or. v.eq.w) then
v=u
fv=fu
endif
endif Done with housekeeping. Back for another iteration.
enddo 11
pause ’brent exceed maximum iterations’
xmin=x Arrive here ready to exit with best values.
brent=fx
return
END

CITED REFERENCES AND FURTHER READING:
Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-

Hall), Chapter 5. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical

Computations (Englewood Cliffs, NJ: Prentice-Hall), §8.2.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.3 One-Dimensional Search with First Derivatives 399

10.3 One-Dimensional Search with First
Derivatives

Here we want to accomplish precisely the same goa as in the previous
section, namely to isolate a functional minimum that is bracketed by the triplet of
abscissas (a, b, ¢), but utilizing an additional capability to compute the function’s
first derivative as well as its value.

In principle, we might simply search for a zero of the derivative, ignoring the
function value information, using a root finder like rtf1sp or zbrent (§59.2-9.3).
It doesn’t take long to reject that idea: How do we distingui sh maximafrom minima?
Where do we go from initial conditions where the derivatives on one or both of
the outer bracketing points indicate that “downhill” is in the direction out of the
bracketed interval?

We don’'t want to give up our strategy of maintaining a rigorous bracket on the
minimum at all times. The only way to keep such a bracket is to update it using
function (not derivative) information, with the central point in the bracketing triplet
always that with the lowest function value. Therefore the role of the derivatives can
only be to help us choose new trial points within the bracket.

One school of thought isto “ use everything you'vegot”: Computeapolynomial
of relatively high order (cubic or above) that agrees with some number of previous
function and derivative evaluations. For example, there is a unique cubic that agrees
with function and derivative at two points, and one can jump to the interpolated
minimum of that cubic (if there is a minimum within the bracket). Suggested by
Davidon and others, formulas for this tactic are given in [1].

We like to be more conservative than this. Once superlinear convergence sets
in, it hardly matters whether its order is moderately lower or higher. In practica
problems that we have met, most function evaluations are spent in getting globally
close enough to the minimum for superlinear convergence to commence. So we are
more worried about all the funny “stiff” things that high-order polynomials can do
(cf. Figure 3.0.1b), and about their sensitivities to roundoff error.

This leads us to use derivative information only as follows: The sign of the
derivative at the central point of the bracketing triplet (a, b, ¢) indicates uniquely
whether the next test point should be taken in the interval (a, b) or in the interval
(b,c). The value of this derivative and of the derivative at the second-best-so-far
point are extrapolated to zero by the secant method (inverse linear interpolation),
which by itself is superlinear of order 1.618. (The golden mean again: see [1], p. 57.)
We impose the same sort of restrictions on this new trial point asin Brent’s method.
If the trial point must be rejected, we bisect the interval under scrutiny.

Yes, we arefuddy-duddieswhen it comesto making flamboyant use of derivative
information in one-dimensional minimization. But we have met too many functions
whose computed “derivatives’ don't integrate up to the function value and don’t
accurately point the way to the minimum, usually because of roundoff errors,
sometimes because of truncation error in the method of derivative evaluation.

You will see that the following routine is closely modeled on brent in the
previous section.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

400 Chapter 10. Minimization or Maximization of Functions

FUNCTION dbrent(ax,bx,cx,f,df,tol,xmin)
INTEGER ITMAX
REAL dbrent,ax,bx,cx,tol,xmin,df,f,ZEPS
EXTERNAL df,f
PARAMETER (ITMAX=100,ZEPS=1.0e-10)
Given a function £ and its derivative function df, and given a bracketing triplet of abscissas
ax, bx, cx [such that bx is between ax and cx, and f (bx) is less than both f (ax) and
f(cx)], this routine isolates the minimum to a fractional precision of about tol using
a modification of Brent's method that uses derivatives. The abscissa of the minimum is
returned as xmin, and the minimum function value is returned as dbrent, the returned
function value.
INTEGER iter
REAL a,b,d,d1,d2,du,dv,dw,dx,e,fu,fv,fw,fx,0lde,toll,tol2,
u,ul,u2,v,w,x,xm
Comments following will point out only differences from the routine brent. Read that
routine first.
LOGICAL ok1,o0k2 Will be used as flags for whether proposed steps are accept-
a=min(ax,cx) able or not.
b=max (ax,cx)
v=bx
W=V
X=v
e=0.
fx=f (x)
fv=fx
fu=fx
dx=df (x) All our housekeeping chores are doubled by the necessity of
dv=dx moving derivative values around as well as function val-
dw=dx ues.
do 11 iter=1,ITMAX
xm=0.5% (a+b)
toll=tol*abs(x)+ZEPS
to0l2=2.%toll
if (abs(x-xm) .le. (tol2-.5%(b-a))) goto 3
if (abs(e).gt.toll) then

d1=2.*(b-a) Initialize these d’s to an out-of-bracket value.
d2=d1

if (dw.ne.dx) di1=(w-x)*dx/(dx-dw) Secant method with one point.
if (dv.ne.dx) d2=(v-x)*dx/(dx-dv) And the other.

Which of these two estimates of d shall we take? We will insist that they be within
the bracket, and on the side pointed to by the derivative at x:
ul=x+d1
u2=x+d2
ok1=((a-ul)*(ul-b).gt.0.) .and. (dx*d1l.le.0.)
ok2=((a-u2)*(u2-b) .gt.0.) .and. (dx*d2.1le.0.)
olde=e Movement on the step before last.
e=d
if (.not. (okl.or.ok2))then Take only an acceptable d, and if both
goto 1 are acceptable, then take the small-
else if (okl.and.ok2)then est one.
if (abs(d1l) .1t.abs(d2))then
d=d1
else
d=d2
endif
else if (okl)then
d=d1
else
d=d2
endif
if (abs(d) .gt.abs(0.5%olde))goto 1
u=x+d
if (u-a.lt.tol2 .or. b-u.lt.tol2) d=sign(toll,xm-x)
goto 2

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.3 One-Dimensional Search with First Derivatives 401

endif
if(dx.ge.0.) then Decide which segment by the sign of the derivative.
e=a-x
else
e=b-x
endif
d=0.5%e Bisect, not golden section.
if(abs(d).ge.toll) then
u=x+d
fu=f (u)
else
u=x+sign(toll,d)
fu=f (u)
if (fu.gt.fx)goto 3 If the minimum step in the downbhill direction takes us uphill,
endif then we are done.
du=4df (u) Now all the housekeeping, sigh.
if (fu.le.fx) then
if(u.ge.x) then
a=x
else
b=x
endif
V=W
fv=fw
dv=dw
wW=X
fw=fx
dw=dx
X=u
fx=fu
dx=du
else
if(u.1t.x) then
a=u
else
b=u
endif
if(fu.le.fw .or. w.eq.x) then
v=w
fv=fw
dv=dw
w=u
fw=fu
dw=du
else if(fu.le.fv .or. v.eq.x .or. v.eq.w) then
v=u
fv=fu
dv=du
endif
endif

enddo 11

pause ’dbrent exceeded maximum iterations’
xmin=x

dbrent=fx

return

CITED REFERENCES AND FURTHER READING:
Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-

matical Association of America), pp. 55; 454—458. [1]

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-

Hall), p. 78.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

402 Chapter 10. Minimization or Maximization of Functions

10.4 Downhill Simplex Method
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms =
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely:
self-contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex method is due to Nelder and Medd]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell's metl§ad.$) is
almost surely faster in all likely applications. However, the downhill simplex method
may frequently be théest method to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightfu
to describe or work through:

A simplex is the geometrical figure consisting, W dimensions, ofNV + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etcz
In two dimensions, a simplex is a triangle. In three dimensions it is a tetrahedron
not necessarily the regular tetrahedron. (Silngolex method of linear programming,
describedir10.8, also makes use of the geometrical concept of a simplex. Otherwise,
it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclo
a finite inner N-dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then th®¥ other points define vector directions that span the
N-dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogo
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that isyarector of independent
variables as the first point to try. The algorithm is then supposed to make its own wa
downhill through the unimaginable complexity of @&tdimensional topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point, but
with N 4 1 points, defining an initial simplex. If you think of one of these points
(it matters not which) as being your initial starting pol§, then you can take
the other N points to be

duu

10 MW

JlaWY YUON) £27.-2/8-008-T [[ed 10 Wod:
d Apowss si 19indwod 1anias Aue 01 (auo syl Buipnjour) sajiy ajqepeal

toe

p 03 |re@s puas 1o ‘(A

wnp Japio o 'paﬁ?qmm
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

ATPSISND108lI

qued®
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD

(X-790€1-T2S-0 NESI) ONILNINOD DIFILNIIOS 4O 18V IHL 122 NVHLHO4 NI SAdIDIY TvOIHINNN woly ebed sdwes

‘(eauBWY YUON 3pISINo) 610'6}5
a)ISqam ISIA ‘SINOYAD Jo s300q sadiday eaifs

P, =Py + \e; (10.4.7

where thee;’s are N unit vectors, and wherg is a constant which is your guess
of the problem'’s characteristic length scale. (Or, you could have differgatfor
each vector direction.)

The downhill simplex method now takes a series of steps, most steps just moving
the point of the simplex where the function is largest (“highest point”) through the
opposite face of the simplex to a lower point. These steps are called reflections,

10.4 Downhill Simplex Method in Multidimensions 403

simplex at beginning of step

high
low
reflection
(€Y
reflection and expansion

(b)

contraction
()

multiple

contraction
(d)

Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplex at the
beginning of the step, here atetrahedron, is shown, top. The simplex at the end of the step can be any one
of (a) areflection away from the high point, (b) areflection and expansion away from the high point, (c)
a contraction along one dimension from the high point, or (d) a contraction along al dimensions towards
the low point. An appropriate sequence of such steps will always converge to aminimum of the function.

and they are constructed to conserve the volume of the simplex (hence maintain
its nondegeneracy). When it can do so, the method expands the simplex in one or
another direction to take larger steps. When it reaches a “valley floor,” the method
contracts itself in the transverse direction and tries to ooze down the valley. If there
is a situation where the simplex is trying to “pass through the eye of a needle,” it
contracts itself in al directions, pulling itself in around its lowest (best) point. The
routine name amoeba is intended to be descriptive of thiskind of behavior; the basic
moves are summarized in Figure 10.4.1.

Termination criteria can be delicate in any multidimensional minimization
routine. Without bracketing, and with more than one independent variable, we
no longer have the option of requiring a certain tolerance for a single independent

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

404 Chapter 10. Minimization or Maximization of Functions

variable. We typically can identify one “cycle” or “step” of our multidimensional
algorithm. It is then possible to terminate when the vector distance moved in that
step is fractionally smaller in magnitude than some tolerance tol. Alternatively,
we could require that the decrease in the function value in the terminating step be
fractionally smaller than some tolerance ftol. Note that while tol should not
usually be smaller than the square root of the machine precision, it is perfectly
appropriateto let ftol be of order the machine precision (or perhaps dlightly larger
S0 as not to be diddled by roundoff).

Note well that either of the above criteriamight befooled by asingle anomal ous
step that, for one reason or another, failed to get anywhere. Therefore, it isfrequently
a good idea to restart a multidimensional minimization routine at a point where
it claims to have found a minimum. For this restart, you should reinitialize any
ancillary input quantities. In the downhill simplex method, for example, you should
reinitialize N of the N + 1 vertices of the simplex again by equation (10.4.1), with
P, being one of the vertices of the claimed minimum.

Restarts should never be very expensive; your algorithm did, after all, converge
to the restart point once, and now you are starting the algorithm already there.

Consider, then, our N-dimensional amoeba:

SUBROUTINE amoeba(p,y,mp,np,ndim,ftol,funk,iter)

INTEGER iter,mp,ndim,np,NMAX,ITMAX

REAL ftol,p(mp,np),y(mp),funk, TINY

PARAMETER (NMAX=20,ITMAX=5000,TINY=1.e-10) Maximum allowed dimensions and func-

EXTERNAL funk tion evaluations, and a small num-

USES anmptry, funk ber.
Multidimensional minimization of the function funk(x) where x(1:ndim) is a vector
in ndim dimensions, by the downhill simplex method of Nelder and Mead. The matrix
p(1:ndim+1,1:ndim) is input. Its ndim+1 rows are ndim-dimensional vectors which are
the vertices of the starting simplex. Also input is the vector y(1:ndim+1), whose compo-
nents must be pre-initialized to the values of funk evaluated at the ndim+1 vertices (rows)
of p; and ftol the fractional convergence tolerance to be achieved in the function value
(n.b.!). On output, p and y will have been reset to ndim+1 new points all within ftol of
a minimum function value, and iter gives the number of function evaluations taken.

INTEGER i,ihi,ilo,inhi,j,m,n

REAL rtol,sum,swap,ysave,ytry,psum(NMAX) ,amotry

iter=0
do 12 n=1,ndim Enter here when starting or have just overall contracted.
sum=0. Recompute psum.

do 11 m=1,ndim+1
sum=sum+p (m,n)
enddo 11
psum(n)=sum
enddo 12
ilo=1 Enter here when have just changed a single point.
if (y(1).gt.y(2)) then Determine which point is the highest (worst), next-highest,
ihi=1 and lowest (best),
inhi=2
else
ihi=2
inhi=1
endif
do 13 i=1,ndim+1 by looping over the points in the simplex.
if(y(i).le.y(ilo)) ilo=i
if(y(i).gt.y(ihi)) then
inhi=ihi
ihi=i
else if(y(i).gt.y(inhi)) then
if(i.ne.ihi) inhi=i

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

10.4 Downhill Simplex Method in Multidimensions 405

endif
enddo 13
rtol=2.*abs(y(ihi)-y(ilo))/(abs(y(ihi))+abs(y(ilo))+TINY)
Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol.lt.ftol) then If returning, put best point and value in slot 1.
swap=y (1)
y(1)=y(ilo)
y(ilo)=swap
do 14 n=1,ndim
swap=p(1,n)
p(1,n)=p(ilo,n)
p(ilo,n)=swap
enddo 14
return
endif
if (iter.ge.ITMAX) pause ’ITMAX exceeded in amoeba’
iter=iter+2
Begin a new iteration. First extrapolate by a factor —1 through the face of the simplex across
from the high point, i.e., reflect the simplex from the high point.
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,-1.0)
if (ytry.le.y(ilo)) then
Gives a result better than the best point, so try an additional extrapolation by a factor 2.
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,2.0)
else if (ytry.ge.y(inhi)) then
The reflected point is worse than the second-highest, so look for an intermediate lower point,
i.e., do a one-dimensional contraction.
ysave=y(ihi)
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,0.5)
if (ytry.ge.ysave) then Can't seem to get rid of that high point. Better contract
do 16 i=1,ndim+1 around the lowest (best) point.
if(i.ne.ilo)then
do 15 j=1,ndim
psum(j)=0.5%(p(i,j)+p(ilo,j))
p(i,j)=psum(j)

enddo 15
y(i)=funk(psum)
endif
enddo 16
iter=iter+ndim Keep track of function evaluations.
goto 1 Go back for the test of doneness and the next iteration.
endif
else
iter=iter-1 Correct the evaluation count.
endif
goto 2

END

FUNCTION amotry(p,y,psum,mp,np,ndim,funk,ihi,fac)
INTEGER ihi,mp,ndim,np,NMAX
REAL amotry,fac,p(mp,np),psum(np),y(mp) ,funk
PARAMETER (NMAX=20)
EXTERNAL funk
USES funk
Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.
INTEGER j
REAL facl,fac2,ytry,ptry(NMAX)
faci=(1.-fac)/ndim
fac2=facl-fac
do 1 j=1,ndim
ptry(j)=psum(j)*facl-p(ihi, j)*fac2
enddo 11

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

406 Chapter 10. Minimization or Maximization of Functions

ytry=funk(ptry) Evaluate the function at the trial point.
if (ytry.lt.y(ihi)) then If it's better than the highest, then replace the highest.
y(ihi)=ytry
do 12 j=1,ndim
psum(j)=psum(j)-p(ihi, j)+ptry(j)
p(ihi, j)=ptry(j)
enddo 12
endif
amotry=ytry
return
END

CITED REFERENCES AND FURTHER READING:
Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308-313. [1]
Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391-398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’'s) Methods in
Multidimensions

We know (§10.1-510.3) how to minimize a function of one variable. If we
start at a point P in N-dimensional space, and proceed from there in some vector
direction n, then any function of N variables f(P) can be minimized aong the line
n by our one-dimensional methods. One can dream up various multidimensional
minimization methodsthat consist of sequencesof such lineminimizations. Different
methods will differ only by how, at each stage, they choose the next direction n to
try. All such methods presume the existence of a“black-box” sub-algorithm, which
we might call 1inmin (given as an explicit routine at the end of this section), whose
definition can be taken for now as

linmin: Given as input the vectors P and n, and the
function f, find the scalar A that minimizes f(P+ An).
Replace P by P + An. Replace n by An. Done.

All the minimization methodsin this section and in the two sections following
fal under this general schema of successive line minimizations. (The algorithm
in §10.7 does not need very accurate line minimizations. Accordingly, it has its
own approximate line minimization routine, 1nsrch.) In this section we consider
a class of methods whose choice of successive directions does not involve explicit
computation of the function’sgradient; the next two sections do require such gradient
calculations. You will note that we need not specify whether 1inmin uses gradient
information or not. That choice is up to you, and its optimization depends on your
particular function. You would be crazy, however, to use gradientsin 1inmin and
not use them in the choice of directions, since in this latter role they can drastically
reduce the total computational burden.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.5 Direction Set (Powell's) Methods in Multidimensions 407

start

Figure 10.5.1. Successive minimizations along coordinate directions in along, narrow “valley” (shown
as contour lines). Unless the valley is optimally oriented, this method is extremely inefficient, taking
many tiny steps to get to the minimum, crossing and re-crossing the principal axis.

But what if, in your application, cal culation of the gradient is out of the question.
You might first think of this simple method: Take the unit vectorse;, ey, ...ey as
a set of directions. Using 1inmin, move along the first direction to its minimum,
then from there along the second direction to its minimum, and so on, cycling
through the whole set of directions as many times as necessary, until the function
stops decreasing.

This simple method is actually not too bad for many functions. Even more
interesting is why it is bad, i.e. very inefficient, for some other functions. Consider
a function of two dimensions whose contour map (level lines) happens to define a
long, narrow valley at some angle to the coordinate basi s vectors (see Figure 10.5.1).
Then the only way “down the length of the valley” going along the basis vectors at
each stage is by a series of many tiny steps. More generally, in N dimensions, if
the function’s second derivatives are much larger in magnitude in some directions
than in others, then many cycles through all N basis vectors will be required in
order to get anywhere. This conditionis not all that unusual; according to Murphy’s
Law, you should count on it.

Obvioudly what we need is a better set of directionsthan thee;’s. All direction
set methods consist of prescriptions for updating the set of directions as the method
proceeds, attempting to come up with a set which either (i) includes some very

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

408 Chapter 10. Minimization or Maximization of Functions

good directions that will take us far along narrow valleys, or else (more subtly)
(i1) includes some number of “non-interfering” directions with the special property
that minimization along one is not “spoiled” by subsequent minimization along
another, so that interminable cycling through the set of directions can be avoided.

Conjugate Directions

This concept of “non-interfering” directions, more conventionally called con-
jugate directions, is worth making mathematically explicit.

First, note that if we minimize a function along some direction u, then the
gradient of the function must be perpendicular to u at the line minimum; if not, then
there would still be a nonzero directional derivative along u.

Next take some particular point P as the origin of the coordinate system with
coordinates x. Then any function f can be approximated by its Taylor series

- of 1 82 f
fx) = f(P) +Z€)_xixl+ 52 axia%iﬂz% +
i (105.1)
~c—b-x4+ =x-A-X
where
_fP) b= Vi (A= (1052)
€= o P K (i)l'l(r“)l‘] P -

The matrix A whose components are the second partial derivative matrix of the
function is called the Hessian matrix of the function at P.
In the approximation of (10.5.1), the gradient of f is easily calculated as

Vf=A-x—b (105.3)

(Thisimpliesthat the gradient will vanish — the function will be at an extremum —
at avalue of x obtained by solving A - x = b. Thisideawe will returnto in §10.7!)
How doesthe gradient V f change aswe move a ong some direction? Evidently

S(Vf) = A (6x) (10.5.4)

Suppose that we have moved along some direction u to a minimum and now
propose to move along some new direction v. The condition that motion along v not
spoil our minimization along u is just that the gradient stay perpendicular to u, i.e.,
that the change in the gradient be perpendicular to u. By equation (10.5.4) thisisjust

0=u-6(Vf)=u-A-v (10.5.5)

When (10.5.5) holds for two vectors u and v, they are said to be conjugate.
When the relation holds pairwise for all members of a set of vectors, they are said
to be a conjugate set. If you do successive line minimization of a function along
a conjugate set of directions, then you don’'t need to redo any of those directions

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.5 Direction Set (Powell's) Methods in Multidimensions 409

(unless, of course, you spoil things by minimizing along a direction that they are
not conjugate to).

A triumph for a direction set method is to come up with a set of N linearly
independent, mutually conjugate directions. Then, one pass of N line minimizations
will put it exactly at the minimum of a quadratic form like (10.5.1). For functions
f that are not exactly quadratic forms, it won't be exactly at the minimum; but
repeated cycles of V line minimizations will in due course converge quadratically
to the minimum.

Powell’s Quadratically Convergent Method

Powell first discovered a direction set method that does produce N mutually
conjugate directions. Here is how it goes: Initialize the set of directions u; to
the basis vectors,

u, =€ i=1,...,N (10.5.6)

Now repeat the following sequence of steps (“basic procedure”) until your function
stops decreasing:

e Save your starting position as Py.

e Fori =1,...,N, move P;,_; to the minimum aong direction u; and
cal this point P;.

Fori=1,...,N — 1, set u; «— Ujtq.

Set uy «— Py — Po.

Move Py to the minimum along direction u 5 and call this point Py.

Powell, in 1964, showed that, for a quadratic form like (10.5.1), k iterations
of the above basic procedure produce a set of directions u; whose last k¥ members
are mutually conjugate. Therefore, N iterations of the basic procedure, amounting
to N(N + 1) line minimizations in al, will exactly minimize a quadratic form.
Brent [1] gives proofs of these statements in accessible form.

Unfortunately, there is a problem with Powell’s quadratically convergent al-
gorithm. The procedure of throwing away, at each stage, u; in favor of Py — Py
tends to produce sets of directions that “fold up on each other” and become linearly
dependent. Once this happens, then the procedure finds the minimum of the function
f only over a subspace of the full N-dimensional case; in other words, it gives the
wrong answer. Therefore, the algorithm must not be used in the form given above.

There are a number of ways to fix up the problem of linear dependence in
Powell’s algorithm, among them:

1. You canreinitialize the set of directionsu; to the basis vectors e; after every
N or N + 1 iterations of the basic procedure. This produces a serviceable method,
which we commendto you if quadratic convergenceisimportant for your application
(i.e., if your functions are close to quadratic forms and if you desire high accuracy).

2. Brent points out that the set of directions can equally well be reset to
the columns of any orthogonal matrix. Rather than throw away the information
on conjugate directions aready built up, he resets the direction set to calculated
principal directions of the matrix A (which he gives a procedure for determining).

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

410 Chapter 10. Minimization or Maximization of Functions

The calculation is essentially a singular value decomposition algorithm (see §2.6).
Brent has a number of other cute tricks up his sleeve, and his modification of
Powell’s method is probably the best presently known. Consult [1] for a detailed
description and listing of the program. Unfortunately it is rather too elaborate for
us to include here.

3. You can give up the property of quadratic convergence in favor of a more
heuristic scheme (due to Powell) which tries to find a few good directions along
narrow valleys instead of N necessarily conjugate directions. This is the method
that we now implement. (It isalso the version of Powell’s method givenin Acton [2],
from which parts of the following discussion are drawn.)

Discarding the Direction of Largest Decrease

The fox and the grapes: Now that we are going to give up the property of
guadratic convergence, was it so important after all? That depends on the function
that you are minimizing. Some applications produce functions with long, twisty
valleys. Quadratic convergence is of no particular advantage to a program which
must slalom down the length of a valley floor that twists one way and another (and
another, and another, ... — there are N dimensions!). Along the long direction,
a quadratically convergent method is trying to extrapolate to the minimum of a
parabola which just isn't (yet) there; while the conjugacy of the N — 1 transverse
directions keeps getting spoiled by the twists.

Sooner or later, however, we do arrive at an approximately ellipsoidal minimum
(cf. equation 10.5.1 when b, the gradient, is zero). Then, depending on how much
accuracy we require, amethod with quadratic convergence can save us several times
N? extra line minimizations, since quadratic convergence doubles the number of
significant figures at each iteration.

The basic idea of our now-modified Powell’s method is still to take P 5y — Py as
anew direction; itis, after all, the average direction moved after trying all N possible
directions. For a valley whose long direction is twisting slowly, this direction is
likely to give us a good run along the new long direction. The changeis to discard
the old direction along which the function f made its largest decrease. This seems
paradoxical, since that direction was the best of the previous iteration. However, it
is aso likely to be a major component of the new direction that we are adding, so
dropping it gives us the best chance of avoiding a buildup of linear dependence.

There are a couple of exceptions to this basic idea. Sometimes it is better not
to add a new direction at al. Define

fo=f(Po) fn=f(Px) fe=f(2Py—P) (105.7)

Here fg is the function value at an “extrapolated” point somewhat further along
the proposed new direction. Also define Af to be the magnitude of the largest
decrease along one particular direction of the present basic procedureiteration. (A f
is a positive number.) Then:

1. If fg > fo, then keep the old set of directions for the next basic procedure,
because the average direction Py — Py is al played out.

2.2 (fo—2fn+ fr) [(fo— fn) = Af]* > (fo— fr)*Af, thenkeeptheold
set of directions for the next basic procedure, because either (i) the decrease along

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.5 Direction Set (Powell's) Methods in Multidimensions 411

the average direction was not primarily due to any single direction’s decrease, or (ii)
there is a substantial second derivative along the average direction and we seem to
be near to the bottom of its minimum.

Thefollowing routineimplements PowelI’s method in the version just described.
Intheroutineg, xi isthe matrix whose columns are the set of directionsn ;; otherwise
the correspondence of notation should be self-evident.

SUBROUTINE powell(p,xi,n,np,ftol,iter,fret)

INTEGER iter,n,np,NMAX,ITMAX

REAL fret,ftol,p(np),xi(np,np),func,TINY

EXTERNAL func

PARAMETER (NMAX=20,ITMAX=200,TINY=1.e-25)

USES func, |inmn
Minimization of a function func of n variables. (func is not an argument, it is a fixed func-
tion name.) Input consists of an initial starting point p(1:n); an initial matrixxi(1:n,1:n)
with physical dimensions np by np, and whose columns contain the initial set of directions
(usually the n unit vectors); and ftol, the fractional tolerance in the function value such
that failure to decrease by more than this amount on one iteration signals doneness. On
output, p is set to the best point found, xi is the then-current direction set, fret is the
returned function value at p, and iter is the number of iterations taken. The routine
linmin is used.
Parameters: Maximum value of n, maximum allowed iterations, and a small nhumber.

INTEGER 1i,ibig, j

REAL del,fp,fptt,t,pt(NMAX),ptt(NMAX),xit (NMAX)

fret=func(p)

dou j=1,n Save the initial point.
pt(§)=p(j)
enddo 11
iter=0
iter=iter+1
fp=fret
ibig=0
del=0. Will be the biggest function decrease.
do13 i=1,n In each iteration, loop over all directions in the set.
do12 j=1,n Copy the direction,
xit(§j)=xi(j,1)
enddo 12
fptt=fret
call linmin(p,xit,n,fret) minimize along it,
if (fptt-fret.gt.del)then and record it if it is the largest decrease so far.
del=fptt-fret
ibig=i
endif
enddo 13

if (2.x(fp-fret) .le.ftol*(abs(fp)+abs(fret))+TINY)return Termination criterion.
if (iter.eq.ITMAX) pause ’powell exceeding maximum iterations’

do 14 j=1,n Construct the extrapolated point and the average di-
ptt(§)=2.*%p(§)-pt(j) rection moved. Save the old starting point.
xit(§)=p(j)-pt(j)
pt(§)=p(j)

enddo 14

fptt=func(ptt) Function value at extrapolated point.

if (fptt.ge.fp)goto 1 One reason not to use new direction.

t=2.%(fp-2.*fret+fptt) * (fp-fret-del) **2-delx* (fp-fptt) **2

if(t.ge.0.)goto 1 Other reason not to use new direction.

call linmin(p,xit,n,fret) Move to the minimum of the new direction,

do1s j=1,n and save the new direction.

xi(j,ibig)=xi(j,n)

xi(j,n)=xit(j)
enddo 15
goto 1 Back for another iteration.
END

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

412 Chapter 10. Minimization or Maximization of Functions

Implementation of Line Minimization

Inthe aboveroutine, you might have wondered why we didn’t make the function
name func an argument of the routine. The reason is buried in a dightly dirty
FORTRAN practicality in our implementation of 1inmin.

Make no mistake, there is a right way to implement linmin: It is to use
the methods of one-dimensional minimization described in §10.1-510.3, but to
rewrite the programs of those sections so that their bookkeeping is done on vector-
valued points P (al lying aong a given direction n) rather than scalar-valued
abscissas x. That straightforward task produces long routines densely populated
with “do k=1,n" loops.

We do not have space to include such routinesin thisbook. Our 1inmin, which
worksjust fine, isinstead a kind of bookkeeping swindle. It constructsan “artificial”
function of one variable called f1dim, which is the value of your function func
along the line going through the point p in the direction xi. 1inmin communicates
with f1dim through a common block. It then calls our familiar one-dimensional
routinesmnbrak (§10.1) and brent (§10.2) and instructs them to minimize f 1dim.

Still following? Then try this: brent receivesthe function name £ 1dim, which
it dutifully calls. But thereisnoway to signal to f1dim that it is supposed to use your
function name, which could have been passed to 1inmin as an argument. Therefore,
we have to make f1dim use a fixed function name, namely func. The situation is
reminiscent of Henry Ford's black automobile: powell will minimize any function,
as long as it is named func. Needed to remedy this situation is a way to pass a
function name through a common block; thisis lacking in FORTRAN.

Theonly thinginefficient about 1inmin isthis: Itsuse asan interface betweena
multidimensional minimization strategy and a one-dimensional minimization routine
results in some unnecessary copying of vectors hither and yon. That should not
normally be a significant addition to the overall computational burden, but we cannot
disguise its inelegance.

SUBROUTINE linmin(p,xi,n,fret)

INTEGER n,NMAX

REAL fret,p(n),xi(n),TOL

PARAMETER (NMAX=50,TOL=1.e-4) Maximum anticipated n, and TOL passed to brent.

USES brent, f1di m mbr ak
Given an n-dimensional point p(1:n) and an n-dimensional direction xi(1:n), moves and
resets p to where the function func(p) takes on a minimum along the direction xi from
P, and replaces xi by the actual vector displacement that p was moved. Also returns as
fret the value of func at the returned location p. This is actually all accomplished by
calling the routines mnbrak and brent.

INTEGER j,ncom

REAL ax,bx,fa,fb,fx,xmin,xx,pcom(NMAX) ,xicom(NMAX) ,brent

COMMON /ficom/ pcom,xicom,ncom

EXTERNAL fidim

ncom=n Set up the common block.

dou j=1,n
peom(j)=p(j)
xicom(j)=xi(j)

enddo 11

ax=0. Initial guess for brackets.

xx=1.

call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)

fret=brent (ax,xx,bx,f1dim,TOL,xmin)

do 12 j=1,n Construct the vector results to return.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.6 Conjugate Gradient Methods in Multidimensions 413

xi(j)=xminx*xi(j)
p()=p(G)+xi(j)
enddo 12
return
END

FUNCTION fidim(x)
INTEGER NMAX
REAL fidim,func,x
PARAMETER (NMAX=50)
USES func
Used by 1linmin as the function passed to mnbrak and brent.
INTEGER j,ncom
REAL pcom(NMAX) ,xicom(NMAX) ,xt (NMAX)
COMMON /ficom/ pcom,xicom,ncom
do 11 j=1,ncom
xt (j)=pcom(j)+x*xicom(j)
enddo 11
fidim=func(xt)
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 7. [1]

Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 464-467. [2]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), pp. 259-262.

10.6 Conjugate Gradient Methods in
Multidimensions

We consider now the case where you are able to calculate, a a given N-
dimensional point P, not just the value of a function f(P) but aso the gradient
(vector of first partial derivatives) V f(P).

A rough counting argument will show how advantageousit isto use the gradient
information: Suppose that the function f is roughly approximated as a quadratic
form, as above in equation (10.5.1),

f(x)zc—b-x+%x-A-x (10.6.1)

Then the number of unknown parameters in f is equal to the number of free
parameters in A and b, which is N(N + 1), which we see to be of order N2
Changing any one of these parameters can move the location of the minimum.
Therefore, we should not expect to be able to find the minimum until we have
collected an equivalent information content, of order V2 numbers.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

414 Chapter 10. Minimization or Maximization of Functions

In the direction set methods of §10.5, we collected the necessary information by
making on the order of IV 2 separate line minimizations, each requiring “afew” (but
sometimes a big few!) function evaluations. Now, each evaluation of the gradient
will bring us N new components of information. If we use them wisely, we should
need to make only of order N separate line minimizations. That is in fact the case
for the algorithms in this section and the next.

A factor of N improvement in computational speed is not necessarily implied.
As a rough estimate, we might imagine that the calculation of each component of
the gradient takes about as long as evaluating the function itself. In that case there
will be of order N2 equivalent function evaluations both with and without gradient
information. Even if the advantage is not of order NV, however, it is nevertheless
quite substantial: (i) Each calculated component of the gradient will typically save
not just one function evaluation, but a number of them, equivalent to, say, a whole
line minimization. (ii) There is often a high degree of redundancy in the formulas
for the various components of afunction’s gradient; when thisis so, especially when
there is also redundancy with the calculation of the function, then the cal culation of
the gradient may cost significantly less than N function evaluations.

A common beginner’serror isto assumethat any reasonableway of incorporating
gradient information should be about as good as any other. Thisline of thought leads
to the following not very good algorithm, the steepest descent method:

Steepest Descent: Start at a point Py. As many times
as needed, move from point P; to the point P;,; by
minimizing along the line from P; in the direction of
the local downhill gradient —V f(P;).

The problem with the steepest descent method (which, incidentally, goes back
to Cauchy), is similar to the problem that was shown in Figure 10.5.1. The method
will perform many small stepsin going down along, narrow valley, evenif thevalley
is a perfect quadratic form. You might have hoped that, say in two dimensions,
your first step would take you to the valley floor, the second step directly down
the long axis; but remember that the new gradient at the minimum point of any
line minimization is perpendicular to the direction just traversed. Therefore, with
the steepest descent method, you must make a right angle turn, which does not, in
general, take you to the minimum. (See Figure 10.6.1.)

Just as in the discussion that led up to equation (10.5.5), we really want a way
of proceeding not down the new gradient, but rather in a direction that is somehow
constructed to be conjugate to the old gradient, and, insofar as possible, to all
previous directions traversed. Methods that accomplish this construction are called
conjugate gradient methods.

In §2.7 we discussed the conjugate gradient method as a technique for solving
linear algebraic equations by minimizing a quadratic form. That formalism can also
be applied to the problem of minimizing a function approximated by the quadratic
form (10.6.1). Recall that, starting with an arbitrary initial vector g, and letting
hy = g,. the conjugate gradient method constructs two sequences of vectors from
the recurrence

0i41=90;, — MNA - h; h;y1 = 041 T ~:h; 1=0,1,2,... (1062)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.6 Conjugate Gradient Methods in Multidimensions 415

S oy

@

(b)
Figure 10.6.1. (@) Steepest descent method in along, narrow “valley.” While more efficient than the
strategy of Figure 10.5.1, steepest descent is nonetheless an inefficient strategy, taking many steps to
reach the valley floor. (b) Magnified view of one step: A step starts off in the local gradient direction,

perpendicular to the contour lines, and traverses a straight line until alocal minimum is reached, where
the traverse is parallel to the local contour lines.

The vectors satisfy the orthogonality and conjugacy conditions
g,-9;,=0 hi-A-h;=0 g,-h;=0 j<i (10.6.3)

The scalars A\; and ~; are given by

/\z_hi-A-hi_hi.A.hi (10.6.4)
9it1 Y941
‘T T g g 1065

Equations (10.6.2)—(10.6.5) are simply equations (2.7.32)—2.7.35) for a symmetric
A in anew notation. (A self-contained derivation of these results in the context of
function minimization is given by Polak [1].)

Now suppose that we knew the Hessian matrix A in equation (10.6.1). Then
we could use the construction (10.6.2) to find successively conjugate directions h ;
along which to line-minimize. After NV such, we would efficiently have arrived at
the minimum of the quadratic form. But we don’t know A.

Here is a remarkable theorem to save the day: Suppose we happen to have
g, = —V f(P;), for some point P;, where f is of the form (10.6.1). Suppose that we
proceed from P; along the direction h; to the local minimum of f located at some
point P;;; and then set g, ; = —V f(P;;1). Then, this g, is the same vector
as would have been constructed by equation (10.6.2). (And we have constructed
it without knowledge of A!)

Proof: By equation (10.5.3), g, = —A - P; + b, and

g1 =-A-(Pi+Ah)+b=g,—)MA-h; (10.6.6)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

416 Chapter 10. Minimization or Maximization of Functions

with A chosen to take us to the line minimum. But at the line minimumh; - Vf =
—h; - g;,; = 0. Thislatter condition is easily combined with (10.6.6) to solve for
A. The result is exactly the expression (10.6.4). But with this value of A, (10.6.6)
is the same as (10.6.2), g.e.d.

We have, then, the basis of an algorithm that requires neither knowledge of the
Hessian matrix A, nor even the storage necessary to store such amatrix. A sequence
of directions h; is constructed, using only line minimizations, evaluations of the
gradient vector, and an auxiliary vector to store the latest in the sequence of g's.

The algorithm described so far is the origina Fletcher-Reeves version of the
conjugate gradient algorithm. Later, Polak and Ribiere introduced one tiny, but
sometimes significant, change. They proposed using the form

(941 —9) - 9ity
;= 10.6.7
K g;-9; ()

instead of equation (10.6.5). “Wait,” you say, “aren’t they equal by the orthogonality
conditions (10.6.3)?" They are equal for exact quadratic forms. In the real world,
however, your function is not exactly a quadratic form. Arriving at the supposed
minimum of the quadratic form, you may still need to proceed for another set of
iterations. There is some evidence [2] that the Polak-Ribiere formula accomplishes
the transition to further iterations more gracefully: When it runs out of steam, it
tends to reset h to be down the local gradient, which is equivalent to beginning the
conjugate-gradient procedure anew.

The following routine implements the Polak-Ribiere variant, which we recom-
mend; but changing one program line, as shown, will give you Fletcher-Reeves. The
routine presumes the existence of afunction func (p), wherep(1:n) is avector of
length n, and also presumes the existence of a subroutine dfunc (p,df) that returns
the vector gradient df (1:n) evaluated at the input point p.

The routine calls 1inmin to do the line minimizations. As aready discussed,
you may wish to use a modified version of 1inmin that uses dbrent instead of
brent, i.e., that uses the gradient in doing the line minimizations. See note bel ow.

SUBROUTINE frprmn(p,n,ftol,iter,fret)

INTEGER iter,n,NMAX,ITMAX

REAL fret,ftol,p(n),EPS,func

EXTERNAL func

PARAMETER (NMAX=50,ITMAX=200,EPS=1.e-10)

USES dfunc, func, linmn
Given a starting point p that is a vector of length n, Fletcher-Reeves-Polak-Ribiere minimiza-
tion is performed on a function func, using its gradient as calculated by a routine dfunc.
The convergence tolerance on the function value is input as £tol. Returned quantities are
p (the location of the minimum), iter (the number of iterations that were performed),
and fret (the minimum value of the function). The routine 1inmin is called to perform
line minimizations.
Parameters: NMAX is the maximum anticipated value of n; ITMAX is the maximum allowed
number of iterations; EPS is a small number to rectify special case of converging to exactly
zero function value.

INTEGER its,j

REAL dgg,fp,gam,gg,g(NMAX) ,h (NMAX) ,xi (NMAX)

fp=func (p) Initializations.

call dfunc(p,xi)

dou j=1,n
g(§)=—xi(j)
h(j)=g(3)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.6 Conjugate Gradient Methods in Multidimensions 417

xi(j)=h(j)
enddo 11
do 14 its=1,ITMAX Loop over iterations.
iter=its
call linmin(p,xi,n,fret) Next statement is the normal return:
if (2.*abs(fret-fp).le.ftol*(abs (fret)+abs (fp)+EPS))return
fp=fret
call dfunc(p,xi)
gg=0.
dgg=0.
do1 j=1,n
ge=gg+g(j)**2
dgg=dgg+xi (j)**2 This statement for Fletcher-Reeves.
dgg=dgg+(xi(j)+g(j))*xi(j) This statement for Polak-Ribiere.
enddo 12
if(gg.eq.0.)return Unlikely. If gradient is exactly zero then we are al-
gam=dgg/gg ready done.
do13 j=1,n
g(§)=-xi(j)
h(j)=g(j)+gam*h(j)
xi(j)=h(j)
enddo 13
enddo 14
pause ’frprmn maximum iterations exceeded’
return
END

Note on Line Minimization Using Derivatives

Kindly reread the last part of §10.5. We here want to do the same thing, but
using derivative information in performing the line minimization.

Rather than reprint the whole routine 1inmin just to show one modified
statement, let us just tell you what the change is. The statement

fret=brent (ax,xx,bx,fldim,tol,xmin)

should be replaced by

fret=dbrent (ax,xx,bx,fl1dim,df1dim,tol,xmin)

You must also include the following function, which is analogousto f1dim as
discussed in §10.5. And remember, your function must be named func, and its
gradient calculation must be named dfunc.

FUNCTION dfidim(x)
INTEGER NMAX
REAL dfildim,x
PARAMETER (NMAX=50)
USES df unc
INTEGER j,ncom
REAL df (NMAX) ,pcom(NMAX) ,xicom(NMAX) ,xt (NMAX)
COMMON /ficom/ pcom,xicom,ncom
do1u j=1,ncom
xt (j)=pcom(j)+x*xicom(j)
enddo 11
call dfunc(xt,df)
df1dim=0.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

418 Chapter 10. Minimization or Maximization of Functions

do 12 j=1,ncom
df1dim=df1dim+df (j)*xicom(j)
enddo 12
return
END

CITED REFERENCES AND FURTHER READING:
Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), §2.3. [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Artin Numerical Analysis (London: Academic Press),
Chapter I111.1.7 (by K.W. Brodlie). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
88.7.

10.7 Variable Metric Methods in
Multidimensions

Thegoal of variable metric methods, which are sometimes called quasi-Newton
methods, is not different from the goal of conjugate gradient methods: to accumulate
information from successive line minimizations so that N such line minimizations
lead to the exact minimum of a quadratic form in NV dimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both variable metric and conjugate gradient methods requirethat you are ableto
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
variable metric approach differs from the conjugate gradient in the way that it stores
and updates the information that is accumulated. Instead of requiring intermediate
storage on the order of IV, the number of dimensions, it requires a matrix of size
N x N. Generaly, for any moderate NV, thisis an entirely trivial disadvantage.

On the other hand, thereis not, as far as we know, any overwhelming advantage
that the variable metric methods hold over the conjugate gradient techniques, except
perhaps a historical one. Developed somewhat earlier, and more widely propagated,
the variable metric methods have by now developed awider constituency of satisfied
users. Likewise, some fancier implementations of variable metric methods (going
beyond the scope of this book, see below) have been developed to a greater level of
sophistication on issues like the minimization of roundoff error, handling of special
conditions, and so on. We tend to use variable metric rather than conjugate gradient,
but we have no reason to urge this habit on you.

Variablemetric methodscomeintwo mainflavors. Oneisthe Davidon-Fletcher-
Powell (DFP) algorithm (sometimes referred to as simply Fletcher-Powell). The
other goes by the name Broyden-Fletcher-Gol dfarb-Shanno (BFGS). The BFGS and
DFP schemes differ only in details of their roundoff error, convergence tolerances,
and similar “dirty” issues which are outside of our scope [1.2]. However, it has
become generally recognized that, empirically, the BFGS scheme s superior in these
details. We will implement BFGS in this section.

As before, we imagine that our arbitrary function f(x) can be locally approx-
imated by the quadratic form of equation (10.6.1). We don't, however, have any

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.7 Variable Metric Methods in Multidimensions 419

information about the values of the quadratic form's parameteendb, except
insofar as we can glean such information from our function evaluations and line
minimizations.

The basic idea of the variable metric method is to build up, iteratively, a good
approximation to the inverse Hessian matix !, that is, to construct a sequence
of matricesH; with the property,

lim H; = A~! (10.7.9)
11— 00
Even better if the limit is achieved afté¥ iterations instead ofo.

The reason that variable metric methods are sometimes called quasi-NewtorR
methods can now be explained. Consider finding a minimum by using Newton’s 8
method to search for a zero of the gradient of the function. Near the current point®
X;, we have to second order

LWOD" JU* MMM/:dny

8

FX) = F(X) + (X—=%;) - VF(X;) + (X —%;) - A~ (X—X;) (10.7.2
SO
VIX)=VFIx)+A-(X—X;) (10.7.3

In Newton's method we sé¥ f(x) = 0 to determine the next iteration point:
X—x; = —A"1 VF(x) (10.7.4
The left-hand side is the finite step we need take to get to the exact minimum; th

right-hand side is known once we have accumulated an acddrated ~'.
The “quasi” in quasi-Newton is because we don't use the actual Hessian matrix=

wa p{?as 10 ‘(Aluo eouBWY YUON) £21/-2/8-00!
pauqiyold Apos si ‘19Indwod 1aAias Aue 01 (suo siyy Buipnoul) saji a|qepeal

e

uononpoidal Jayun4 "asn feuosiad umo J1ay; 1oy Adoo Jaded auo axew 0} SIasn 18ulslUl J0) pajue.d S uoIssIwIad

of f, but instead use our current approximation of it. This is oftbetter than g

using the true Hessian. We can understand this paradoxical result by considering th§

descent directions of f atx;. These are the directiogsalong whichf decreases: g

V f-p < 0. Forthe Newton direction (10.7.4) to be a descent direction, we must have %

®

Vi) (X=%)=—(X—%;)-A-(X=%;) <0 (10.7.5 5

which is true ifA is positive definite. In general, far from a minimum, we have no §
guarantee that the Hessian is positive definite. Taking the actual Newton step witff 3 :

the real Hessian can move us to points where the functioncigasing in value.
The idea behind quasi-Newton methods is to start with a positive definite, symmetri
approximation toA (usually the unit matrix) and build up the approximatidg’s
in such a way that the matrii; remains positive definite and symmetric. Far from
the minimum, this guarantees that we always move in a downhill direction. Close
to the minimum, the updating formula approaches the true Hessian and we enjo
the quadratic convergence of Newton's method.

When we are not close enough to the minimum, taking the full Newton step
p even with a positive definitéd need not decrease the function; we may move
too far for the quadratic approximation to be valid. All we are guaranteed is that
initially f decreases as we move in the Newton direction. Once again we can use
the backtracking strategy describeds®7 to choose a step along tbeection of
the Newton step, but not necessarily all the way.

%p!sm
3)ISgaM 1ISIA ‘SNOYAD 10 Sy00q sadioay [ealawnN JapIo 01

-auiyoew Jjo BuiAdoo Aue o
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD

(X-790€1-T2S-0 NESI) ONILNINOD DIFILNIIOS 4O 18V IHL 122 NVHLHO4 NI SAdIDIY TvOIHINNN woly ebed sdwes

19Uy YUON

Ol

420 Chapter 10. Minimization or Maximization of Functions

We won't rigorously derive the DFP algorithm for takimty; into H;, 1; you
can consulf3] for clear derivations. Following Brodlie (ii2]), we will give the
following heuristic motivation of the procedure.

Subtracting equation (10.7.4)f, ; from that same equation &} gives

Xit1 — X3 = A71 . (Vflqu — sz) (1076

whereV f; = V f(X;). Having made the step from to X;+1, we might reasonably
want to require that the new approximatiéh,,; satisfy (10.7.6) as if it were
actually A™!, that is,

Xit1 — X = Hi+1 . (Vfi+1 — Vfl) (1073

We might also imagine that the updating formula should be of the fdrmp; =
H; + correction.

What “objects” are around out of which to construct a correction term? Most

notable are the two vectoss;.; — x; and Vf;.1 — Vf;; and there is alsti;.

There are not infinitely many natural ways of making a matrix out of these objects,

especially if (10.7.7) must hold! One such way, DEP updating formula, is

(Xit1 = Xi) @ (Xi+1 — X)
(Xix1 —Xi) - (Vfix1 = Vi)
Hi- (Vfirn = V)@ [MHi - (Vfiyr — V[
(Vfir1 = Vfi) Hi- (Vfiz1 = Vi)

Hipi=H; +

(10.7.8

where® denotes the “outer” or “direct” product of two vectors, a matrix: Tlie

componentoli®visu,v;. (You mightwantto verify that 10.7.8 does satisfy 10.7.7.)

The BFGSupdating formula is exactly the same, but with one additional term,
oo+ [(Vfixr = V) Hi - (Vfiy1 — Vi) u®u (10.7.9
whereu is defined as the vector
(Xi1 —Xi)
(Xit1 = %i) - (Vi1 = Vfi)

Hi (Vfiy1 =V fi)
(Vfix1 =V fi) - Hi - (Vfiy1 = Vi)

u=

(10.7.10

(You might also verify that this satisfies 10.7.7.)

You will have to take on faith — or else cons(8t for details of — the “deep”
result that equation (10.7.8), with or without (10.7.9), does in fact converge to
in N steps, iff is a quadratic form.

Here now is the routingfpmin that implements the quasi-Newton method, and

useslnsrch from §9.7. As mentioned at the end aéwt in §9.7, this algorithm
can fail if your variables are badly scaled.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.7 Variable Metric Methods in Multidimensions 421

SUBROUTINE dfpmin(p,n,gtol,iter,fret,func,dfunc)

INTEGER iter,n,NMAX,ITMAX

REAL fret,gtol,p(n),func,EPS,STPMX,TOLX

PARAMETER (NMAX=50,ITMAX=200,STPMX=100.,EPS=3.e-8,TOLX=4.*EPS)

EXTERNAL dfunc,func

USES df unc, func, | nsrch
Given a starting point p(1:n) that is a vector of length n, the Broyden-Fletcher-Goldfarb-
Shanno variant of Davidon-Fletcher-Powell minimization is performed on a function func,
using its gradient as calculated by a routine dfunc. The convergence requirement on zeroing
the gradient is input as gtol. Returned quantities are p(1:n) (the location of the mini-
mum), iter (the number of iterations that were performed), and fret (the minimum value
of the function). The routine 1nsrch is called to perform approximate line minimizations.
Parameters: NMAX is the maximum anticipated value of n; ITMAX is the maximum allowed
number of iterations; STPMX is the scaled maximum step length allowed in line searches;
TOLX is the convergence criterion on x values.

INTEGER i,its,]

LOGICAL check

REAL den,fac,fad,fae,fp,stpmax,sum,sumdg,sumxi,temp,test,

dg (NMAX) , g (NMAX) ,hdg (NMAX) ,hessin (NMAX,NMAX) ,
pnew (NMAX) ,xi (NMAX)

fp=func (p) Calculate starting function value and gradient,
call dfunc(p,g)
sum=0.
do12 i=1,n and initialize the inverse Hessian to the unit matrix.
dou j=1,n
hessin(i,j)=0.
enddo 11
hessin(i,i)=1.
xi(1)=-g(i) Initial line direction.
sum=sum+p (1) **2
enddo 12
stpmax=STPMX*max (sqrt (sum) ,float(n))
do 27 its=1,ITMAX Main loop over the iterations.
iter=its

call lnsrch(n,p,fp,g,xi,pnew,fret,stpmax,check,func)
The new function evaluation occurs in 1nsrch; save the function value in fp for the next
line search. It is usually safe to ignore the value of check.

fp=fret
do 13 i=1,n
xi(i)=pnew(i)-p(i) Update the line direction,
p(i)=pnew(i) and the current point.
enddo 13
test=0. Test for convergence on Ax.

do 14 i=1,n
temp=abs (xi(i))/max(abs(p(i)),1.)
if (temp.gt.test)test=temp

enddo 14
if (test.1lt.TOLX)return
dois i=1,n Save the old gradient,
dg(i)=g(i)
enddo 15
call dfunc(p,g) and get the new gradient.
test=0. Test for convergence on zero gradient.

den=max(fret,1.)

do 16 i=1,n
temp=abs (g(i))*max(abs(p(i)),1.)/den
if (temp.gt.test)test=temp

enddo 16

if (test.lt.gtol)return

do17 i=1,n Compute difference of gradients,
dg(i)=g(i)-dg(i)

enddo 17

do19 i=1,n and difference times current matrix.
hdg(i)=0.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

422 Chapter 10. Minimization or Maximization of Functions

doi1s j=1,n
hdg(i)=hdg(i)+hessin(i,j)*dg(j)

enddo 18

enddo 19

fac=0. Calculate dot products for the denominators.

fae=0.

sumdg=0.

sumxi=0.

do21 i=1,n
fac=fac+dg(i)*xi(i)
fae=fae+dg(i)*hdg(i)
sumdg=sumdg+dg (i) **2
sumxi=sumxi+xi(i)**2

enddo 21
if (fac.gt.sqrt (EPS*sumdg*sumxi))then Skip update if fac not sufficiently positive.
fac=1./fac
fad=1./fae
do22 i=1,n The vector that makes BFGS different from DFP:
dg(i)=fac*xi(i)-fad*hdg(i)
enddo 22
do 24 i=1,n The BFGS updating formula:

do23 j=i,n
hessin(i,j)=hessin(i,j)+fac*xi(i)*xi(j)
—-fad*hdg(i)*hdg(j)+fae*xdg(i)*dg(j)
hessin(j,i)=hessin(i,j)

enddo 23
enddo 24
endif
do26 i=1,n Now calculate the next direction to go,
xi(i)=0.
do2s j=1,n
xi(i)=xi(i)-hessin(i,j)*g(j)
enddo 25
enddo 26
enddo 27 and go back for another iteration.
pause ’too many iterations in dfpmin’
return

END

Quasi-Newton methods likefpmin work well with the approximate line
minimization done bylnsrch. The routinepowell (§10.5) andfrprmn (§10.6),
however, need more accurate line minimization, which is carried out by the routine
linmin.

Advanced Implementations of Variable Metric Methods

pIsIN0) B0 abplIqWEeI ®AISSISNIIIIP O} [rewa puas Jo ‘(Ajuo eouawy YHON) £2i7/-2/8-008-T [[e2 10 wod u mmm//:dny
D 10 sx00q sadioay [eauswn 1apio 0] ‘panugiyold Ajpows si ‘18indwod 1aalas Aue 01 (suo siyy Buipnjoul) saji a|jqepeal

Although rare, it can conceivably happen that roundoff errors cause the rhiattox
become nearly singular or non-positive-definite. This can be serious, because the suppos
search directions might then not lead downhill, and because nearly sifjtddend to give
subsequent;’s that are also nearly singular.

There is a simple fix for this rare problem, the same as was mentioriddia: In case
of any doubt, you shouldestart the algorithm at the claimed minimum point, and see if it
goes anywhere. Simple, but not very elegant. Modern implementations of variable metri
methods deal with the problem in a more sophisticated way.

Instead of building up an approximationAc *, itis possible to build up an approximation
of A itself. Then, instead of calculating the left-hand side of (10.7.4) directly, one solves
the set of linear equations

5

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Neouswy yuo
31ISGaM JISIA ‘'SNO

A (X=%;) ==V f(X) (10.7.11

_ Atfirst glance this seems like a bad idea, since solving (10.7.11) is a process of order
N?® — and anyway, how does this help the roundoff problem? The trick is not to Atbre

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

10.8 Linear Programming and the Simplex Method 423

rather a triangular decomposition Af its Cholesky decomposition (cf. §2.9). The updating
formula used for the Cholesky decomposition/fis of order N* and can be arranged to

guarantee that the matrix remains positive definite and nonsingular, even in the presence of

finite roundoff. This method is due to Gill and Murrfiy2].

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Artin Numerical Analysis (London: Academic Press),
Chapter 111.1, §§3-6 (by K. W. Brodlie). [2]

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), pp. 56ff. [3]

Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 467-468.

10.8 Linear Programming and the Simplex
Method

The subject oflinear programming, sometimes calledinear optimization,
concernsitself with the following problem: Féfindependentvariables, , . .., zy,
maximize the function

Z =ag1T1 + ap2x2 + -+ aNTN (10.8.])
subject to the primary constraints

X1 Z O, To Z 0, ce TN 2 0 (1083

and simultaneously subject td = m; + ms 4+ mg additional constraintsy; of
them of the form

;1T + T + -+ a;naen < b; (b; > 0) i=1,...,m; (10.8.3
mo Of them of the form
a;121 + ajota + -+ ajnrn > b; >0 j=mi+1,...,m +ms (10.8.9
and ms of them of the form

ax1T1 + aporo + -+ apnyxry = b >0
(10.8.5

k:m1+m2—|—1,...,m1—|—m2—|—m3

The variousz;;'s can have either sign, or be zero. The fact thatiteenust all be

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

nonnegative (as indicated by the final inequality in the above three equations) is a

matter of convention only, since you can multiply any contrary inequality-ty
There is no particular significance in the number of constraititbeing less than,
equal to, or greater than the number of unknows

424 Chapter 10. Minimization or Maximization of Functions

A set of valuesz; . .. v that satisfies the constraints (10.8.2)—10.8.5) iscalled
afeasible vector. The function that we are trying to maximize is called the objective
function. The feasible vector that maximizes the objective function is called the
optimal feasible vector. An optimal feasible vector can fail to exist for two distinct
reasons: (i) there are no feasible vectors, i.e., the given constraints areincompatible,
or (ii) thereis no maximum, i.e., thereis a direction in NV space where one or more
of the variables can be taken to infinity while still satisfying the constraints, giving
an unbounded value for the objective function.

As you see, the subject of linear programming is surrounded by notational and
terminological thickets. Both of these thorny defenses are lovingly cultivated by a
coterie of stern acolytes who have devoted themselves to the field. Actually, the
basic ideas of linear programming are quite simple. Avoiding the shrubbery, we
want to teach you the basics by means of a couple of specific examples; it should
then be quite obvious how to generalize.

Why is linear programming so important? (i) Because “nonnegativity” is the
usual constraint on any variable x; that represents the tangible amount of some
physical commodity, like guns, butter, dollars, units of vitamin E, food calories,
kilowatt hours, mass, etc. Hence equation (10.8.2). (ii) Because one is often
interested in additive (linear) limitations or bounds imposed by man or nature:
minimum nutritional requirement, maximum affordabl e cost, maximum on available
labor or capital, minimum tolerable level of voter approval, etc. Hence equations
(10.8.3)10.8.5). (iii) Because the function that one wants to optimize may be
linear, or else may at least be approximated by alinear function — since that is the
problem that linear programming can solve. Hence equation (10.8.1). For a short,
semipopular survey of linear programming applications, see Bland [1].

Here is a specific example of a problem in linear programming, which has
N:4,m1:2,m2:m3=1,henceM:4:

Maximize z =21+ x9 + 3w3 — %$4 (10.8.6)
with all the z’s nonnegative and also with

T + 2x3 < 740

2172 — 7174 S 0
) (10.8.7)
To— T3+ 2m4 2 5

1 +xo+2x3+24=9
Theanswer turnsout tobe (to 2 decimals) z; = 0, z2 = 3.33, 23 = 4.73, x4 = 0.95.

In the rest of this section we will learn how this answer is obtained. Figure 10.8.1
summarizes some of the terminology thus far.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.8 Linear Programming and the Simplex Method 425

X1

/

/ /
primary constraint

— primary constraint N Xo
AN <?\9
\ A
S <o
<

N

e

Figure 10.8.1. Basic concepts of linear programming. The case of only two independent variables,
1,2, isshown. The linear function z, to be maximized, is represented by its contour lines. Primary
constraints require x; and 2 to be positive. Additional constraints may restrict the solution to regions
(inequality constraints) or to surfaces of lower dimensionality (equality constraints). Feasible vectors
satisfy all constraints. Feasible basic vectors also lie on the boundary of the allowed region. The simplex
method steps among feasible basic vectors until the optimal feasible vector is found.

Fundamental Theorem of Linear Optimization

Imaginethat westart with afull V-dimensional space of candidatevectors. Then
(inmind’seye, at least) we carve away the regionsthat are eliminated in turn by each
imposed constraint. Since the constraints are linear, every boundary introduced by
thisprocessisaplane, or rather hyperplane. Equality constraints of the form (10.8.5)
force the feasible region onto hyperplanes of smaller dimension, while inequalities
simply divide the then-feasible region into allowed and nonallowed pieces.

When all the constraints are imposed, either we are left with some feasible
region or else there are no feasible vectors. Since the feasible region is bounded by
hyperplanes, it is geometrically akind of convex polyhedron or simplex (cf. §10.4).
If there is a feasible region, can the optimal feasible vector be somewhere in its
interior, away from the boundaries? No, because the objective function is linear.
This means that it always has a nonzero vector gradient. This, in turn, means that
we could always increase the objective function by running up the gradient until
we hit a boundary wall.

Theboundary of any geometrical region has oneless dimensionthanitsinterior.
Therefore, we can now run up the gradient projected into the boundary wall until we

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

426 Chapter 10. Minimization or Maximization of Functions

reach an edge of that wall. We can then run up that edge, and so on, down through
whatever number of dimensions, until we finally arrive at a point, a vertex of the
original simplex. Since this point has all N of its coordinates defined, it must be
the solution of N simultaneous equalities drawn from the original set of equalities
and inequalities (10.8.2)—(10.8.5).

Points that are feasible vectors and that satisfy NV of the original constraints
as equalities, are termed feasible basic vectors. If N > M, then a feasible basic
vector has at least N — M of its components equal to zero, since at least that many
of the constraints (10.8.2) will be needed to make up the total of V. Put the other
way, at most M components of a feasible basic vector are nonzero. In the example
(10.8.6)—(10.8.7), you can check that the solution as given satisfies as equalities the
last three constraints of (10.8.7) and the constraint -, > 0, for the required total of 4.

Put together the two preceding paragraphs and you have the Fundamental
Theorem of Linear Optimization: If an optimal feasible vector exists, then thereis a
feasible basic vector that is optimal. (Didn’t we warn you about the terminological
thicket?)

The importance of the fundamental theorem is that it reduces the optimization
problem to a “combinatorial” problem, that of determining which N constraints
(out of the M + N constraints in 10.8.2-10.8.5) should be satisfied by the optimal
feasible vector. We have only to keep trying different combinations, and computing
the objective function for each trial, until we find the best.

Doaing this blindly would take halfway to forever. The simplex method, first
published by Dantzig in 1948 (see [2]), is away of organizing the procedure so that
(i) aseries of combinationsistried for which the objective function increases at each
step, and (ii) the optimal feasible vector is reached after a number of iterations that
isamost always no larger than of order M or NV, whichever islarger. Aninteresting
mathematical sidelight isthat this second property, although known empirically ever
since the simplex method was devised, was not proved to be true until the 1982 work
of Stephen Smale. (For a contemporary account, see [3].)

Simplex Method for a Restricted Normal Form

A linear programming problem is said to be in normal form if it has no
congtraintsin the form (10.8.3) or (10.8.4), but rather only equality constraints of the
form (10.8.5) and nonnegativity constraints of the form (10.8.2).

For our purposesit will be useful to consider an even morerestricted set of cases,
with this additional property: Each equality constraint of the form (10.8.5) must
have at least one variable that has a positive coefficient and that appears uniquely in
that one constraint only. We can then choose one such variable in each constraint
equation, and solve that constraint equation for it. The variables thus chosen are
called left-hand variables or basic variables, and there are exactly M (= m3) of
them. Theremaining N — M variables are called right-hand variables or nonbasic
variables. Obviously this restricted normal form can be achieved only in the case
M < N, so that is the case that we will consider.

You may be thinking that our restricted normal form is so specialized that
it is unlikely to include the linear programming problem that you wish to solve.
Not at al! We will presently show how any linear programming problem can be

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.8 Linear Programming and the Simplex Method 427

transformed into restricted normal form. Therefore bear with us and learn how to
apply the simplex method to a restricted normal form.
Here is an example of a problem in restricted normal form:

Maximize z = 2x9 — 4x3 (10.8.8)
with x1, z9, x3, and x4 all nonnegative and aso with

I1:2—6I2+I3

(10.8.9)
Ty = 8+ 3wy — 4x3

This example has N = 4, M = 2; the left-hand variables are x; and z4; the
right-hand variables are x5 and x3. The objective function (10.8.8) is written so
as to depend only on right-hand variables; note, however, that thisis not an actual
restriction on objective functions in restricted normal form, since any left-hand
variables appearing in the objective function could be eliminated algebraically by
use of (10.8.9) or its analogs.

For any problem in restricted normal form, we can instantly read off afeasible
basic vector (although not necessarily the optimal feasible basic vector). Simply set
all right-hand variables equal to zero, and equation (10.8.9) then gives the values of
theleft-hand variablesfor which the constraints are satisfied. Theidea of the simplex
method is to proceed by a series of exchanges. In each exchange, a right-hand
variable and aleft-hand variable change places. At each stage we maintain aproblem
in restricted normal form that is equivalent to the original problem.

It is notationally convenient to record the information content of equations
(10.8.8) and (10.8.9) in a so-called tableau, as follows:

z 0 2 —4
T 2 —6 1
T4 8 3 —4 (10.8.10)

You should study (10.8.10) to be sure that you understand where each entry comes
from, and how to tranglate back and forth between the tableau and equation formats
of a problem in restricted normal form.

The first step in the simplex method is to examine the top row of the tableau,
which we will call the“z-row.” Look at the entriesin columns labeled by right-hand
variables (wewill call these “right-columns’). We want to imagine in turn the effect
of increasing each right-hand variable from its present value of zero, while leaving
all the other right-hand variables at zero. Will the objective function increase or
decrease? The answer is given by the sign of the entry in the z-row. Since we want
to increase the objective function, only right columns having positive z-row entries
are of interest. In (10.8.10) there is only one such column, whaose z-row entry is 2.

The second step is to examine the column entries below each z-row entry that
was selected by step one. We want to ask how much we can increase the right-hand
variable before one of theleft-hand variablesis driven negative, whichis not allowed.
If the tableau element at the intersection of the right-hand column and the left-hand

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

428 Chapter 10. Minimization or Maximization of Functions

variable’s row is positive, then it poses no restriction: the corresponding left-hand
variablewill just be driven more and morepositive. If all theentriesin any right-hand
column are positive, then there is no bound on the objective function and (having
said so) we are done with the problem.

If one or more entries below a positive z-row entry are negative, then we have
to figure out which such entry first limits the increase of that column’s right-hand
variable. Evidently thelimiting increaseis given by dividing the element in theright-
hand column (which is called the pivot element) into the element in the “ constant
column” (leftmost column) of the pivot element’s row. A value that is smal in
magnitude is most restrictive. The increase in the objective function for this choice
of pivot element is then that value multiplied by the z-row entry of that column. We
repeat this procedure on all possible right-hand columns to find the pivot element
with the largest such increase. That completes our “choice of a pivot element.”

In the above example, the only positive z-row entry is 2. There is only one
negative entry below it, namely —6, so thisis the pivot element. Its constant-column
entry is2. Thispivot will thereforeallow x5 to beincreased by 2 + |6/, which results
in an increase of the objective function by an amount (2 x 2) = |6].

The third step is to do the increase of the selected right-hand variable, thus
making it aleft-hand variable; and simultaneously to modify the | eft-hand variables,
reducing the pivot-row element to zero and thus making it aright-hand variable. For
our above example let’'s do this first by hand: We begin by solving the pivot-row

equation for the new left-hand variable x5 in favor of the old one x 1, namely
1 =2 —6x2 + 13 — To = % — %,Tl + %,Tg (10811)
We then substitute this into the old z-row,

z =21y — 43 = 2 [% — %Il + %xﬂ —dyg =2 —L1g — g, (10.8.12)

3 3 3
and into all other left-variable rows, in this case only x4,
Ty = 8+3 [% - %ZCl + %Ig} - 4173 =9 %ZCl - %.Ig (10813)
Equations (10.8.11)—10.8.13) form the new tableau
T Z3
2 1 11
? 3 ~3 3
1 1 1
2 3 6 6
_1 _7
za || 9 2 2 (108.14)

Thefourth stepisto go back and repeat thefirst step, looking for another possible
increase of the objective function. We do this as many times as possible, that is, until
all the right-hand entries in the z-row are negative, signaling that no further increase
ispossible. In the present example, this already occursin (10.8.14), so we are done.

The answer can now be read from the constant column of the final tableau. In
(10.8.14) we see that the objective function is maximized to a value of 2/3 for the
solution vector o = 1/3, 24 = 9, 1 = z3 = 0.

Now look back over the procedurethat led from (10.8.10) to (10.8.14). Youwill
find that it could be summarized entirely in tableau format as a series of prescribed
elementary matrix operations:

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.8 Linear Programming and the Simplex Method 429

e Locate the pivot element and save it.

e Save the whole pivot column.

o Replace each row, except the pivot row, by that linear combination of itself

and the pivot row which makes its pivot-column entry zero.

¢ Divide the pivot row by the negative of the pivot.

¢ Replace the pivot element by the reciprocal of its saved value.

o Replace the rest of the pivot column by its saved values divided by the

saved pivot element.
This is the sequence of operations actually performed by a linear programming
routine, such as the one that we will presently give.

You should now be able to solve almost any linear programming problem that
starts in restricted normal form. The only special case that might stump you is
if an entry in the constant column turns out to be zero at some stage, so that a
left-hand variable is zero at the same time as all the right-hand variables are zero.
This is called a degenerate feasible vector. To proceed, you may need to exchange
the degenerate left-hand variable for one of the right-hand variables, perhaps even
making several such exchanges.

Writing the General Problem in Restricted Normal Form

Here is a pleasant surprise. There exist a couple of clever tricks that render
trivial the task of trandating a general linear programming problem into restricted
normal form!

First, we need to get rid of the inequalities of the form (10.8.3) or (10.8.4), for
example, the first three constraintsin (10.8.7). We do this by adding to the problem
so-called slack variables which, when their nonnegativity is required, convert the
inequalities to equalities. We will denote dack variables as y;. There will be
my + meo of them. Once they are introduced, you treat them on an equa footing
with the original variables x;; then, at the very end, you simply ignore them.

For example, introducing slack variables leaves (10.8.6) unchanged but turns
(10.8.7) into

1 + 23 +y1 = 740

209 — Txy +y2 =0

(10.8.15)
To — T3+ 2x4 — Y3 =

© N

1+ Ty + a3+ 24 =

(Notice how the sign of the coefficient of the slack variable is determined by which
sense of inequality it is replacing.)

Second, we need to insure that thereis a set of M left-hand vectors, so that we
can set up a starting tableau in restricted normal form. (In other words, we need to
find a “feasible basic starting vector.”) The trick is again to invent new variables!
Thereare M of these, and they are called artificial variables; we denote them by =z ;.
You put exactly one artificial variable into each constraint equation on the following

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

430 Chapter 10. Minimization or Maximization of Functions

model for the example (10.8.15):
z1 2740—.%'1 —21‘3—y1

23 = —2x9 + T4 — Yo

1 (10.8.16)
23 =35 — T2+ T3 — 214 + Y3

Z4=9—$1—$2—$3—$4

Our example is now in restricted normal form.

Now you may object that (10.8.16) is not the same problem as (10.8.15) or
(10.8.7) unless all the z;'s are zero. Right you are! There is some subtlety here!
We must proceed to solve our problem in two phases. First phase: We replace our
objective function (10.8.6) by a so-called auxiliary objective function
2=z — g — 23— 2y = —(749% —2x1 —4xo — 2x3 + 424 — Y1 — Y2 + Y3)

(10.8.17)
(where the last equality follows from using 10.8.16). We now perform the simplex
method on the auxiliary objective function (10.8.17) with the constraints (10.8.16).
Obvioudly the auxiliary objective function will be maximized for nonnegative z ;'s if
all the z;'s are zero. We therefore expect the ssimplex method in this first phase to
produce a set of |eft-hand variables drawn from the = ;’s and y;’s only, with al the
z;'s being right-hand variables. Ahal We then cross out the z;’s, leaving a problem
involving only x;’sand y;’sin restricted normal form. In other words, the first phase
producesan initial feasible basic vector. Second phase: Solve the problem produced
by the first phase, using the original objective function, not the auxiliary.

And what if the first phase doesn’'t produce zero values for al the z;'s? That
signals that there is no initial feasible basic vector, i.e., that the constraints given to
us are inconsistent among themselves. Report that fact, and you are done.

Hereis how to tranglate into tableau format the information needed for both the
first and second phases of the overall method. As before, the underlying problem
to be solved is as posed in equations (10.8.6)—10.8.7).

I S TR N 7S N

z 0 1 1 3| -3 0 0 0

21 740 | -1 0 | -2 0 | -1 0 0

2 0 0 | -2 0 7 0| -1 0

23 1 0 | -1 1| -2 0 0 1

24 9 | -1 | -1 | -1 | -1 0 0 0

2 || =749 2 4 2 | —4 1 1| -1
(10.8.18)

This is not as daunting as it may, at first sight, appear. The table entries inside
the box of double lines are no more than the coefficients of the original problem
(10.8.6)—(10.8.7) organized into a tabular form. In fact, these entries, along with

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.8 Linear Programming and the Simplex Method 431

the values of N, M, m1, mo, and mgs, are the only input that is needed by the
simplex method routine below. The columns under the slack variables y; simply
record whether each of the M constraintsis of theform <, >, or =; thisisredundant
information with the values m 1, ms, mgs, as long as we are sure to enter the rows of
the tableau in the correct respective order. The coefficients of the auxiliary objective
function (bottom row) are just the negatives of the column sums of the rows above,
s0 these are easily calculated automatically.

The output from a simplex routine will be (i) a flag telling whether a finite
solution, no solution, or an unbounded sol ution wasfound, and (ii) an updated tabl eau.
The output tableau that derives from (10.8.18), given to two significant figures, is

R N

2 1703 | —95 | —.05 | —1.05
o 333 | —35 | —.15 35
T3 473 | —.55 .05 — 45
T4 95 | —.10 10 10
vi || 730.55 10 | —.10 .90

(10.8.19)

A little counting of the x;'s and y;’s will convince you that there are M + 1
rows (including the z-row) in both the input and the output tableaux, but that only
N + 1 — mg columns of the output tableau (including the constant column) contain
any useful information, the other columns belonging to now-discarded artificial
variables. In the output, the first numerical column contains the solution vector,
along with the maximum value of the objective function. Whereadlack variable (y ;)
appears on the left, the corresponding value is the amount by which its inequality
is safely satisfied. Variables that are not left-hand variables in the output tableau
have zero values. Slack variables with zero values represent constraints that are
satisfied as equalities.

Routine Implementing the Simplex Method

Thefollowing routineis based algorithmically on theimplementation of Kuenzi,
Tzschach, and Zehnder [4]. Aside from input values of M, N, m1, ms, ms, the
principal input to the routine is a two-dimensional array a containing the portion of
the tableau (10.8.18) that is contained between the double lines. Thisinput occupies
thefirst M + 1 rowsand N + 1 columnsof a. Note, however, that referenceis made
internally to row M + 2 of a (used for the auxiliary objective function, just as in
10.8.18). Therefore the physical dimensions of a,

REAL a(MP,NP) (10.8.20)

must have NP> N + 1 and MP> M + 2.You will suffer endless agonies if you fail
to understand this simple point. Also do not neglect to order the rows of a in the
same order as equations (10.8.1), (10.8.3), (10.8.4), and (10.8.5), that is, objective
function, <-constraints, >-constraints, =-constraints.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

432 Chapter 10. Minimization or Maximization of Functions

On output, thetableau a isindexed by two returned arraysof integers. iposv(j)
contains, for j=1... M, thenumber ; whose original variable x ; is now represented
by row j+1 of a. These arethustheleft-hand variablesin the solution. (Thefirst row
of a is of coursethe z-row.) A valuei > N indicates that the variableis ay; rather
thanan z;, xn1; = y;. Likewise, izrov(j) contains, for j=1... N, the number ¢
whose origina variable z; is now aright-hand variable, represented by column j+1
of a. These variablesare all zero in the solution. The meaning of i > N isthe same
as above, except that i > N + m; + mo denotesan artificial or slack variable which
was used only internally and should now be entirely ignored.

Theflagicaseisreturnedaszeroif afinite solutionisfound, +1 if the objective
function is unbounded, —1 if no solution satisfies the given constraints.

The routine treats the case of degenerate feasible vectors, so don’t worry about
them. You may also wish to admire the fact that the routine does not require storage
for the columns of the tableau (10.8.18) that are to the right of the double line; it
keeps track of slack variables by more efficient bookkeeping.

Please note that, as given, the routine is only “semi-sophisticated” in its tests
for convergence. While the routine properly implements tests for inequality with
zero as tests against some small parameter EPS, it does not adjust this parameter to
reflect the scale of the input data. This is adequate for many problems, where the
input data do not differ from unity by too many orders of magnitude. If, however,
you encounter endless cycling, then you should modify EPS in the routines simplx
and simp2. Permuting your variables can aso help. Finaly, consult [5].

SUBROUTINE simplx(a,m,n,mp,np,ml,m2,m3,icase,izrov,iposv)

INTEGER icase,m,ml,m2,m3,mp,n,np,iposv(m),izrov(n),MMAX,NMAX

REAL a(mp,np) ,EPS

PARAMETER (MMAX=100,NMAX=100,EPS=1.e-6)

USES sinpl, sinp2, si np3
Simplex method for linear programming. Input parameters a, m, n, mp, np, m1, m2, and m3,
and output parameters a, icase, izrov, and iposv are described above.
Parameters: MMAX is the maximum number of constraints expected; NMAX is the maximum
number of variables expected; EPS is the absolute precision, which should be adjusted to
the scale of your variables.

INTEGER 1i,ip,is,k,kh,kp,n11,11(NMAX),13(MMAX)

REAL bmax,ql

if (m.ne.m1+m2+m3)pause ’bad input constraint counts in simplx’

nli=n

do1u k=1,n
11(k)=k Initialize index list of columns admissible for exchange.
izrov(k)=k Initially make all variables right-hand.

enddo 11

do12 i=1,m
if(a(i+1,1).1t.0.)pause ’bad input tableau in simplx’ Constants b; must be non-
iposv(i)=n+i negative.
Initial left-hand variables. m1 type constraints are represented by having their slack vari-
able initially left-hand, with no artificial variable. m2 type constraints have their slack
variable initially left-hand, with a minus sign, and their artificial variable handled implic-
itly during their first exchange. m3 type constraints have their artificial variable initially

left-hand.
enddo 12
if (m2+m3.eq.0)goto 30 The origin is a feasible starting solution. Go to phase two.
do 13 i=1,m2 Initialize list of m2 constraints whose slack variables have never
13(i)=1 been exchanged out of the initial basis.
enddo 13
do 15 k=1,n+1 Compute the auxiliary objective function.
q1=0.

do 14 i=mi+1,m

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

10.8 Linear Programming and the Simplex Method 433

ql=ql+a(i+1,k)
enddo 14
a(m+2,k)=-q1
enddo 15
10 call simpl(a,mp,np,m+1,11,n11,0,kp,bmax) Find max. coeff. of auxiliary objec-
if (bmax.le.EPS.and.a(m+2,1) .1t.-EPS)then tive fn.
icase=-1 Auxiliary objective function is still negative and can't be im-
return proved, hence no feasible solution exists.
else if(bmax.le.EPS.and.a(m+2,1).le.EPS)then
Auxiliary objective function is zero and can’'t be improved; we have a feasible starting vec-
tor. Clean out the artificial variables corresponding to any remaining equality constraints by

goto 1's and then move on to phase two by goto 30.

do 16 ip=ml+m2+1,m
if (iposv(ip) .eq.ip+n)then

call simpil(a,mp,np,ip,11,nl1,1,kp,bmax)

if (bmax.gt.EPS)goto 1
endif
enddo 16
do 18 i=mi1+1,m1+m2
if (13(i-m1).eq.1)then
do 17 k=1,n+1
a(i+1,k)=-a(i+1,k)
enddo 17
endif
enddo 18
goto 30
endif
call simp2(a,m,n,mp,np,ip,kp)
if (ip.eq.0)then

Found an artificial variable for an equality

constraint.

Exchange with column corresponding to max-
imum pivot element in row.

Change sign of row for any m2 constraints
still present from the initial basis.

Go to phase two.

Locate a pivot element (phase one).
Maximum of auxiliary objective function is

icase=-1 unbounded, so no feasible solution ex-
return ists.
endif
1 call simp3(a,mp,np,m+1,n,ip,kp)
Exchange a left- and a right-hand variable (phase one), then update lists.
if (iposv(ip) .ge.n+m1+m2+1)then Exchanged out an artificial variable for an
do 19 k=1,nl1 equality constraint. Make sure it stays
if(11(k) .eq.kp)goto 2 out by removing it from the 11 list.
enddo 19
2 nli=nli-1
do 21 is=k,nll
11(is)=11(is+1)
enddo 21
else
kh=iposv(ip)-mi-n
if (kh.ge.1)then Exchanged out an m2 type constraint.
if (13(kh) .ne.0)then If it’s the first time, correct the pivot col-
13(kh)=0 umn for the minus sign and the implicit
a(m+2,kp+1)=a(m+2,kp+1)+1. artificial variable.
do 22 i=1,m+2
a(i,kp+1)=-a(i,kp+1)
enddo 22
endif
endif
endif
is=izrov(kp) Update lists of left- and right-hand variables.
izrov(kp)=iposv(ip)
iposv(ip)=is
goto 10 Still in phase one, go back to 10.
End of phase one code for finding an initial feasible solution. Now, in phase two, optimize it.
30 call simpi(a,mp,np,0,11,n11,0,kp,bmax) Test the z-row for doneness.
if (bmax.le.EPS)then Done. Solution found. Return with the good news.
icase=0
return

endif

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

434 Chapter 10. Minimization or Maximization of Functions

call simp2(a,m,n,mp,np,ip,kp) Locate a pivot element (phase two).

if (ip.eq.0)then Objective function is unbounded. Report and return.

icase=1
return
endif

call simp3(a,mp,np,m,n,ip,kp) Exchange a left- and a right-hand variable (phase two),

is=izrov(kp) update lists of left- and right-hand variables,
izrov(kp)=iposv(ip)

iposv(ip)=is

goto 30 and return for another iteration.

END

The preceding routine makes use of the following utility subroutines.

SUBROUTINE simpi(a,mp,np,mm,11,nll,iabf,kp,bmax)
INTEGER iabf,kp,mm,mp,nll,np,11(np)
REAL bmax,a(mp,np)

Determines the maximum of those elements whose index is contained in the supplied list

11, either with or without taking the absolute value, as flagged by iabf.
INTEGER k
REAL test
if(nll.1le.0)then No eligible columns.
bmax=0.
else
kp=11(1)
bmax=a (mm+1,kp+1)
do 11 k=2,nll
if (iabf.eq.0)then
test=a(mm+1,11(k)+1)-bmax
else
test=abs(a(mm+1,11(k)+1))-abs (bmax)
endif
if(test.gt.0.)then
bmax=a (mm+1,11 (k)+1)
kp=11(k)
endif
enddo 11
endif
return
END

SUBROUTINE simp2(a,m,n,mp,np,ip,kp)
INTEGER ip,kp,m,mp,n,np
REAL a(mp,np),EPS
PARAMETER (EPS=1.e-6)
Locate a pivot element, taking degeneracy into account.

INTEGER i,k
REAL q,90,91,9p
ip=0

don i=1,m
if (a(i+1,kp+1).1t.-EPS)goto 1
enddo 11
return No possible pivots. Return with message.
ql=-a(i+1,1)/a(i+1,kp+1)
ip=i
do 13 i=ip+1,m
if (a(i+1,kp+1) .1t.-EPS)then
g=-a(i+1,1)/a(i+1,kp+1)
if(q.1t.ql)then
ip=i
qi=q
else if (q.eq.ql) then We have a degeneracy

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.8 Linear Programming and the Simplex Method 435

do 12 k=1,n
gp=-a(ip+1,k+1)/a(ip+1,kp+1)
q0=-a(i+1,k+1)/a(i+1,kp+1)
if (q0.ne.qgp)goto 2

enddo 12
if(q0.1t.qgp)ip=i
endif
endif
enddo 13
return
END

SUBROUTINE simp3(a,mp,np,il,kl,ip,kp)
INTEGER il,ip,k1,kp,mp,np
REAL a(mp,np)
Matrix operations to exchange a left-hand and right-hand variable (see text).
INTEGER ii,kk
REAL piv
piv=1./a(ip+1,kp+1)
do 12 ii=1,il1+1
if(ii-1.ne.ip)then
a(ii,kp+1)=a(ii,kp+1)*piv
do 11 kk=1,k1+1
if (kk-1.ne.kp)then
a(ii,kk)=a(ii,kk)-a(ip+1,kk)*a(ii,kp+1)
endif
enddo 11
endif
enddo 12
do 13 kk=1,k1+1
if (kk-1.ne.kp)a(ip+1,kk)=-a(ip+1,kk)*piv
enddo 13
a(ip+1,kp+1)=piv
return
END

Other Topics Briefly Mentioned

Every linear programming problem in normal form with N variables and M
constraints has a corresponding dual problem with M variablesand N constraints.
The tableau of the dual problem is, in essence, the transpose of the tableau of the
original (sometimes called primal) problem. It is possible to go from a solution
of the dual to a solution of the primal. This can occasionally be computationally
useful, but generally it is no big deal.

The revised simplex method is exactly equivalent to the simplex method in its
choice of which left-hand and right-hand variables are exchanged. Its computational
effort is not significantly less than that of the simplex method. It does differ in
the organization of its storage, requiring only a matrix of size M x M, rather than
M x N, in its intermediate stages. If you have a lot of constraints, and memory
size is one of them, then you should look into it.

The primal-dual algorithm and the composite simplex algorithm are two dif-
ferent methods for avoiding the two phases of the usual simplex method: Progress
is made simultaneously towards finding a feasible solution and finding an optimal
solution. There seems to be no clearcut evidence that these methods are superior

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

436 Chapter 10. Minimization or Maximization of Functions

to the usual method by any factor substantially larger than the “tender-loving-care
factor” (which reflects the programming effort of the proponents).

Problems where the objective function and/or one or more of the constraintsare
replaced by expressions nonlinear in the variables are called nonlinear programming
problems. The literature on such problemsisvast, but outside our scope. The special
case of quadratic expressionsis called quadratic programming. Optimization prob-
lems where the variables take on only integer values are called integer programming
problems, a specia case of discrete optimization generally. The next section looks
at a particular kind of discrete optimization problem.

CITED REFERENCES AND FURTHER READING:

Bland, R.G. 1981, Scientific American, vol. 244 (June), pp. 126-144. [1]

Dantzig, G.B. 1963, Linear Programming and Extensions (Princeton, NJ: Princeton University
Press). [2]

Kolata, G. 1982, Science, vol. 217, p. 39. [3]

Gill, PE., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), Chapters 7-8.

Cooper, L., and Steinberg, D. 1970, Introduction to Methods of Optimization (Philadelphia: Saun-
ders).

Gass, S.T. 1969, Linear Programming, 3rd ed. (New York: McGraw-Hill).
Murty, K.G. 1976, Linear and Combinatorial Programming (New York: Wiley).

Land, A.H., and Powell, S. 1973, Fortran Codes for Mathematical Programming (London: Wiley-
Interscience).

Kuenzi, H.P.,, Tzschach, H.G., and Zehnder, C.A. 1971, Numerical Methods of Mathematical
Optimization (New York: Academic Press). [4]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§4.10.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [5]

10.9 Simulated Annealing Methods

The method of simulated annealing [1,2] is a technique that has attracted signif-
icant attention as suitable for optimization problems of large scale, especially ones
where a desired global extremum is hidden among many, poorer, local extrema. For
practical purposes, simulated annealing has effectively “ solved” thefamoustraveling
salesman problem of finding the shortest cyclical itinerary for a traveling salesman
who must visit each of N cities in turn. (Other practical methods have also been
found.) The method has al so been used successfully for designing complex integrated
circuits: The arrangement of several hundred thousand circuit elements on a tiny
silicon substrate is optimized so as to minimize interference among their connecting
wires[3,4]. Surprisingly, the implementation of the algorithm is relatively simple.

Notice that the two applications cited are both examples of combinatorial
minimization. Thereisan objective function to be minimized, as usual; but the space
over which that function is defined is not simply the N-dimensiona space of N

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

10.9 Simulated Annealing Methods 437

continuously variable parameters. Rather, itis a discrete, but very large, configuration
space, like the set of possible orders of cities, or the set of possible allocations of
silicon “real estate” blocks to circuit elements. The number of elements in the
configuration space is factorially large, so that they cannot be explored exhaustively.
Furthermore, since the set is discrete, we are deprived of any notion of “continuing
downhill in a favorable direction.” The concept of “direction” may not have any
meaning in the configuration space.

Below, we will also discuss how to use simulated annealing methods for space%
with continuous control parameters, like those©f0.4—10.7. This application is z
actually more complicated than the combinatorial one, since the familiar problem of g
“long, narrow valleys” again asserts itself. Simulated annealing, as we will see, tries3
“random” steps; but in a long, narrow valley, almost all random steps are uphill!
Some additional finesse is therefore required.

At the heart of the method of simulated annealing is an analogy with thermody-
namics, specifically with the way that liquids freeze and crystallize, or metals cool & Ns
and anneal. At high temperatures, the molecules of a liquid move freely with respecty 2
to one another. If the liquid is cooled slowly, thermal mobility is lost. The atoms are ﬁﬁ
often able to line themselves up and form a pure crystal that is completely ordere
over a distance up to billions of times the size of an individual atom in all directions.
This crystal is the state of minimum energy for this system. The amazing fact is that
for slowly cooled systems, nature is able to find this minimum energy state. In fact, if 8
a liquid metal is cooled quickly or “quenched,” it does not reach this state but rather2
ends up in a polycrystalline or amorphous state having somewhat higher energy.

So the essence of the processsisw cooling, allowing ample time for
redistribution of the atoms as they lose mobility. This is the technical definition of
annealing, and it is essential for ensuring that a low energy state will be achieved.

Although the analogy is not perfect, there is a sense in which all of the
minimization algorithms thus far in this chapter correspond to rapid cooling or
guenching. In all cases, we have gone greedily for the quick, nearby solution: From2
the starting point, go immediately downhill as far as you can go. This, as often §
remarked above, leads to a local, but not necessarily a global, minimum. Nature’sé
own minimization algorithm is based on quite a different procedure. The so-called
Boltzmann probability distribution,

/1:ony
a 0 sIy) ﬁu!pnpu!) sa”; a|gepeal

-008-T |82 10

)
o

-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund “asn feuosiad umo Jiayy Joy Adod saded suo axew 01 SJaSﬂ Jaula1ul Jo} pajuelb si uoissiwliad

fB

aM NISIA ‘SINOYAD 10 $X00q sadioay |e:)uawnN J8plo o] ‘panqiyotd ApoLis si ‘49Indwod Janl

BIUBWY L|1

‘(Aluo

1SM0108.Ip 01 [lewa puss 1o

w

Prob(E) ~ exp(—E/kT) (10.9.1

expresses the idea that a system in thermal equilibrium at tempefiathes its
energy probabilistically distributed among all different energy sté#esEven at

low temperature, there is a chance, albeit very small, of a system being in a hig
energy state. Therefore, there is a corresponding chance for the system to get out
a local energy minimum in favor of finding a better, more global, one. The quantity
k (Boltzmann’s constant) is a constant of nature that relates temperature to ener
In other words, the system sometimes goglill as well as downbhill; but the lower
the temperature, the less likely is any significant uphill excursion.

In 1953, Metropolis and coworkefs] first incorporated these kinds of prin-
ciples into numerical calculations. Offered a succession of options, a simulated
thermodynamic system was assumed to change its configuration from eneitgy
energyE- with probabilityp = exp[—(F2 — E1)/kT]. Notice that ifE; < F1, this
probability is greater than unity; in such cases the change is arbitrarily assigned a

‘ﬁouewﬂuﬁ[\j apisino) Bio'abpug

IS

)l

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

438 Chapter 10. Minimization or Maximization of Functions

probabilityp = 1, i.e., the systeralways took such an option. This general scheme,
of always taking a downhill step whilsometimes taking an uphill step, has come
to be known as the Metropolis algorithm.

To make use of the Metropolis algorithm for other than thermodynamic systems,
one must provide the following elements:

1. A description of possible system configurations.

2. A generator of random changes in the configuration; these changes are thg
“options” presented to the system.

3. An objective functionE (analog of energy) whose minimization is the
goal of the procedure.

4. A control parametef’ (analog of temperature) and annealing schedule
which tells how it is lowered from high to low values, e.g., after how many random
changes in configuration is each downward steff’itaken, and how large is that
step. The meaning of “high” and “low” in this context, and the assignment of a
schedule, may require physical insight and/or trial-and-error experiments.

) £2v£-2/8-008-T [[€2 10 WoD"Ju"mmm//:dy

Combinatorial Minimization: The Traveling Salesman

A concrete illustration is provided by the traveling salesman problem. The
proverbial seller visitsV cities with given positiongz ;, y;), returning finally to his or
her city of origin. Each city is to be visited only once, and the route is to be made as
short as possible. This problem belongs to a class knowiPasomplete problems,
whose computation time for aact solution increases withV asexp(const.x N),
becoming rapidly prohibitive in cost &6 increases. The traveling salesman problem
also belongs to a class of minimization problems for which the objective fungtion
has many local minima. In practical cases, it is often enough to be able to choos
from these a minimum which, even if not absolute, cannot be significantly improved &
upon. The annealing method manages to achieve this, while limiting its calculation
to scale as a small power df.

As a problem in simulated annealing, the traveling salesman problem is handle
as follows:

1. Configuration. The cities are numberéd= 1... N and each has coordinates
(x;,9:). A configuration is a permutation of the number. . N, interpreted as the
order in which the cities are visited.

2. Rearrangements. An efficient set of moves has been suggested by(&lin
The moves consist of two types: (a) A section of path is removed and then replace

uo edllBswy YuoN

au1p ofBrews puas 1o ‘(4]

Rno) 610 abpLgILd@AFasISND
81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD

(X-790€%-T2S-0 NESI) ONILNINOD DIFILNIIOS 4O 1V IHL 122 NVHLHO4 NI SAdIDTY TvOIYINNN woly ebed sjdwes

with the same cities running in the opposite order; or (b) a section of path is removedcg
and then replaced in between two cities on another, randomly chosen, part of the pat@
3. Objective Function. In the simplest form of the problent; is taken just z
as the total length of journey, 2
QD
N
E=L=Y (@i—2i1)? + (4 — yir1)? (10.9.9

=1

with the convention that poin¥ + 1 is identified with pointl. To illustrate the
flexibility of the method, however, we can add the following additional wrinkle:
Suppose that the salesman has an irrational fear of flying over the Mississippi River.

10.9 Simulated Annealing Methods 439

In that case, we would assign each city a parameteequal to+1 if it is east of the
Mississippi,—1 if it is west, and take the objective function to be

N
E=)_ [\/(%‘ = i) + (Ui — i) + M — um)Q] (10.9.3

=1

:dny

A penalty4\ is thereby assigned to any river crossing. The algorithm now finds
the shortest path that avoids crossings. The relative importance that it assigns t
length of path versus river crossings is determined by our choige Bigure 10.9.1
shows the results obtained. Clearly, this technique can be generalized to includ
many conflicting goals in the minimization.

4. Annealing schedule. This requires experimentation. We first generate some
random rearrangements, and use them to determine the range of valNéstbat
will be encountered from move to move. Choosing a starting value for the paramete
T which is considerably larger than the larges# normally encountered, we
proceed downward in multiplicative steps each amounting to a 10 percent decreas
in 7. We hold each new value @f constant for, sayl00N reconfigurations, or for
10N successful reconfigurations, whichever comes first. When efforts to rédluce
further become sufficiently discouraging, we stop.

The following traveling salesman program, using the Metropolis algorithm,
illustrates the main aspects of the simulated annealing technique for combinatori
problems.

-2/87008-T |22 10 URD AU MBW//

L

SUBROUTINE anneal(x,y,iorder,ncity)

INTEGER ncity,iorder(ncity)

REAL x(ncity),y(ncity)

USES irbitl, netrop, ran3, revcst, revers, trncst, trnspt
This algorithm finds the shortest round-trip path to ncity cities whose coordinates are in
the arrays x(1:ncity),y(l:ncity). The array iorder(1l:ncity) specifies the order
in which the cities are visited. On input, the elements of iorder may be set to any per-
mutation of the numbers 1 to ncity. This routine will return the best alternative path

it can find.

INTEGER i,i1,i2,idec,idum,iseed,j,k,nlimit,nn,nover,nsucc,n(6),

irbitl
REAL de,path,t,tfactr,ran3,alen,x1,x2,y1,y2
LOGICAL ans
alen(x1,x2,y1,y2)=sqrt ((x2-x1) **2+(y2-y1) **2)
nover=100*ncity Maximum number of paths tried at any temperature.
nlimit=10*ncity Maximum number of successful path changes before continuing.
tfactr=0.9 Annealing schedule: t is reduced by this factor on each step.
path=0.0
t=0.5
do 11 i=1,ncity-1 Calculate initial path length.

il=iorder(i)

i2=iorder(i+1)

path=path+alen(x(i1),x(i2),y(i1),y(i2))
enddo 11
il=iorder(ncity) Close the loop by tying path ends together.
i2=jiorder(1)
path=path+alen(x(il1),x(i2),y(i1),y(i2))
idum=-1
iseed=111
do 13 j=1,100 Try up to 100 temperature steps.

nsucc=0

do 12 k=1,nover

n(1)=1+int (ncity*ran3(idum)) Choose beginning of segment ..

‘(eauBwy YUON apisino) Bio abpugued@AIasisnoloalip 0} [lewsd puas Jo ‘(A|L}°e')-e:)uawv ULON)
81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

Minimization or Maximization of Functions

Chapter 10.

440

Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software.

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-
readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website
7423 (North America only), or send email to directcustserv@cambridge.org (outside North America).

http://www.nr.com or call 1-800-872

@

Figure 10.9.1. Traveling salesman problem solved by simulated annealing. The (nearly) shortest path

among 100 randomly positioned cities is shown in (a). The dotted line isariver, but there is no penalty in
number of crossings, two. In (c) the penalty has been made negative: the salesman is actually a smuggler

crossing. In (b) the river-crossing penalty is made large, and the solution restricts itself to the minimum
who crosses the river on the flimsiest excuse!

10.9 Simulated Annealing Methods 441

n(2)=1+int ((ncity-1)*ran3(idum)) ..and end of segment.
if (n(2).ge.n(1)) n(2)=n(2)+1
nn=1+mod ((n(1)-n(2)+ncity-1) ,ncity) nn is the number of cities not on the
if (nn.1t.3) goto 1 segment.
idec=irbitl(iseed) Decide whether to do a segment reversal or transport.
if (idec.eq.0) then Do a transport.
n(3)=n(2)+int (abs(nn-2) *ran3(idum))+1
n(3)=1+mod(n(3)-1,ncity) Transport to a location not on the path.
call trncst(x,y,iorder,ncity,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.

if (ans) then
nsucc=nsucc+1
path=path+de

call trnspt(iorder,ncity,n) Carry out the transport.
endif
else Do a path reversal.
call revcst(x,y,iorder,ncity,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.

if (ans) then
nsucc=nsucc+1
path=path+de

call revers(iorder,ncity,n) Carry out the reversal.
endif
endif
if (nsucc.ge.nlimit) goto 2 Finish early if we have enough
enddo 12 successful changes.

write(*,*)
write(*,*) °T =’,t,’ Path Length =’,path
write(*,*) ’Successful Moves: ’,nsucc

t=t*tfactr Annealing schedule.

if (nsucc.eq.0) return If no success, we are done.
enddo 13
return

END

SUBROUTINE revcst(x,y,iorder,ncity,n,de)

INTEGER ncity,iorder(ncity),n(6)

REAL de,x(ncity),y(ncity)
This subroutine returns the value of the cost function for a proposed path reversal. ncity
is the number of cities, and arrays x(1:ncity) ,y(1:ncity) give the coordinates of these
cities. iorder(1:ncity) holds the present itinerary. The first two values n(1) and n(2)
of array n give the starting and ending cities along the path segment which is to be reversed.
On output, de is the cost of making the reversal. The actual reversal is not performed by
this routine.

INTEGER ii,j

REAL alen,xx(4),yy(4),x1,x2,y1,y2

alen(x1,x2,y1,y2)=sqrt ((x2-x1) **2+(y2-y1) **2)

n(3)=1+mod ((n(1)+ncity-2) ,ncity) Find the city before n(1) ..
n(4)=1+mod(n(2) ,ncity) .. and the city after n(2).
don j=1,4

ii=iorder (n(j)) Find coordinates for the four cities involved.

xx(j)=x(ii)
yy(§)=y(ii)

enddo 11

de=-alen(xx(1),xx(3),yy(1),yy(3)) Calculate cost of disconnecting the segment
-alen(xx(2),xx(4),yy(2),yy(4)) at both ends and reconnecting in the op-
+alen(xx (1) ,xx(4) ,yy(1),yy(4)) posite order.
+alen(xx(2),xx(3),yy(2),yy(3))

return

END

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

* K K X X

442 Chapter 10. Minimization or Maximization of Functions

SUBROUTINE revers(iorder,ncity,n)

INTEGER ncity,iorder(ncity),n(6)
This routine performs a path segment reversal. iorder(1:ncity) is an input array giving
the present itinerary. The vector n has as its first four elements the first and last cities
n(1),n(2) of the path segment to be reversed, and the two cities n(3) and n(4) that
immediately precede and follow this segment. n(3) and n(4) are found by subroutine
revcst. On output, iorder(1l:ncity) contains the segment from n(1) to n(2) in
reversed order.

INTEGER itmp,j,k,1,nn

nn=(1+mod (n(2)-n(1)+ncity,ncity))/2 This many cities must be swapped to effect

do1 j=1,nn the reversal.
k=1+mod ((n(1)+j-2) ,ncity) Start at the ends of the segment and swap
1=1+mod ((n(2)-j+ncity) ,ncity) pairs of cities, moving toward the cen-
itmp=iorder (k) ter.
iorder(k)=iorder(1l)
iorder (1)=itmp

enddo 11

return

END

SUBROUTINE trncst(x,y,iorder, ncity,n,de)

INTEGER ncity,iorder(ncity),n(6)

REAL de,x(ncity),y(ncity)
This subroutine returns the value of the cost function for a proposed path segment transport.
ncity is the number of cities, and arrays x(1:ncity) and y(1l:ncity) give the city
coordinates. iorder is an array giving the present itinerary. The first three elements of
array n give the starting and ending cities of the path to be transported, and the point
among the remaining cities after which it is to be inserted. On output, de is the cost of
the change. The actual transport is not performed by this routine.

INTEGER ii,j

REAL xx(6),yy(6),alen,x1,x2,yl,y2

alen(x1,x2,y1,y2)=sqrt ((x2-x1) **2+(y2-y1) **2)

n(4)=1+mod (n(3) ,ncity) Find the city following n(3)..

n(5)=1+mod((n(1)+ncity-2) ,ncity) ..and the one preceding n(1)..

n(6)=1+mod(n(2) ,ncity) ..and the one following n(2).

dou j=1,6
ii=iorder(n(j)) Determine coordinates for the six cities in-
xx(j)=x(ii) volved.
yy(§)=y(ii)

enddo 11

de=-alen(xx(2) ,xx(6),yy(2),yy(6))
-alen(xx(1),xx(5),yy(1),yy(5))
-alen(xx(3),xx(4),yy(3),yy(4))
+alen(xx(1),xx(3),yy(1),yy(3))
+alen(xx(2),xx(4),yy(2),yy(4))
+alen(xx(5),xx(6) ,yy(5),yy(6))

return

END

Calculate the cost of disconnecting the path
segment from n(1) to n(2), opening a
space between n(3) and n(4), connect-
ing the segment in the space, and con-
necting n(5) to n(6).

SUBROUTINE transpt(iorder,ncity,n)

INTEGER ncity,iorder(ncity),n(6),MXCITY

PARAMETER (MXCITY=1000) Maximum number of cities anticipated.
This routine does the actual path transport, once metrop has approved. iorder is an
input array of length ncity giving the present itinerary. The array n has as its six elements
the beginning n(1) and end n(2) of the path to be transported, the adjacent cities n(3)
and n(4) between which the path is to be placed, and the cities n(5) and n(6) that
precede and follow the path. n(4), n(5), and n(6) are calculated by subroutine trncst.
On output, iorder is modified to reflect the movement of the path segment.

INTEGER j,jj,m1,m2,m3,nn, jorder (MXCITY)

mi=1+mod((n(2)-n(1)+ncity) ,ncity) Find number of cities from n(1) to n(2)

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

10.9 Simulated Annealing Methods 443

m2=1+mod ((n(5)-n(4)+ncity) ,ncity) ...and the number from n(4) to n(5)
m3=1+mod ((n(3)-n(6)+ncity) ,ncity) ...and the number from n(6) to n(3).
nn=1
dou j=1,mil

jj=1+mod ((j+n(1)-2) ,ncity) Copy the chosen segment.

jorder (nn)=iorder(jj)

nn=nn+1
enddo 11
do 12 j=1,m2 Then copy the segment from n(4) to n(5).

jj=1+mod ((j+n(4)-2) ,ncity)
jorder (nn)=iorder(jj)
nn=nn+1
enddo 12
do 13 j=1,m3 Finally, the segment from n(6) to n(3).
jj=1+mod ((j+n(6)-2) ,ncity)
jorder (nn)=iorder(jj)
nn=nn+1
enddo 13
do 14 j=1,ncity
iorder(j)=jorder(j) Copy jorder back into iorder.
enddo 14
return
END

SUBROUTINE metrop(de,t,ans)

REAL de,t

LOGICAL ans

USES ran3
Metropolis algorithm. ans is a logical variable that issues a verdict on whether to accept a
reconfiguration that leads to a change de in the objective function e. If de<0, ans=.true.,
while if de>0, ans is only .true. with probability exp(-de/t), where t is a temperature
determined by the annealing schedule.

INTEGER jdum

REAL ran3

SAVE jdum

DATA jdum /1/

ans=(de.1t.0.0) .or. (ran3(jdum) .1t.exp(-de/t))

return

END

Continuous Minimization by Simulated Annealing

The basic ideas of simulated annealing are also applicable to optimization
problems with continuous N-dimensional control spaces, e.g., finding the (ideally,
global) minimum of some function f(x), in the presence of many local minima,
where x is an N-dimensional vector. The four elements required by the Metropolis
procedure are now as follows: The value of f is the objective function. The
system state is the point x. The control parameter T is, as before, something like a
temperature, with an annealing schedule by which it is gradually reduced. And there
must be a generator of random changes in the configuration, that is, a procedure for
taking a random step from x to x + Ax.

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

444 Chapter 10. Minimization or Maximization of Functions

Thelast of these elementsisthe most problematical. Theliteratureto date [7-10]
describes several different schemes for choosing Ax, none of which, in our view,
inspire complete confidence. The problem is one of efficiency: A generator of
random changes is inefficient if, when local downhill moves exist, it nevertheless
almost always proposes an uphill move. A good generator, we think, should not
becomeinefficient in narrow valleys; nor should it become more and moreinefficient
as convergence to a minimum is approached. Except possibly for [7], al of the
schemes that we have seen are inefficient in one or both of these situations.

Our own way of doing simulated annealing minimization on continuous control
spacesisto useamodification of the downhill simplex method (§10.4). Thisamounts
to replacing the single point x as a description of the system state by a simplex of
N + 1 points. The “moves’ are the same as described in §10.4, namely reflections,
expansions, and contractions of the simplex. The implementation of the Metropolis
procedureis dlightly subtle: We add a positive, logarithmically distributed random
variable, proportional to the temperature T', to the stored function value associated
with every vertex of the smplex, and we subtract a similar random variable from
the function value of every new point that is tried as a replacement point. Like the
ordinary Metropolis procedure, this method always accepts a true downhill step, but
sometimes accepts an uphill one. In thelimit T — 0, this algorithm reduces exactly
to the downhill simplex method and convergesto a local minimum.

At afinite value of T, the simplex expandsto a scale that approximatesthe size
of the region that can be reached at this temperature, and then executes a stochastic,
tumbling Brownian motion within that region, sampling new, approximately random,
points as it does so. The efficiency with which aregion is explored is independent
of its narrowness (for an ellipsoidal valley, the ratio of its principal axes) and
orientation. If the temperature is reduced sufficiently slowly, it becomes highly
likely that the simplex will shrink into that region containing the lowest relative
minimum encountered.

As in al applications of simulated annealing, there can be quite a lot of
problem-dependent subtlety in the phrase “sufficiently slowly”; success or failure
is quite often determined by the choice of annealing schedule. Here are some
possibilities worth trying:

e Reduce T' to (1 — €)T after every m moves, where e/m is determined

by experiment.

e Budget atotal of K moves, and reduce T after every m movesto avalue
T =To(1 —k/K)*, where k is the cumulative number of moves thus far,
and a isaconstant, say 1, 2, or 4. The optimal value for o depends on the
statistical distribution of relative minimaof various depths. Larger values
of o spend more iterations at lower temperature.

o After every m moves, set 7'to g times f1 — f,, where 5 isan experimentally
determined constant of order 1, f; isthe smallest function value currently
represented in the simplex, and f;, is the best function ever encountered.
However, never reduce T' by more than some fraction v at atime.

Another strategic question iswhether to do an occasional restart, where avertex
of the simplex is discarded in favor of the “best-ever” point. (You must be sure that
the best-ever point is not currently in the simplex when you do this!) We have found
problems for which restarts — every time the temperature has decreased by a factor
of 3, say — are highly beneficial; we have found other problems for which restarts

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

10.9 Simulated Annealing Methods 445

have no positive, or a somewhat negative, effect.

You should comparethefollowing routine, amebsa, with its counterpart amoeba

in §10.4. Note that the argument iter isused in a somewhat different manner.

SUBROUTINE amebsa(p,y,mp,np,ndim,pb,yb,ftol,funk,iter,temptr)
INTEGER iter,mp,ndim,np,NMAX

REAL ftol,temptr,yb,p(mp,np),pb(np),y(mp),funk

PARAMETER (NMAX=200)

EXTERNAL funk

USES anpt sa, funk, ranl

Multidimensional minimization of the function funk(x) where x(1:ndim) is a vector in
ndim dimensions, by simulated annealing combined with the downhill simplex method of
Nelder and Mead. The input matrix p(1 ..ndim+1,1..ndim) has ndim+1 rows, each an
ndim-dimensional vector which is a vertex of the starting simplex. Also input is the vector
y(1:ndim+1), whose components must be pre-initialized to the values of funk evaluated at
the ndim+1 vertices (rows) of p; ftol, the fractional convergence tolerance to be achieved
in the function value for an early return; iter, and temptr. The routine makes iter
function evaluations at an annealing temperature temptr, then returns. You should then
decrease temptr according to your annealing schedule, reset iter, and call the routine
again (leaving other arguments unaltered between calls). If iter is returned with a positive
value, then early convergence and return occurred. If you initialize yb to a very large value
on the first call, then yb and pb(1:ndim) will subsequently return the best function value

and point ever encountered (even if it is no longer a point in the simplex).
INTEGER i,idum,ihi,ilo,j,m,n
REAL rtol,sum,swap,tt,yhi,ylo,ynhi,ysave,yt,ytry,psum(NMAX),

amotsa,ranl
COMMON /ambsa/ tt,idum
tt=-temptr
do 12 n=1,ndim Enter here when starting or after overall contraction.
sum=0. Recompute psum.

do 11 m=1,ndim+1
sum=sum+p (m,n)

enddo 11

psum(n)=sum
enddo 12
ilo=1 Enter here after changing a single point. Find which point
ihi=2 is the highest (worst), next-highest, and lowest (best).
ylo=y(1)+tt*log(ranl (idum)) Whenever we “look at” a vertex, it gets a random thermal
ynhi=ylo fluctuation.

yhi=y(2)+tt*log(ranl (idum))
if (ylo.gt.yhi) then
ihi=1
ilo=2
ynhi=yhi
yhi=ylo
ylo=ynhi
endif
do 13 i=3,ndim+1 Loop over the points in the simplex.
yt=y(i)+tt*log(rani(idum)) More thermal fluctuations
if(yt.le.ylo) then
ilo=i
ylo=yt
endif
if(yt.gt.yhi) then
ynhi=yhi
ihi=i
yhi=yt
else if(yt.gt.ynhi) then
ynhi=yt
endif
enddo 13
rtol=2.*abs(yhi-ylo)/(abs(yhi)+abs(ylo))

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

446 Chapter 10. Minimization or Maximization of Functions

Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol.lt.ftol.or.iter.lt.0) then If returning, put best point and value in slot 1.
swap=y (1)
y(=y(ilo)
y(ilo)=swap
do 14 n=1,ndim
swap=p(1,n)
p(1,n)=p(ilo,n)
p(ilo,n)=swap
enddo 14
return
endif
iter=iter-2
Begin a new iteration. First extrapolate by a factor —1 through the face of the simplex across
from the high point, i.e., reflect the simplex from the high point.
ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,-1.0)
if (ytry.le.ylo) then
Gives a result better than the best point, so try an additional extrapolation by a factor 2.
ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,2.0)
else if (ytry.ge.ynhi) then
The reflected point is worse than the second-highest, so look for an intermediate lower point,
i.e., do a one-dimensional contraction.

ysave=yhi

ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,0.5)

if (ytry.ge.ysave) then Can't seem to get rid of that high point. Better contract
do 16 i=1,ndim+1 around the lowest (best) point.

if(i.ne.ilo)then
do 15 j=1,ndim
psum(j)=0.5%(p(i,j)+p(ilo,j))
p(i,j)=psum(j)
enddo 15
y (1)=funk (psum)
endif
enddo 16
iter=iter-ndim
goto 1
endif
else
iter=iter+1 Correct the evaluation count.
endif
goto 2
END

FUNCTION amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,fac)
INTEGER ihi,mp,ndim,np,NMAX
REAL amotsa,fac,yb,yhi,p(mp,np),pb(np) ,psun(np),y(mp),funk
PARAMETER (NMAX=200)
EXTERNAL funk
USES funk, ranl
Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.
INTEGER idum, j
REAL facl,fac2,tt,yflu,ytry,ptry(NMAX),rani
COMMON /ambsa/ tt,idum
facl=(1.-fac)/ndim
fac2=facl-fac
do 1 j=1,ndim
ptry(j)=psum(j)*facl-p(ihi, j)*fac2
enddo 11

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

10.9 Simulated Annealing Methods 447

ytry=funk(ptry)
if (ytry.le.yb) then Save the best-ever.
do 12 j=1,ndim
pb(§)=ptry(j)

enddo 12
yb=ytry
endif
yflu=ytry-tt*log(rani(idum)) We added a thermal fluctuation to all the current vertices,
if (yflu.lt.yhi) then but we subtract it here, so as to give the simplex
y(ihi)=ytry a thermal Brownian motion: It likes to accept any
yhi=yflu suggested change.

do 13 j=1,ndim
psum(j)=psum(j)-p(ihi, j)+ptry(j)
p(ihi, j)=ptry(j)
enddo 13
endif
amotsa=yflu
return
END

There is not yet enough practical experience with the method of simulated
annealing to say definitively what its future place among optimization methods
will be. The method has severa extremely attractive features, rather unique when
compared with other optimization techniques.

First, it is not “greedy,” in the sense that it is not easily fooled by the quick
payoff achieved by falling into unfavorable local minima. Provided that sufficiently
genera reconfigurations are given, it wanders freely among local minima of depth
less than about 7. As T is lowered, the number of such minima qualifying for
frequent visits is gradually reduced.

Second, configuration decisions tend to proceed in a logical order. Changes
that cause the greatest energy differences are sifted over when the control parameter
T islarge. These decisions become more permanent as 1" is lowered, and attention
then shifts more to smaller refinementsin the solution. For example, in thetraveling
salesman problem with the Mississippi River twist, if A islarge, a decision to cross
the Mississippi only twice is made at high 7', while the specific routes on each side
of the river are determined only at later stages.

The analogies to thermodynamics may be pursued to a greater extent than we
have done here. Quantities analogous to specific heat and entropy may be defined,
and these can be useful in monitoring the progress of the algorithm towards an
acceptable solution. Information on this subject is found in [1].

CITED REFERENCES AND FURTHER READING:
Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. 1983, Science, vol. 220, pp. 671-680. [1]
Kirkpatrick, S. 1984, Journal of Statistical Physics, vol. 34, pp. 975-986. [2]

Vecchi, M.P. and Kirkpatrick, S. 1983, IEEE Transactions on Computer Aided Design, vol. CAD-
2, pp. 215-222. [3]

Otten, R.H.J.M., and van Ginneken, L.P.P.P. 1989, The Annealing Algorithm (Boston: Kluwer)
[contains many references to the literature]. [4]

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller A., and Teller, E. 1953, Journal of Chemical
Physics, vol. 21, pp. 1087-1092. [5]

Lin, S. 1965, Bell System Technical Journal, vol. 44, pp. 2245-2269. [6]
Vanderbilt, D., and Louie, S.G. 1984, Journal of Computational Physics, vol. 56, pp. 259-271. [7]
Bohachevsky, 1.0., Johnson, M.E., and Stein, M.L. 1986, Technometrics, vol. 28, pp. 209-217. [8]

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-986T (D) WbuAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 18V IHL 22 NVHL1HO4 NI S3dI03d TvOIYINNN woly obed sjdwes

Minimization or Maximization of Functions

Chapter 10.

Corana, A., Marchesi, M., Martini, C., and Ridella, S. 1987, ACM Transactions on Mathematical

Software, vol. 13, pp. 262-280. [9]
Bélisle, C.J.P,, Romeijn, H.E., and Smith, R.L. 1990, Technical Report 90-25, Department of

Industrial and Operations Engineering, University of Michigan, submitted to Mathematical

Programming. [10]
Christofides, N., Mingozzi, A., Toth, P,, and Sandi, C. (eds.) 1979, Combinatorial Optimization

Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)

Copyright (C) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software.

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-
readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website
http://www.nr.com or call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America).

(London and New York: Wiley-Interscience) [not simulated annealing, but other topics and

algorithms].

