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Chapter 10. Minimization or
Maximization of Functions

10.0 Introduction

In a nutshell: You are given a single function f that depends on one or more
independent variables. You want to find the value of those variables where f takes
on a maximum or a minimum value. You can then calculate what value of f is
achieved at the maximum or minimum. The tasks of maximization and minimization
are trivially related to each other, since one person’s function f could just as well
be another’s −f . The computational desiderata are the usual ones: Do it quickly,
cheaply, and in small memory. Often the computational effort is dominated by
the cost of evaluating f (and also perhaps its partial derivatives with respect to all
variables, if the chosen algorithm requires them). In such cases the desiderata are
sometimes replaced by the simple surrogate: Evaluate f as few times as possible.

An extremum (maximum or minimum point) can be either global (truly
the highest or lowest function value) or local (the highest or lowest in a finite
neighborhood and not on the boundary of that neighborhood). (See Figure 10.0.1.)
Finding a global extremum is, in general, a very difficult problem. Two standard
heuristics are widely used: (i) find local extrema starting from widely varying
starting values of the independent variables (perhaps chosen quasi-randomly, as in
§7.7), and then pick the most extreme of these (if they are not all the same); or
(ii) perturb a local extremum by taking a finite amplitude step away from it, and
then see if your routine returns you to a better point, or “always” to the same
one. Relatively recently, so-called “simulated annealing methods” (§10.9) have
demonstrated important successes on a variety of global extremization problems.

Our chapter title could just as well be optimization, which is the usual name
for this very large field of numerical research. The importance ascribed to the
various tasks in this field depends strongly on the particular interests of whom
you talk to. Economists, and some engineers, are particularly concerned with
constrained optimization, where there are a priori limitations on the allowed values
of independent variables. For example, the production of wheat in the U.S. must
be a nonnegative number. One particularly well-developed area of constrained
optimization is linear programming, where both the function to be optimized and
the constraints happen to be linear functions of the independent variables. Section
10.8, which is otherwise somewhat disconnected from the rest of the material that we
have chosen to include in this chapter, implements the so-called “simplex algorithm”
for linear programming problems.

387
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Figure 10.0.1. Extrema of a function in an interval. Points A, C, and E are local, but not global
maxima. Points B and F are local, but not global minima. The global maximum occurs at G, which
is on the boundary of the interval so that the derivative of the function need not vanish there. The
global minimum is at D. At point E, derivatives higher than the first vanish, a situation which can
cause difficulty for some algorithms. The points X, Y , and Z are said to “bracket” the minimum F ,
since Y is less than both X and Z .

One other section, §10.9, also lies outside of our main thrust, but for a different
reason: so-called “annealing methods” are relatively new, so we do not yet know
where they will ultimately fit into the scheme of things. However, these methods
have solved some problems previously thought to be practically insoluble; they
address directly the problem of finding global extrema in the presence of large
numbers of undesired local extrema.

The other sections in this chapter constitute a selection of the best established
algorithms in unconstrained minimization. (For definiteness, we will henceforth
regard the optimization problem as that of minimization.) These sections are
connected, with later ones depending on earlier ones. If you are just looking for
the one “perfect” algorithm to solve your particular application, you may feel that
we are telling you more than you want to know. Unfortunately, there is no perfect
optimization algorithm. This is a case where we strongly urge you to try more than
one method in comparative fashion. Your initial choice of method can be based
on the following considerations:

• You must choose between methods that need only evaluations of the
function to be minimized and methods that also require evaluations of the
derivative of that function. In the multidimensional case, this derivative
is the gradient, a vector quantity. Algorithms using the derivative are
somewhat more powerful than those using only the function, but not
always enough so as to compensate for the additional calculations of
derivatives. We can easily construct examples favoring one approach or
favoring the other. However, if you can compute derivatives, be prepared
to try using them.

• For one-dimensional minimization (minimize a function of one variable)
without calculation of the derivative, bracket the minimum as described in
§10.1, and then use Brent’s method as described in §10.2. If your function
has a discontinuous second (or lower) derivative, then the parabolic
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interpolations of Brent’s method are of no advantage, and you might wish
to use the simplest form of golden section search, as described in §10.1.

• For one-dimensional minimization with calculation of the derivative, §10.3
supplies a variant of Brent’s method which makes limited use of the
first derivative information. We shy away from the alternative of using
derivative information to construct high-order interpolating polynomials.
In our experience the improvement in convergence very near a smooth,
analytic minimum does not make up for the tendency of polynomials
sometimes to give wildly wrong interpolations at early stages, especially
for functions that may have sharp, “exponential” features.

We now turn to the multidimensional case, both with and without computation
of first derivatives.

• You must choose between methods that require storage of order N 2 and
those that require only of order N , where N is the number of dimensions.
For moderate values of N and reasonable memory sizes this is not a
serious constraint. There will be, however, the occasional application
where storage may be critical.

• We give in §10.4 a sometimes overlooked downhill simplex method due
to Nelder and Mead. (This use of the word “simplex” is not to be
confused with the simplex method of linear programming.) This method
just crawls downhill in a straightforward fashion that makes almost no
special assumptions about your function. This can be extremely slow, but
it can also, in some cases, be extremely robust. Not to be overlooked is
the fact that the code is concise and completely self-contained: a general
N -dimensional minimization program in under 100 program lines! This
method is most useful when the minimization calculation is only an
incidental part of your overall problem. The storage requirement is of
order N 2, and derivative calculations are not required.

• Section 10.5 deals with direction-set methods, of which Powell’s method
is the prototype. These are the methods of choice when you cannot easily
calculate derivatives, and are not necessarily to be sneered at even if you
can. Although derivatives are not needed, the method does require a
one-dimensional minimization sub-algorithm such as Brent’s method (see
above). Storage is of order N 2.

There are two major families of algorithms for multidimensional minimization
with calculation of first derivatives. Both families require a one-dimensional
minimization sub-algorithm, which can itself either use, or not use, the derivative
information, as you see fit (depending on the relative effort of computing the function
and of its gradient vector). We do not think that either family dominates the other in
all applications; you should think of them as available alternatives:

• The first family goes under the name conjugate gradient methods, as typi-
fied by the Fletcher-Reeves algorithm and the closely related and probably
superior Polak-Ribiere algorithm. Conjugate gradient methods require
only of order a few times N storage, require derivative calculations and
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one-dimensional sub-minimization. Turn to §10.6 for detailed discussion
and implementation.

• The second family goes under the names quasi-Newton or variable metric
methods, as typified by the Davidon-Fletcher-Powell (DFP) algorithm
(sometimes referred to just as Fletcher-Powell) or the closely related
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. These methods
require of order N 2 storage, require derivative calculations and one-
dimensional sub-minimization. Details are in §10.7.

You are now ready to proceed with scaling the peaks (and/or plumbing the
depths) of practical optimization.
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10.1 Golden Section Search in One Dimension

Recall how the bisection method finds roots of functions in one dimension
(§9.1): The root is supposed to have been bracketed in an interval (a, b). One
then evaluates the function at an intermediate point x and obtains a new, smaller
bracketing interval, either (a, x) or (x, b). The process continues until the bracketing
interval is acceptably small. It is optimal to choose x to be the midpoint of (a, b)
so that the decrease in the interval length is maximized when the function is as
uncooperative as it can be, i.e., when the luck of the draw forces you to take the
bigger bisected segment.

There is a precise, though slightly subtle, translation of these considerations to
the minimization problem: What does it mean to bracket a minimum? A root of a
function is known to be bracketed by a pair of points, a and b, when the function
has opposite sign at those two points. A minimum, by contrast, is known to be
bracketed only when there is a triplet of points, a < b < c (or c < b < a), such that
f(b) is less than both f(a) and f(c). In this case we know that the function (if it
is nonsingular) has a minimum in the interval (a, c).

The analog of bisection is to choose a new point x, either between a and b or
between b and c. Suppose, to be specific, that we make the latter choice. Then we
evaluate f(x). If f(b) < f(x), then the new bracketing triplet of points is (a, b, x);
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Figure 10.1.1. Successive bracketing of a minimum. The minimum is originally bracketed by points
1,3,2. The function is evaluated at 4, which replaces 2; then at 5, which replaces 1; then at 6, which
replaces 4. The rule at each stage is to keep a center point that is lower than the two outside points. After
the steps shown, the minimum is bracketed by points 5,3,6.

contrariwise, if f(b) > f(x), then the new bracketing triplet is (b, x, c). In all cases
the middle point of the new triplet is the abscissa whose ordinate is the best minimum
achieved so far; see Figure 10.1.1. We continue the process of bracketing until the
distance between the two outer points of the triplet is tolerably small.

How small is “tolerably” small? For a minimum located at a value b, you
might naively think that you will be able to bracket it in as small a range as
(1 − ε)b < b < (1 + ε)b, where ε is your computer’s floating-point precision, a
number like 3 × 10−8 (single precision) or 10−15 (double precision). Not so! In
general, the shape of your function f(x) near b will be given by Taylor’s theorem

f(x) ≈ f(b) +
1
2
f ′′(b)(x − b)2 (10.1.1)

The second term will be negligible compared to the first (that is, will be a factor ε
smaller and will act just like zero when added to it) whenever

|x − b| <
√

ε|b|
√

2 |f(b)|
b2f ′′(b)

(10.1.2)

The reason for writing the right-hand side in this way is that, for most functions,
the final square root is a number of order unity. Therefore, as a rule of thumb, it
is hopeless to ask for a bracketing interval of width less than

√
ε times its central

value, a fractional width of only about 10−4 (single precision) or 3 × 10−8 (double
precision). Knowing this inescapable fact will save you a lot of useless bisections!

The minimum-finding routines of this chapter will often call for a user-supplied
argument tol, and return with an abscissa whose fractional precision is about ±tol
(bracketing interval of fractional size about 2×tol). Unless you have a better
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estimate for the right-hand side of equation (10.1.2), you should set tol equal to
(not much less than) the square root of your machine’s floating-point precision, since
smaller values will gain you nothing.

It remains to decide on a strategy for choosing the new point x, given (a, b, c).
Suppose that b is a fraction w of the way between a and c, i.e.

b − a

c − a
= w

c − b

c − a
= 1 − w (10.1.3)

Also suppose that our next trial point x is an additional fraction z beyond b,

x − b

c − a
= z (10.1.4)

Then the next bracketing segment will either be of length w+z relative to the current
one, or else of length 1 − w. If we want to minimize the worst case possibility, then
we will choose z to make these equal, namely

z = 1 − 2w (10.1.5)

We see at once that the new point is the symmetric point to b in the original interval,
namely with |b − a| equal to |x − c|. This implies that the point x lies in the larger
of the two segments (z is positive only if w < 1/2).

But where in the larger segment? Where did the value of w itself come from?
Presumably from the previous stage of applying our same strategy. Therefore, if z
is chosen to be optimal, then so was w before it. This scale similarity implies that
x should be the same fraction of the way from b to c (if that is the bigger segment)
as was b from a to c, in other words,

z

1 − w
= w (10.1.6)

Equations (10.1.5) and (10.1.6) give the quadratic equation

w2 − 3w + 1 = 0 yielding w =
3 −√

5
2

≈ 0.38197 (10.1.7)

In other words, the optimal bracketing interval (a, b, c) has its middle point b a
fractional distance 0.38197 from one end (say, a), and 0.61803 from the other end
(say, b). These fractions are those of the so-called golden mean or golden section,
whose supposedly aesthetic properties hark back to the ancient Pythagoreans. This
optimal method of function minimization, the analog of the bisection method for
finding zeros, is thus called the golden section search, summarized as follows:

Given, at each stage, a bracketing triplet of points, the next point to be tried
is that which is a fraction 0.38197 into the larger of the two intervals (measuring
from the central point of the triplet). If you start out with a bracketing triplet whose
segments are not in the golden ratios, the procedure of choosing successive points
at the golden mean point of the larger segment will quickly converge you to the
proper, self-replicating ratios.

The golden section search guarantees that each new function evaluation will
(after self-replicating ratios have been achieved) bracket the minimum to an interval
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just 0.61803 times the size of the preceding interval. This is comparable to, but not
quite as good as, the 0.50000 that holds when finding roots by bisection. Note that
the convergence is linear (in the language of Chapter 9), meaning that successive
significant figures are won linearly with additional function evaluations. In the
next section we will give a superlinear method, where the rate at which successive
significant figures are liberated increases with each successive function evaluation.

Routine for Initially Bracketing a Minimum

The preceding discussion has assumed that you are able to bracket the minimum
in the first place. We consider this initial bracketing to be an essential part of any
one-dimensional minimization. There are some one-dimensional algorithms that
do not require a rigorous initial bracketing. However, we would never trade the
secure feeling of knowing that a minimum is “in there somewhere” for the dubious
reduction of function evaluations that these nonbracketing routines may promise.
Please bracket your minima (or, for that matter, your zeros) before isolating them!

There is not much theory as to how to do this bracketing. Obviously you want
to step downhill. But how far? We like to take larger and larger steps, starting with
some (wild?) initial guess and then increasing the stepsize at each step either by
a constant factor, or else by the result of a parabolic extrapolation of the preceding
points that is designed to take us to the extrapolated turning point. It doesn’t much
matter if the steps get big. After all, we are stepping downhill, so we already have
the left and middle points of the bracketing triplet. We just need to take a big enough
step to stop the downhill trend and get a high third point.

Our standard routine is this:

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)
REAL ax,bx,cx,fa,fb,fc,func,GOLD,GLIMIT,TINY
EXTERNAL func
PARAMETER (GOLD=1.618034, GLIMIT=100., TINY=1.e-20)

Given a function func, and given distinct initial points ax and bx, this routine searches
in the downhill direction (defined by the function as evaluated at the initial points) and
returns new points ax, bx, cx that bracket a minimum of the function. Also returned are
the function values at the three points, fa, fb, and fc.
Parameters: GOLD is the default ratio by which successive intervals are magnified; GLIMIT
is the maximum magnification allowed for a parabolic-fit step.

REAL dum,fu,q,r,u,ulim
fa=func(ax)
fb=func(bx)
if(fb.gt.fa)then Switch roles of a and b so that we can go downhill in the

direction from a to b.dum=ax
ax=bx
bx=dum
dum=fb
fb=fa
fa=dum

endif
cx=bx+GOLD*(bx-ax) First guess for c.
fc=func(cx)

1 if(fb.ge.fc)then “do while”: keep returning here until we bracket.
r=(bx-ax)*(fb-fc) Compute u by parabolic extrapolation from a, b, c. TINY

is used to prevent any possible division by zero.q=(bx-cx)*(fb-fa)
u=bx-((bx-cx)*q-(bx-ax)*r)/(2.*sign(max(abs(q-r),TINY),q-r))
ulim=bx+GLIMIT*(cx-bx) We won’t go farther than this. Test various possibilities:
if((bx-u)*(u-cx).gt.0.)then Parabolic u is between b and c: try it.

fu=func(u)
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if(fu.lt.fc)then Got a minimum between b and c.
ax=bx
fa=fb
bx=u
fb=fu
return

else if(fu.gt.fb)then Got a minimum between between a and u.
cx=u
fc=fu
return

endif
u=cx+GOLD*(cx-bx) Parabolic fit was no use. Use default magnification.
fu=func(u)

else if((cx-u)*(u-ulim).gt.0.)then Parabolic fit is between c and its allowed
limit.fu=func(u)

if(fu.lt.fc)then
bx=cx
cx=u
u=cx+GOLD*(cx-bx)
fb=fc
fc=fu
fu=func(u)

endif
else if((u-ulim)*(ulim-cx).ge.0.)then Limit parabolic u to maximum allowed

value.u=ulim
fu=func(u)

else Reject parabolic u, use default magnification.
u=cx+GOLD*(cx-bx)
fu=func(u)

endif
ax=bx Eliminate oldest point and continue.
bx=cx
cx=u
fa=fb
fb=fc
fc=fu
goto 1

endif
return
END

(Because of the housekeeping involved in moving around three or four points and
their function values, the above program ends up looking deceptively formidable.
That is true of several other programs in this chapter as well. The underlying ideas,
however, are quite simple.)

Routine for Golden Section Search

FUNCTION golden(ax,bx,cx,f,tol,xmin)
REAL golden,ax,bx,cx,tol,xmin,f,R,C
EXTERNAL f
PARAMETER (R=.61803399,C=1.-R)

Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine performs
a golden section search for the minimum, isolating it to a fractional precision of about
tol. The abscissa of the minimum is returned as xmin, and the minimum function value
is returned as golden, the returned function value.
Parameters: The golden ratios.

REAL f1,f2,x0,x1,x2,x3
x0=ax At any given time we will keep track of four points, x0,x1,x2,x3.
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x3=cx
if(abs(cx-bx).gt.abs(bx-ax))then Make x0 to x1 the smaller segment,

x1=bx
x2=bx+C*(cx-bx) and fill in the new point to be tried.

else
x2=bx
x1=bx-C*(bx-ax)

endif
f1=f(x1) The initial function evaluations. Note that we never need to

evaluate the function at the original endpoints.f2=f(x2)
1 if(abs(x3-x0).gt.tol*(abs(x1)+abs(x2)))then Do-while loop: we keep returning here.

if(f2.lt.f1)then One possible outcome,
x0=x1 its housekeeping,
x1=x2
x2=R*x1+C*x3
f1=f2
f2=f(x2) and a new function evaluation.

else The other outcome,
x3=x2
x2=x1
x1=R*x2+C*x0
f2=f1
f1=f(x1) and its new function evaluation.

endif
goto 1 Back to see if we are done.
endif
if(f1.lt.f2)then We are done. Output the best of the two current values.

golden=f1
xmin=x1

else
golden=f2
xmin=x2

endif
return
END

10.2 Parabolic Interpolation and Brent’s Method
in One Dimension

We already tipped our hand about the desirability of parabolic interpolation in
the previous section’s mnbrak routine, but it is now time to be more explicit. A
golden section search is designed to handle, in effect, the worst possible case of
function minimization, with the uncooperative minimum hunted down and cornered
like a scared rabbit. But why assume the worst? If the function is nicely parabolic
near to the minimum — surely the generic case for sufficiently smooth functions —
then the parabola fitted through any three points ought to take us in a single leap
to the minimum, or at least very near to it (see Figure 10.2.1). Since we want to
find an abscissa rather than an ordinate, the procedure is technically called inverse
parabolic interpolation.

The formula for the abscissa x that is the minimum of a parabola through three
points f(a), f(b), and f(c) is

x = b − 1
2

(b − a)2[f(b) − f(c)] − (b − c)2[f(b) − f(a)]
(b − a)[f(b) − f(c)] − (b − c)[f(b) − f(a)]

(10.2.1)
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1

4

2

3

parabola through 1 2 3

parabola through 1 2 4

5

Figure 10.2.1. Convergence to a minimum by inverse parabolic interpolation. A parabola (dashed line) is
drawn through the three original points 1,2,3 on the given function (solid line). The function is evaluated
at the parabola’s minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through
points 1,4,2. The minimum of this parabola is at 5, which is close to the minimum of the function.

as you can easily derive. This formula fails only if the three points are collinear,
in which case the denominator is zero (minimum of the parabola is infinitely far
away). Note, however, that (10.2.1) is as happy jumping to a parabolic maximum
as to a minimum. No minimization scheme that depends solely on (10.2.1) is likely
to succeed in practice.

The exacting task is to invent a scheme that relies on a sure-but-slow technique,
like golden section search, when the function is not cooperative, but that switches
over to (10.2.1) when the function allows. The task is nontrivial for several
reasons, including these: (i) The housekeeping needed to avoid unnecessary function
evaluations in switching between the two methods can be complicated. (ii) Careful
attention must be given to the “endgame,” where the function is being evaluated
very near to the roundoff limit of equation (10.1.2). (iii) The scheme for detecting a
cooperative versus noncooperative function must be very robust.

Brent’s method [1] is up to the task in all particulars. At any particular stage,
it is keeping track of six function points (not necessarily all distinct), a, b, u, v,
w and x, defined as follows: the minimum is bracketed between a and b; x is the
point with the very least function value found so far (or the most recent one in
case of a tie); w is the point with the second least function value; v is the previous
value of w; u is the point at which the function was evaluated most recently. Also
appearing in the algorithm is the point xm, the midpoint between a and b; however,
the function is not evaluated there.

You can read the code below to understand the method’s logical organization.
Mention of a few general principles here may, however, be helpful: Parabolic
interpolation is attempted, fitting through the points x, v, and w. To be acceptable,
the parabolic step must (i) fall within the bounding interval (a, b), and (ii) imply a
movement from the best current value x that is less than half the movement of the
step before last. This second criterion insures that the parabolic steps are actually
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converging to something, rather than, say, bouncing around in some nonconvergent
limit cycle. In the worst possible case, where the parabolic steps are acceptable but
useless, the method will approximately alternate between parabolic steps and golden
sections, converging in due course by virtue of the latter. The reason for comparing
to the step before last seems essentially heuristic: Experience shows that it is better
not to “punish” the algorithm for a single bad step if it can make it up on the next one.

Another principle exemplified in the code is never to evaluate the function less
than a distance tol from a point already evaluated (or from a known bracketing
point). The reason is that, as we saw in equation (10.1.2), there is simply no
information content in doing so: the function will differ from the value already
evaluated only by an amount of order the roundoff error. Therefore in the code below
you will find several tests and modifications of a potential new point, imposing this
restriction. This restriction also interacts subtly with the test for “doneness,” which
the method takes into account.

A typical ending configuration for Brent’s method is that a and b are 2×x×tol
apart, with x (the best abscissa) at the midpoint of a and b, and therefore fractionally
accurate to ±tol.

Indulge us a final reminder that tol should generally be no smaller than the
square root of your machine’s floating-point precision.

FUNCTION brent(ax,bx,cx,f,tol,xmin)
INTEGER ITMAX
REAL brent,ax,bx,cx,tol,xmin,f,CGOLD,ZEPS
EXTERNAL f
PARAMETER (ITMAX=100,CGOLD=.3819660,ZEPS=1.0e-10)

Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine isolates
the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
the minimum is returned as xmin, and the minimum function value is returned as brent,
the returned function value.
Parameters: Maximum allowed number of iterations; golden ratio; and a small number that
protects against trying to achieve fractional accuracy for a minimum that happens to be
exactly zero.

INTEGER iter
REAL a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm
a=min(ax,cx) a and b must be in ascending order, though the input

abscissas need not be.b=max(ax,cx)
v=bx Initializations...
w=v
x=v
e=0. This will be the distance moved on the step before last.
fx=f(x)
fv=fx
fw=fx
do 11 iter=1,ITMAX Main program loop.

xm=0.5*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.*tol1
if(abs(x-xm).le.(tol2-.5*(b-a))) goto 3 Test for done here.
if(abs(e).gt.tol1) then Construct a trial parabolic fit.

r=(x-w)*(fx-fv)
q=(x-v)*(fx-fw)
p=(x-v)*q-(x-w)*r
q=2.*(q-r)
if(q.gt.0.) p=-p
q=abs(q)
etemp=e
e=d
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if(abs(p).ge.abs(.5*q*etemp).or.p.le.q*(a-x).or.
* p.ge.q*(b-x)) goto 1

The above conditions determine the acceptability of the parabolic fit. Here it is o.k.:
d=p/q Take the parabolic step.
u=x+d
if(u-a.lt.tol2 .or. b-u.lt.tol2) d=sign(tol1,xm-x)
goto 2 Skip over the golden section step.

endif
1 if(x.ge.xm) then We arrive here for a golden section step, which we take

into the larger of the two segments.e=a-x
else

e=b-x
endif
d=CGOLD*e Take the golden section step.

2 if(abs(d).ge.tol1) then Arrive here with d computed either from parabolic fit, or
else from golden section.u=x+d

else
u=x+sign(tol1,d)

endif
fu=f(u) This is the one function evaluation per iteration,
if(fu.le.fx) then and now we have to decide what to do with our function

evaluation. Housekeeping follows:if(u.ge.x) then
a=x

else
b=x

endif
v=w
fv=fw
w=x
fw=fx
x=u
fx=fu

else
if(u.lt.x) then

a=u
else

b=u
endif
if(fu.le.fw .or. w.eq.x) then

v=w
fv=fw
w=u
fw=fu

else if(fu.le.fv .or. v.eq.x .or. v.eq.w) then
v=u
fv=fu

endif
endif Done with housekeeping. Back for another iteration.

enddo 11

pause ’brent exceed maximum iterations’
3 xmin=x Arrive here ready to exit with best values.

brent=fx
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 5. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §8.2.
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10.3 One-Dimensional Search with First
Derivatives

Here we want to accomplish precisely the same goal as in the previous
section, namely to isolate a functional minimum that is bracketed by the triplet of
abscissas (a, b, c), but utilizing an additional capability to compute the function’s
first derivative as well as its value.

In principle, we might simply search for a zero of the derivative, ignoring the
function value information, using a root finder like rtflsp or zbrent (§§9.2–9.3).
It doesn’ t take long to reject that idea: How do we distinguish maxima from minima?
Where do we go from initial conditions where the derivatives on one or both of
the outer bracketing points indicate that “downhill” is in the direction out of the
bracketed interval?

We don’ t want to give up our strategy of maintaining a rigorous bracket on the
minimum at all times. The only way to keep such a bracket is to update it using
function (not derivative) information, with the central point in the bracketing triplet
always that with the lowest function value. Therefore the role of the derivatives can
only be to help us choose new trial points within the bracket.

One school of thought is to “use everything you’ve got” : Compute a polynomial
of relatively high order (cubic or above) that agrees with some number of previous
function and derivative evaluations. For example, there is a unique cubic that agrees
with function and derivative at two points, and one can jump to the interpolated
minimum of that cubic (if there is a minimum within the bracket). Suggested by
Davidon and others, formulas for this tactic are given in [1].

We like to be more conservative than this. Once superlinear convergence sets
in, it hardly matters whether its order is moderately lower or higher. In practical
problems that we have met, most function evaluations are spent in getting globally
close enough to the minimum for superlinear convergence to commence. So we are
more worried about all the funny “stiff” things that high-order polynomials can do
(cf. Figure 3.0.1b), and about their sensitivities to roundoff error.

This leads us to use derivative information only as follows: The sign of the
derivative at the central point of the bracketing triplet (a, b, c) indicates uniquely
whether the next test point should be taken in the interval (a, b) or in the interval
(b, c). The value of this derivative and of the derivative at the second-best-so-far
point are extrapolated to zero by the secant method (inverse linear interpolation),
which by itself is superlinear of order 1.618. (The golden mean again: see [1], p. 57.)
We impose the same sort of restrictions on this new trial point as in Brent’s method.
If the trial point must be rejected, we bisect the interval under scrutiny.

Yes, we are fuddy-duddieswhen it comes to making flamboyant use of derivative
information in one-dimensional minimization. But we have met too many functions
whose computed “derivatives” don’t integrate up to the function value and don’t
accurately point the way to the minimum, usually because of roundoff errors,
sometimes because of truncation error in the method of derivative evaluation.

You will see that the following routine is closely modeled on brent in the
previous section.
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FUNCTION dbrent(ax,bx,cx,f,df,tol,xmin)
INTEGER ITMAX
REAL dbrent,ax,bx,cx,tol,xmin,df,f,ZEPS
EXTERNAL df,f
PARAMETER (ITMAX=100,ZEPS=1.0e-10)

Given a function f and its derivative function df, and given a bracketing triplet of abscissas
ax, bx, cx [such that bx is between ax and cx, and f(bx) is less than both f(ax) and
f(cx)], this routine isolates the minimum to a fractional precision of about tol using
a modification of Brent’s method that uses derivatives. The abscissa of the minimum is
returned as xmin, and the minimum function value is returned as dbrent, the returned
function value.

INTEGER iter
REAL a,b,d,d1,d2,du,dv,dw,dx,e,fu,fv,fw,fx,olde,tol1,tol2,

* u,u1,u2,v,w,x,xm
Comments following will point out only differences from the routine brent. Read that
routine first.

LOGICAL ok1,ok2 Will be used as flags for whether proposed steps are accept-
able or not.a=min(ax,cx)

b=max(ax,cx)
v=bx
w=v
x=v
e=0.
fx=f(x)
fv=fx
fw=fx
dx=df(x) All our housekeeping chores are doubled by the necessity of

moving derivative values around as well as function val-
ues.

dv=dx
dw=dx
do 11 iter=1,ITMAX

xm=0.5*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.*tol1
if(abs(x-xm).le.(tol2-.5*(b-a))) goto 3
if(abs(e).gt.tol1) then

d1=2.*(b-a) Initialize these d’s to an out-of-bracket value.
d2=d1
if(dw.ne.dx) d1=(w-x)*dx/(dx-dw) Secant method with one point.
if(dv.ne.dx) d2=(v-x)*dx/(dx-dv) And the other.

Which of these two estimates of d shall we take? We will insist that they be within
the bracket, and on the side pointed to by the derivative at x:

u1=x+d1
u2=x+d2
ok1=((a-u1)*(u1-b).gt.0.).and.(dx*d1.le.0.)
ok2=((a-u2)*(u2-b).gt.0.).and.(dx*d2.le.0.)
olde=e Movement on the step before last.
e=d
if(.not.(ok1.or.ok2))then Take only an acceptable d, and if both

are acceptable, then take the small-
est one.

goto 1
else if (ok1.and.ok2)then

if(abs(d1).lt.abs(d2))then
d=d1

else
d=d2

endif
else if (ok1)then

d=d1
else

d=d2
endif
if(abs(d).gt.abs(0.5*olde))goto 1
u=x+d
if(u-a.lt.tol2 .or. b-u.lt.tol2) d=sign(tol1,xm-x)
goto 2
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endif
1 if(dx.ge.0.) then Decide which segment by the sign of the derivative.

e=a-x
else

e=b-x
endif
d=0.5*e Bisect, not golden section.

2 if(abs(d).ge.tol1) then
u=x+d
fu=f(u)

else
u=x+sign(tol1,d)
fu=f(u)
if(fu.gt.fx)goto 3 If the minimum step in the downhill direction takes us uphill,

then we are done.endif
du=df(u) Now all the housekeeping, sigh.
if(fu.le.fx) then

if(u.ge.x) then
a=x

else
b=x

endif
v=w
fv=fw
dv=dw
w=x
fw=fx
dw=dx
x=u
fx=fu
dx=du

else
if(u.lt.x) then

a=u
else

b=u
endif
if(fu.le.fw .or. w.eq.x) then

v=w
fv=fw
dv=dw
w=u
fw=fu
dw=du

else if(fu.le.fv .or. v.eq.x .or. v.eq.w) then
v=u
fv=fu
dv=du

endif
endif

enddo 11

pause ’dbrent exceeded maximum iterations’
3 xmin=x

dbrent=fx
return
END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 55; 454–458. [1]

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), p. 78.
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10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely
self-contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex method is due to Nelder and Mead[1]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell’s method (§10.5) is
almost surely faster in all likely applications. However, the downhill simplex method
may frequently be thebest method to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightful
to describe or work through:

A simplex is the geometrical figure consisting, inN dimensions, ofN + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etc.
In two dimensions, a simplex is a triangle. In three dimensions it is a tetrahedron,
not necessarily the regular tetrahedron. (Thesimplex method of linear programming,
described in§10.8, also makes use of the geometrical concept of a simplex. Otherwise
it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite innerN -dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then theN other points define vector directions that span the
N -dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that is, anN -vector of independent
variables as the first point to try. The algorithm is then supposed to make its own way
downhill through the unimaginable complexity of anN -dimensional topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point, but
with N + 1 points, defining an initial simplex. If you think of one of these points
(it matters not which) as being your initial starting pointP0, then you can take
the otherN points to be

Pi = P0 + λei (10.4.1)

where theei’s areN unit vectors, and whereλ is a constant which is your guess
of the problem’s characteristic length scale. (Or, you could have differentλ i’s for
each vector direction.)

The downhill simplex method now takes a series of steps, most steps just moving
the point of the simplex where the function is largest (“highest point”) through the
opposite face of the simplex to a lower point. These steps are called reflections,
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simplex at beginning of step

reflection

reflection and expansion

contraction

multiple
contraction

(a)

(b)

(c)

(d)

high
low

Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplex at the
beginning of the step, here a tetrahedron, is shown, top. The simplex at the end of the step can be any one
of (a) a reflection away from the high point, (b) a reflection and expansion away from the high point, (c)
a contraction along one dimension from the high point, or (d) a contraction along all dimensions towards
the low point. An appropriate sequence of such steps will always converge to a minimum of the function.

and they are constructed to conserve the volume of the simplex (hence maintain
its nondegeneracy). When it can do so, the method expands the simplex in one or
another direction to take larger steps. When it reaches a “valley floor,” the method
contracts itself in the transverse direction and tries to ooze down the valley. If there
is a situation where the simplex is trying to “pass through the eye of a needle,” it
contracts itself in all directions, pulling itself in around its lowest (best) point. The
routine name amoeba is intended to be descriptive of this kind of behavior; the basic
moves are summarized in Figure 10.4.1.

Termination criteria can be delicate in any multidimensional minimization
routine. Without bracketing, and with more than one independent variable, we
no longer have the option of requiring a certain tolerance for a single independent
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variable. We typically can identify one “cycle” or “step” of our multidimensional
algorithm. It is then possible to terminate when the vector distance moved in that
step is fractionally smaller in magnitude than some tolerance tol. Alternatively,
we could require that the decrease in the function value in the terminating step be
fractionally smaller than some tolerance ftol. Note that while tol should not
usually be smaller than the square root of the machine precision, it is perfectly
appropriate to let ftol be of order the machine precision (or perhaps slightly larger
so as not to be diddled by roundoff).

Note well that either of the above criteria might be fooled by a single anomalous
step that, for one reason or another, failed to get anywhere. Therefore, it is frequently
a good idea to restart a multidimensional minimization routine at a point where
it claims to have found a minimum. For this restart, you should reinitialize any
ancillary input quantities. In the downhill simplex method, for example, you should
reinitialize N of the N + 1 vertices of the simplex again by equation (10.4.1), with
P0 being one of the vertices of the claimed minimum.

Restarts should never be very expensive; your algorithm did, after all, converge
to the restart point once, and now you are starting the algorithm already there.

Consider, then, our N -dimensional amoeba:

SUBROUTINE amoeba(p,y,mp,np,ndim,ftol,funk,iter)
INTEGER iter,mp,ndim,np,NMAX,ITMAX
REAL ftol,p(mp,np),y(mp),funk,TINY
PARAMETER (NMAX=20,ITMAX=5000,TINY=1.e-10) Maximum allowed dimensions and func-

tion evaluations, and a small num-
ber.

EXTERNAL funk
C USES amotry,funk

Multidimensional minimization of the function funk(x) where x(1:ndim) is a vector
in ndim dimensions, by the downhill simplex method of Nelder and Mead. The matrix
p(1:ndim+1,1:ndim) is input. Its ndim+1 rows are ndim-dimensional vectors which are
the vertices of the starting simplex. Also input is the vector y(1:ndim+1), whose compo-
nents must be pre-initialized to the values of funk evaluated at the ndim+1 vertices (rows)
of p; and ftol the fractional convergence tolerance to be achieved in the function value
(n.b.!). On output, p and y will have been reset to ndim+1 new points all within ftol of
a minimum function value, and iter gives the number of function evaluations taken.

INTEGER i,ihi,ilo,inhi,j,m,n
REAL rtol,sum,swap,ysave,ytry,psum(NMAX),amotry
iter=0

1 do 12 n=1,ndim Enter here when starting or have just overall contracted.
sum=0. Recompute psum.
do 11 m=1,ndim+1

sum=sum+p(m,n)
enddo 11

psum(n)=sum
enddo 12

2 ilo=1 Enter here when have just changed a single point.
if (y(1).gt.y(2)) then Determine which point is the highest (worst), next-highest,

and lowest (best),ihi=1
inhi=2

else
ihi=2
inhi=1

endif
do 13 i=1,ndim+1 by looping over the points in the simplex.

if(y(i).le.y(ilo)) ilo=i
if(y(i).gt.y(ihi)) then

inhi=ihi
ihi=i

else if(y(i).gt.y(inhi)) then
if(i.ne.ihi) inhi=i
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endif
enddo 13

rtol=2.*abs(y(ihi)-y(ilo))/(abs(y(ihi))+abs(y(ilo))+TINY)
Compute the fractional range from highest to lowest and return if satisfactory.

if (rtol.lt.ftol) then If returning, put best point and value in slot 1.
swap=y(1)
y(1)=y(ilo)
y(ilo)=swap
do 14 n=1,ndim

swap=p(1,n)
p(1,n)=p(ilo,n)
p(ilo,n)=swap

enddo 14

return
endif
if (iter.ge.ITMAX) pause ’ITMAX exceeded in amoeba’
iter=iter+2

Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex across
from the high point, i.e., reflect the simplex from the high point.

ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,-1.0)
if (ytry.le.y(ilo)) then

Gives a result better than the best point, so try an additional extrapolation by a factor 2.
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,2.0)

else if (ytry.ge.y(inhi)) then
The reflected point is worse than the second-highest, so look for an intermediate lower point,
i.e., do a one-dimensional contraction.
ysave=y(ihi)
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,0.5)
if (ytry.ge.ysave) then Can’t seem to get rid of that high point. Better contract

around the lowest (best) point.do 16 i=1,ndim+1
if(i.ne.ilo)then

do 15 j=1,ndim
psum(j)=0.5*(p(i,j)+p(ilo,j))
p(i,j)=psum(j)

enddo 15

y(i)=funk(psum)
endif

enddo 16

iter=iter+ndim Keep track of function evaluations.
goto 1 Go back for the test of doneness and the next iteration.

endif
else

iter=iter-1 Correct the evaluation count.
endif
goto 2
END

FUNCTION amotry(p,y,psum,mp,np,ndim,funk,ihi,fac)
INTEGER ihi,mp,ndim,np,NMAX
REAL amotry,fac,p(mp,np),psum(np),y(mp),funk
PARAMETER (NMAX=20)
EXTERNAL funk

C USES funk
Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

INTEGER j
REAL fac1,fac2,ytry,ptry(NMAX)
fac1=(1.-fac)/ndim
fac2=fac1-fac
do 11 j=1,ndim

ptry(j)=psum(j)*fac1-p(ihi,j)*fac2
enddo 11
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ytry=funk(ptry) Evaluate the function at the trial point.
if (ytry.lt.y(ihi)) then If it’s better than the highest, then replace the highest.

y(ihi)=ytry
do 12 j=1,ndim

psum(j)=psum(j)-p(ihi,j)+ptry(j)
p(ihi,j)=ptry(j)

enddo 12

endif
amotry=ytry
return
END

CITED REFERENCES AND FURTHER READING:

Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308–313. [1]

Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391–398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’s) Methods in
Multidimensions

We know (§10.1–§10.3) how to minimize a function of one variable. If we
start at a point P in N -dimensional space, and proceed from there in some vector
direction n, then any function of N variables f(P) can be minimized along the line
n by our one-dimensional methods. One can dream up various multidimensional
minimization methods that consist of sequences of such line minimizations. Different
methods will differ only by how, at each stage, they choose the next direction n to
try. All such methods presume the existence of a “black-box” sub-algorithm, which
we might call linmin (given as an explicit routine at the end of this section), whose
definition can be taken for now as

linmin: Given as input the vectors P and n, and the
function f , find the scalar λ that minimizes f(P+λn).
Replace P by P + λn. Replace n by λn. Done.

All the minimization methods in this section and in the two sections following
fall under this general schema of successive line minimizations. (The algorithm
in §10.7 does not need very accurate line minimizations. Accordingly, it has its
own approximate line minimization routine, lnsrch.) In this section we consider
a class of methods whose choice of successive directions does not involve explicit
computation of the function’s gradient; the next two sections do require such gradient
calculations. You will note that we need not specify whether linmin uses gradient
information or not. That choice is up to you, and its optimization depends on your
particular function. You would be crazy, however, to use gradients in linmin and
not use them in the choice of directions, since in this latter role they can drastically
reduce the total computational burden.
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start

y

x

Figure 10.5.1. Successive minimizations along coordinate directions in a long, narrow “valley” (shown
as contour lines). Unless the valley is optimally oriented, this method is extremely inefficient, taking
many tiny steps to get to the minimum, crossing and re-crossing the principal axis.

But what if, in your application, calculation of the gradient is out of the question.
You might first think of this simple method: Take the unit vectors e 1, e2, . . . eN as
a set of directions. Using linmin, move along the first direction to its minimum,
then from there along the second direction to its minimum, and so on, cycling
through the whole set of directions as many times as necessary, until the function
stops decreasing.

This simple method is actually not too bad for many functions. Even more
interesting is why it is bad, i.e. very inefficient, for some other functions. Consider
a function of two dimensions whose contour map (level lines) happens to define a
long, narrow valley at some angle to the coordinate basis vectors (see Figure 10.5.1).
Then the only way “down the length of the valley” going along the basis vectors at
each stage is by a series of many tiny steps. More generally, in N dimensions, if
the function’s second derivatives are much larger in magnitude in some directions
than in others, then many cycles through all N basis vectors will be required in
order to get anywhere. This condition is not all that unusual; according to Murphy’s
Law, you should count on it.

Obviously what we need is a better set of directions than the e i’s. All direction
set methods consist of prescriptions for updating the set of directions as the method
proceeds, attempting to come up with a set which either (i) includes some very
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good directions that will take us far along narrow valleys, or else (more subtly)
(ii) includes some number of “non-interfering” directions with the special property
that minimization along one is not “spoiled” by subsequent minimization along
another, so that interminable cycling through the set of directions can be avoided.

Conjugate Directions

This concept of “non-interfering” directions, more conventionally called con-
jugate directions, is worth making mathematically explicit.

First, note that if we minimize a function along some direction u, then the
gradient of the function must be perpendicular to u at the line minimum; if not, then
there would still be a nonzero directional derivative along u.

Next take some particular point P as the origin of the coordinate system with
coordinates x. Then any function f can be approximated by its Taylor series

f(x) = f(P) +
∑

i

∂f

∂xi
xi +

1
2

∑

i,j

∂2f

∂xi∂xj
xixj + · · ·

≈ c − b · x +
1
2

x · A · x
(10.5.1)

where

c ≡ f(P) b ≡ −∇f |P [A]ij ≡ ∂2f

∂xi∂xj

∣∣∣∣
P

(10.5.2)

The matrix A whose components are the second partial derivative matrix of the
function is called the Hessian matrix of the function at P.

In the approximation of (10.5.1), the gradient of f is easily calculated as

∇f = A · x− b (10.5.3)

(This implies that the gradient will vanish — the function will be at an extremum —
at a value of x obtained by solving A · x = b. This idea we will return to in §10.7!)

How does the gradient∇f change as we move along some direction? Evidently

δ(∇f) = A · (δx) (10.5.4)

Suppose that we have moved along some direction u to a minimum and now
propose to move along some new direction v. The condition that motion along v not
spoil our minimization along u is just that the gradient stay perpendicular to u, i.e.,
that the change in the gradient be perpendicular to u. By equation (10.5.4) this is just

0 = u · δ(∇f) = u ·A · v (10.5.5)

When (10.5.5) holds for two vectors u and v, they are said to be conjugate.
When the relation holds pairwise for all members of a set of vectors, they are said
to be a conjugate set. If you do successive line minimization of a function along
a conjugate set of directions, then you don’ t need to redo any of those directions
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(unless, of course, you spoil things by minimizing along a direction that they are
not conjugate to).

A triumph for a direction set method is to come up with a set of N linearly
independent, mutually conjugate directions. Then, one pass of N line minimizations
will put it exactly at the minimum of a quadratic form like (10.5.1). For functions
f that are not exactly quadratic forms, it won’ t be exactly at the minimum; but
repeated cycles of N line minimizations will in due course converge quadratically
to the minimum.

Powell’s Quadratically Convergent Method

Powell first discovered a direction set method that does produce N mutually
conjugate directions. Here is how it goes: Initialize the set of directions u i to
the basis vectors,

ui = ei i = 1, . . . , N (10.5.6)

Now repeat the following sequence of steps (“basic procedure” ) until your function
stops decreasing:

• Save your starting position as P0.
• For i = 1, . . . , N , move Pi−1 to the minimum along direction ui and

call this point Pi.
• For i = 1, . . . , N − 1, set ui ← ui+1.
• Set uN ← PN − P0.
• Move PN to the minimum along direction uN and call this point P0.

Powell, in 1964, showed that, for a quadratic form like (10.5.1), k iterations
of the above basic procedure produce a set of directions u i whose last k members
are mutually conjugate. Therefore, N iterations of the basic procedure, amounting
to N(N + 1) line minimizations in all, will exactly minimize a quadratic form.
Brent [1] gives proofs of these statements in accessible form.

Unfortunately, there is a problem with Powell’s quadratically convergent al-
gorithm. The procedure of throwing away, at each stage, u 1 in favor of PN − P0

tends to produce sets of directions that “ fold up on each other” and become linearly
dependent. Once this happens, then the procedure finds the minimum of the function
f only over a subspace of the full N -dimensional case; in other words, it gives the
wrong answer. Therefore, the algorithm must not be used in the form given above.

There are a number of ways to fix up the problem of linear dependence in
Powell’s algorithm, among them:

1. You can reinitialize the set of directions ui to the basis vectors ei after every
N or N + 1 iterations of the basic procedure. This produces a serviceable method,
which we commend to you if quadratic convergence is important for your application
(i.e., if your functions are close to quadratic forms and if you desire high accuracy).

2. Brent points out that the set of directions can equally well be reset to
the columns of any orthogonal matrix. Rather than throw away the information
on conjugate directions already built up, he resets the direction set to calculated
principal directions of the matrix A (which he gives a procedure for determining).
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The calculation is essentially a singular value decomposition algorithm (see §2.6).
Brent has a number of other cute tricks up his sleeve, and his modification of
Powell’s method is probably the best presently known. Consult [1] for a detailed
description and listing of the program. Unfortunately it is rather too elaborate for
us to include here.

3. You can give up the property of quadratic convergence in favor of a more
heuristic scheme (due to Powell) which tries to find a few good directions along
narrow valleys instead of N necessarily conjugate directions. This is the method
that we now implement. (It is also the version of Powell’s method given in Acton [2],
from which parts of the following discussion are drawn.)

Discarding the Direction of Largest Decrease

The fox and the grapes: Now that we are going to give up the property of
quadratic convergence, was it so important after all? That depends on the function
that you are minimizing. Some applications produce functions with long, twisty
valleys. Quadratic convergence is of no particular advantage to a program which
must slalom down the length of a valley floor that twists one way and another (and
another, and another, . . . – there are N dimensions!). Along the long direction,
a quadratically convergent method is trying to extrapolate to the minimum of a
parabola which just isn’ t (yet) there; while the conjugacy of the N − 1 transverse
directions keeps getting spoiled by the twists.

Sooner or later, however, we do arrive at an approximately ellipsoidal minimum
(cf. equation 10.5.1 when b, the gradient, is zero). Then, depending on how much
accuracy we require, a method with quadratic convergence can save us several times
N2 extra line minimizations, since quadratic convergence doubles the number of
significant figures at each iteration.

The basic idea of our now-modified Powell’s method is still to take P N − P0 as
a new direction; it is, after all, the average direction moved after trying all N possible
directions. For a valley whose long direction is twisting slowly, this direction is
likely to give us a good run along the new long direction. The change is to discard
the old direction along which the function f made its largest decrease. This seems
paradoxical, since that direction was the best of the previous iteration. However, it
is also likely to be a major component of the new direction that we are adding, so
dropping it gives us the best chance of avoiding a buildup of linear dependence.

There are a couple of exceptions to this basic idea. Sometimes it is better not
to add a new direction at all. Define

f0 ≡ f(P0) fN ≡ f(PN ) fE ≡ f(2PN − P0) (10.5.7)

Here fE is the function value at an “extrapolated” point somewhat further along
the proposed new direction. Also define ∆f to be the magnitude of the largest
decrease along one particular direction of the present basic procedure iteration. (∆f
is a positive number.) Then:

1. If fE ≥ f0, then keep the old set of directions for the next basic procedure,
because the average direction PN − P0 is all played out.

2. If 2 (f0− 2fN + fE) [(f0− fN)−∆f ]2 ≥ (f0− fE)2∆f , then keep the old
set of directions for the next basic procedure, because either (i) the decrease along
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the average direction was not primarily due to any single direction’s decrease, or (ii)
there is a substantial second derivative along the average direction and we seem to
be near to the bottom of its minimum.

The following routine implements Powell’s method in the version just described.
In the routine, xi is the matrix whose columns are the set of directions n i; otherwise
the correspondence of notation should be self-evident.

SUBROUTINE powell(p,xi,n,np,ftol,iter,fret)
INTEGER iter,n,np,NMAX,ITMAX
REAL fret,ftol,p(np),xi(np,np),func,TINY
EXTERNAL func
PARAMETER (NMAX=20,ITMAX=200,TINY=1.e-25)

C USES func,linmin
Minimization of a function func of n variables. (func is not an argument, it is a fixed func-
tion name.) Input consists of an initial starting point p(1:n); an initial matrix xi(1:n,1:n)
with physical dimensions np by np, and whose columns contain the initial set of directions
(usually the n unit vectors); and ftol, the fractional tolerance in the function value such
that failure to decrease by more than this amount on one iteration signals doneness. On
output, p is set to the best point found, xi is the then-current direction set, fret is the
returned function value at p, and iter is the number of iterations taken. The routine
linmin is used.
Parameters: Maximum value of n, maximum allowed iterations, and a small number.

INTEGER i,ibig,j
REAL del,fp,fptt,t,pt(NMAX),ptt(NMAX),xit(NMAX)
fret=func(p)
do 11 j=1,n Save the initial point.

pt(j)=p(j)
enddo 11

iter=0
1 iter=iter+1

fp=fret
ibig=0
del=0. Will be the biggest function decrease.
do 13 i=1,n In each iteration, loop over all directions in the set.

do 12 j=1,n Copy the direction,
xit(j)=xi(j,i)

enddo 12

fptt=fret
call linmin(p,xit,n,fret) minimize along it,
if(fptt-fret.gt.del)then and record it if it is the largest decrease so far.

del=fptt-fret
ibig=i

endif
enddo 13

if(2.*(fp-fret).le.ftol*(abs(fp)+abs(fret))+TINY)return Termination criterion.
if(iter.eq.ITMAX) pause ’powell exceeding maximum iterations’
do 14 j=1,n Construct the extrapolated point and the average di-

rection moved. Save the old starting point.ptt(j)=2.*p(j)-pt(j)
xit(j)=p(j)-pt(j)
pt(j)=p(j)

enddo 14

fptt=func(ptt) Function value at extrapolated point.
if(fptt.ge.fp)goto 1 One reason not to use new direction.
t=2.*(fp-2.*fret+fptt)*(fp-fret-del)**2-del*(fp-fptt)**2
if(t.ge.0.)goto 1 Other reason not to use new direction.
call linmin(p,xit,n,fret) Move to the minimum of the new direction,
do 15 j=1,n and save the new direction.

xi(j,ibig)=xi(j,n)
xi(j,n)=xit(j)

enddo 15

goto 1 Back for another iteration.
END
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Implementation of Line Minimization

In the above routine, you might have wondered why we didn’ t make the function
name func an argument of the routine. The reason is buried in a slightly dirty
FORTRAN practicality in our implementation of linmin.

Make no mistake, there is a right way to implement linmin: It is to use
the methods of one-dimensional minimization described in §10.1–§10.3, but to
rewrite the programs of those sections so that their bookkeeping is done on vector-
valued points P (all lying along a given direction n) rather than scalar-valued
abscissas x. That straightforward task produces long routines densely populated
with “do k=1,n” loops.

We do not have space to include such routines in this book. Our linmin, which
works just fine, is instead a kind of bookkeeping swindle. It constructs an “artificial”
function of one variable called f1dim, which is the value of your function func
along the line going through the point p in the direction xi. linmin communicates
with f1dim through a common block. It then calls our familiar one-dimensional
routines mnbrak (§10.1) and brent (§10.2) and instructs them to minimize f1dim.

Still following? Then try this: brent receives the function name f1dim, which
it dutifully calls. But there is no way to signal to f1dim that it is supposed to use your
function name, which could have been passed to linmin as an argument. Therefore,
we have to make f1dim use a fixed function name, namely func. The situation is
reminiscent of Henry Ford’s black automobile: powell will minimize any function,
as long as it is named func. Needed to remedy this situation is a way to pass a
function name through a common block; this is lacking in FORTRAN.

The only thing inefficient about linmin is this: Its use as an interface between a
multidimensional minimization strategy and a one-dimensional minimization routine
results in some unnecessary copying of vectors hither and yon. That should not
normally be a significant addition to the overall computational burden, but we cannot
disguise its inelegance.

SUBROUTINE linmin(p,xi,n,fret)
INTEGER n,NMAX
REAL fret,p(n),xi(n),TOL
PARAMETER (NMAX=50,TOL=1.e-4) Maximum anticipated n, and TOL passed to brent.

C USES brent,f1dim,mnbrak
Given an n-dimensional point p(1:n) and an n-dimensional direction xi(1:n), moves and
resets p to where the function func(p) takes on a minimum along the direction xi from
p, and replaces xi by the actual vector displacement that p was moved. Also returns as
fret the value of func at the returned location p. This is actually all accomplished by
calling the routines mnbrak and brent.

INTEGER j,ncom
REAL ax,bx,fa,fb,fx,xmin,xx,pcom(NMAX),xicom(NMAX),brent
COMMON /f1com/ pcom,xicom,ncom
EXTERNAL f1dim
ncom=n Set up the common block.
do 11 j=1,n

pcom(j)=p(j)
xicom(j)=xi(j)

enddo 11

ax=0. Initial guess for brackets.
xx=1.
call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)
fret=brent(ax,xx,bx,f1dim,TOL,xmin)
do 12 j=1,n Construct the vector results to return.
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xi(j)=xmin*xi(j)
p(j)=p(j)+xi(j)

enddo 12

return
END

FUNCTION f1dim(x)
INTEGER NMAX
REAL f1dim,func,x
PARAMETER (NMAX=50)

C USES func
Used by linmin as the function passed to mnbrak and brent.

INTEGER j,ncom
REAL pcom(NMAX),xicom(NMAX),xt(NMAX)
COMMON /f1com/ pcom,xicom,ncom
do 11 j=1,ncom

xt(j)=pcom(j)+x*xicom(j)
enddo 11

f1dim=func(xt)
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 7. [1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 464–467. [2]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), pp. 259–262.

10.6 Conjugate Gradient Methods in
Multidimensions

We consider now the case where you are able to calculate, at a given N -
dimensional point P, not just the value of a function f(P) but also the gradient
(vector of first partial derivatives) ∇f(P).

A rough counting argument will show how advantageous it is to use the gradient
information: Suppose that the function f is roughly approximated as a quadratic
form, as above in equation (10.5.1),

f(x) ≈ c − b · x +
1
2

x ·A · x (10.6.1)

Then the number of unknown parameters in f is equal to the number of free
parameters in A and b, which is 1

2N(N + 1), which we see to be of order N 2.
Changing any one of these parameters can move the location of the minimum.
Therefore, we should not expect to be able to find the minimum until we have
collected an equivalent information content, of order N 2 numbers.
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In the direction set methods of §10.5, we collected the necessary information by
making on the order of N 2 separate line minimizations, each requiring “a few” (but
sometimes a big few!) function evaluations. Now, each evaluation of the gradient
will bring us N new components of information. If we use them wisely, we should
need to make only of order N separate line minimizations. That is in fact the case
for the algorithms in this section and the next.

A factor of N improvement in computational speed is not necessarily implied.
As a rough estimate, we might imagine that the calculation of each component of
the gradient takes about as long as evaluating the function itself. In that case there
will be of order N 2 equivalent function evaluations both with and without gradient
information. Even if the advantage is not of order N , however, it is nevertheless
quite substantial: (i) Each calculated component of the gradient will typically save
not just one function evaluation, but a number of them, equivalent to, say, a whole
line minimization. (ii) There is often a high degree of redundancy in the formulas
for the various components of a function’s gradient; when this is so, especially when
there is also redundancy with the calculation of the function, then the calculation of
the gradient may cost significantly less than N function evaluations.

A common beginner’s error is to assume that any reasonable way of incorporating
gradient information should be about as good as any other. This line of thought leads
to the following not very good algorithm, the steepest descent method:

Steepest Descent: Start at a point P0. As many times
as needed, move from point Pi to the point Pi+1 by
minimizing along the line from Pi in the direction of
the local downhill gradient −∇f(Pi).

The problem with the steepest descent method (which, incidentally, goes back
to Cauchy), is similar to the problem that was shown in Figure 10.5.1. The method
will perform many small steps in going down a long, narrow valley, even if the valley
is a perfect quadratic form. You might have hoped that, say in two dimensions,
your first step would take you to the valley floor, the second step directly down
the long axis; but remember that the new gradient at the minimum point of any
line minimization is perpendicular to the direction just traversed. Therefore, with
the steepest descent method, you must make a right angle turn, which does not, in
general, take you to the minimum. (See Figure 10.6.1.)

Just as in the discussion that led up to equation (10.5.5), we really want a way
of proceeding not down the new gradient, but rather in a direction that is somehow
constructed to be conjugate to the old gradient, and, insofar as possible, to all
previous directions traversed. Methods that accomplish this construction are called
conjugate gradient methods.

In §2.7 we discussed the conjugate gradient method as a technique for solving
linear algebraic equations by minimizing a quadratic form. That formalism can also
be applied to the problem of minimizing a function approximated by the quadratic
form (10.6.1). Recall that, starting with an arbitrary initial vector g 0 and letting
h0 = g0, the conjugate gradient method constructs two sequences of vectors from
the recurrence

gi+1 = gi − λiA · hi hi+1 = gi+1 + γihi i = 0, 1, 2, . . . (10.6.2)
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(a)

(b)

Figure 10.6.1. (a) Steepest descent method in a long, narrow “valley.” While more efficient than the
strategy of Figure 10.5.1, steepest descent is nonetheless an inefficient strategy, taking many steps to
reach the valley floor. (b) Magnified view of one step: A step starts off in the local gradient direction,
perpendicular to the contour lines, and traverses a straight line until a local minimum is reached, where
the traverse is parallel to the local contour lines.

The vectors satisfy the orthogonality and conjugacy conditions

gi · gj = 0 hi · A · hj = 0 gi · hj = 0 j < i (10.6.3)

The scalars λi and γi are given by

λi =
gi · gi

hi · A · hi
=

gi · hi

hi · A · hi
(10.6.4)

γi =
gi+1 · gi+1

gi · gi

(10.6.5)

Equations (10.6.2)–(10.6.5) are simply equations (2.7.32)–(2.7.35) for a symmetric
A in a new notation. (A self-contained derivation of these results in the context of
function minimization is given by Polak [1].)

Now suppose that we knew the Hessian matrix A in equation (10.6.1). Then
we could use the construction (10.6.2) to find successively conjugate directions h i

along which to line-minimize. After N such, we would efficiently have arrived at
the minimum of the quadratic form. But we don’t know A.

Here is a remarkable theorem to save the day: Suppose we happen to have
gi = −∇f(Pi), for some point Pi, where f is of the form (10.6.1). Suppose that we
proceed from Pi along the direction hi to the local minimum of f located at some
point Pi+1 and then set gi+1 = −∇f(Pi+1). Then, this gi+1 is the same vector
as would have been constructed by equation (10.6.2). (And we have constructed
it without knowledge of A!)

Proof: By equation (10.5.3), g i = −A · Pi + b, and

gi+1 = −A · (Pi + λhi) + b = gi − λA · hi (10.6.6)
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with λ chosen to take us to the line minimum. But at the line minimum h i · ∇f =
−hi · gi+1 = 0. This latter condition is easily combined with (10.6.6) to solve for
λ. The result is exactly the expression (10.6.4). But with this value of λ, (10.6.6)
is the same as (10.6.2), q.e.d.

We have, then, the basis of an algorithm that requires neither knowledge of the
Hessian matrix A, nor even the storage necessary to store such a matrix. A sequence
of directions hi is constructed, using only line minimizations, evaluations of the
gradient vector, and an auxiliary vector to store the latest in the sequence of g’s.

The algorithm described so far is the original Fletcher-Reeves version of the
conjugate gradient algorithm. Later, Polak and Ribiere introduced one tiny, but
sometimes significant, change. They proposed using the form

γi =
(gi+1 − gi) · gi+1

gi · gi

(10.6.7)

instead of equation (10.6.5). “Wait,” you say, “aren’t they equal by the orthogonality
conditions (10.6.3)?” They are equal for exact quadratic forms. In the real world,
however, your function is not exactly a quadratic form. Arriving at the supposed
minimum of the quadratic form, you may still need to proceed for another set of
iterations. There is some evidence [2] that the Polak-Ribiere formula accomplishes
the transition to further iterations more gracefully: When it runs out of steam, it
tends to reset h to be down the local gradient, which is equivalent to beginning the
conjugate-gradient procedure anew.

The following routine implements the Polak-Ribiere variant, which we recom-
mend; but changing one program line, as shown, will give you Fletcher-Reeves. The
routine presumes the existence of a function func(p), where p(1:n) is a vector of
length n, and also presumes the existence of a subroutine dfunc(p,df) that returns
the vector gradient df(1:n) evaluated at the input point p.

The routine calls linmin to do the line minimizations. As already discussed,
you may wish to use a modified version of linmin that uses dbrent instead of
brent, i.e., that uses the gradient in doing the line minimizations. See note below.

SUBROUTINE frprmn(p,n,ftol,iter,fret)
INTEGER iter,n,NMAX,ITMAX
REAL fret,ftol,p(n),EPS,func
EXTERNAL func
PARAMETER (NMAX=50,ITMAX=200,EPS=1.e-10)

C USES dfunc,func,linmin
Given a starting point p that is a vector of length n, Fletcher-Reeves-Polak-Ribiere minimiza-
tion is performed on a function func, using its gradient as calculated by a routine dfunc.
The convergence tolerance on the function value is input as ftol. Returned quantities are
p (the location of the minimum), iter (the number of iterations that were performed),
and fret (the minimum value of the function). The routine linmin is called to perform
line minimizations.
Parameters: NMAX is the maximum anticipated value of n; ITMAX is the maximum allowed
number of iterations; EPS is a small number to rectify special case of converging to exactly
zero function value.

INTEGER its,j
REAL dgg,fp,gam,gg,g(NMAX),h(NMAX),xi(NMAX)
fp=func(p) Initializations.
call dfunc(p,xi)
do 11 j=1,n

g(j)=-xi(j)
h(j)=g(j)
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xi(j)=h(j)
enddo 11

do 14 its=1,ITMAX Loop over iterations.
iter=its
call linmin(p,xi,n,fret) Next statement is the normal return:
if(2.*abs(fret-fp).le.ftol*(abs(fret)+abs(fp)+EPS))return
fp=fret
call dfunc(p,xi)
gg=0.
dgg=0.
do 12 j=1,n

gg=gg+g(j)**2
C dgg=dgg+xi(j)**2 This statement for Fletcher-Reeves.

dgg=dgg+(xi(j)+g(j))*xi(j) This statement for Polak-Ribiere.
enddo 12

if(gg.eq.0.)return Unlikely. If gradient is exactly zero then we are al-
ready done.gam=dgg/gg

do 13 j=1,n
g(j)=-xi(j)
h(j)=g(j)+gam*h(j)
xi(j)=h(j)

enddo 13

enddo 14

pause ’frprmn maximum iterations exceeded’
return
END

Note on Line Minimization Using Derivatives

Kindly reread the last part of §10.5. We here want to do the same thing, but
using derivative information in performing the line minimization.

Rather than reprint the whole routine linmin just to show one modified
statement, let us just tell you what the change is: The statement

fret=brent(ax,xx,bx,f1dim,tol,xmin)

should be replaced by

fret=dbrent(ax,xx,bx,f1dim,df1dim,tol,xmin)

You must also include the following function, which is analogous to f1dim as
discussed in §10.5. And remember, your function must be named func, and its
gradient calculation must be named dfunc.

FUNCTION df1dim(x)
INTEGER NMAX
REAL df1dim,x
PARAMETER (NMAX=50)

C USES dfunc
INTEGER j,ncom
REAL df(NMAX),pcom(NMAX),xicom(NMAX),xt(NMAX)
COMMON /f1com/ pcom,xicom,ncom
do 11 j=1,ncom

xt(j)=pcom(j)+x*xicom(j)
enddo 11

call dfunc(xt,df)
df1dim=0.
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do 12 j=1,ncom
df1dim=df1dim+df(j)*xicom(j)

enddo 12

return
END

CITED REFERENCES AND FURTHER READING:

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), §2.3. [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.1.7 (by K.W. Brodlie). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§8.7.

10.7 Variable Metric Methods in
Multidimensions

The goal of variable metric methods, which are sometimes called quasi-Newton
methods, is not different from the goal of conjugate gradient methods: to accumulate
information from successive line minimizations so that N such line minimizations
lead to the exact minimum of a quadratic form in N dimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both variable metric and conjugate gradient methods require that you are able to
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
variable metric approach differs from the conjugate gradient in the way that it stores
and updates the information that is accumulated. Instead of requiring intermediate
storage on the order of N , the number of dimensions, it requires a matrix of size
N × N . Generally, for any moderate N , this is an entirely trivial disadvantage.

On the other hand, there is not, as far as we know, any overwhelming advantage
that the variable metric methods hold over the conjugate gradient techniques, except
perhaps a historical one. Developed somewhat earlier, and more widely propagated,
the variable metric methods have by now developed a wider constituency of satisfied
users. Likewise, some fancier implementations of variable metric methods (going
beyond the scope of this book, see below) have been developed to a greater level of
sophistication on issues like the minimization of roundoff error, handling of special
conditions, and so on. We tend to use variable metric rather than conjugate gradient,
but we have no reason to urge this habit on you.

Variable metric methods come in two main flavors. One is the Davidon-Fletcher-
Powell (DFP) algorithm (sometimes referred to as simply Fletcher-Powell). The
other goes by the name Broyden-Fletcher-Goldfarb-Shanno (BFGS). The BFGS and
DFP schemes differ only in details of their roundoff error, convergence tolerances,
and similar “dirty” issues which are outside of our scope [1,2]. However, it has
become generally recognized that, empirically, the BFGS scheme is superior in these
details. We will implement BFGS in this section.

As before, we imagine that our arbitrary function f(x) can be locally approx-
imated by the quadratic form of equation (10.6.1). We don’t, however, have any
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information about the values of the quadratic form’s parametersA and b, except
insofar as we can glean such information from our function evaluations and line
minimizations.

The basic idea of the variable metric method is to build up, iteratively, a good
approximation to the inverse Hessian matrixA−1, that is, to construct a sequence
of matricesHi with the property,

lim
i→∞

Hi = A−1 (10.7.1)

Even better if the limit is achieved afterN iterations instead of∞.
The reason that variable metric methods are sometimes called quasi-Newton

methods can now be explained. Consider finding a minimum by using Newton’s
method to search for a zero of the gradient of the function. Near the current point
xi, we have to second order

f(x) = f(xi) + (x − xi) · ∇f(xi) + 1
2 (x − xi) · A · (x − xi) (10.7.2)

so
∇f(x) = ∇f(xi) + A · (x − xi) (10.7.3)

In Newton’s method we set∇f(x) = 0 to determine the next iteration point:

x − xi = −A−1 · ∇f(xi) (10.7.4)

The left-hand side is the finite step we need take to get to the exact minimum; the
right-hand side is known once we have accumulated an accurateH ≈ A −1.

The “quasi” in quasi-Newton is because we don’t use the actual Hessian matrix
of f , but instead use our current approximation of it. This is oftenbetter than
using the true Hessian. We can understand this paradoxical result by considering the
descent directions of f at xi. These are the directionsp along whichf decreases:
∇f ·p < 0. For the Newton direction (10.7.4) to be a descent direction, we must have

∇f(xi) · (x − xi) = −(x − xi) · A · (x − xi) < 0 (10.7.5)

which is true ifA is positive definite. In general, far from a minimum, we have no
guarantee that the Hessian is positive definite. Taking the actual Newton step with
the real Hessian can move us to points where the function isincreasing in value.
The idea behind quasi-Newton methods is to start with a positive definite, symmetric
approximation toA (usually the unit matrix) and build up the approximatingH i’s
in such a way that the matrixHi remains positive definite and symmetric. Far from
the minimum, this guarantees that we always move in a downhill direction. Close
to the minimum, the updating formula approaches the true Hessian and we enjoy
the quadratic convergence of Newton’s method.

When we are not close enough to the minimum, taking the full Newton step
p even with a positive definiteA need not decrease the function; we may move
too far for the quadratic approximation to be valid. All we are guaranteed is that
initially f decreases as we move in the Newton direction. Once again we can use
the backtracking strategy described in§9.7 to choose a step along thedirection of
the Newton stepp, but not necessarily all the way.
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We won’t rigorously derive the DFP algorithm for takingH i into Hi+1; you
can consult[3] for clear derivations. Following Brodlie (in[2]), we will give the
following heuristic motivation of the procedure.

Subtracting equation (10.7.4) atx i+1 from that same equation atxi gives

xi+1 − xi = A−1 · (∇fi+1 −∇fi) (10.7.6)

where∇fj ≡ ∇f(xj). Having made the step fromxi to xi+1, we might reasonably
want to require that the new approximationH i+1 satisfy (10.7.6) as if it were
actually A−1, that is,

xi+1 − xi = Hi+1 · (∇fi+1 −∇fi) (10.7.7)

We might also imagine that the updating formula should be of the formH i+1 =
Hi + correction.

What “objects” are around out of which to construct a correction term? Most
notable are the two vectorsxi+1 − xi and ∇fi+1 − ∇fi; and there is alsoHi.
There are not infinitely many natural ways of making a matrix out of these objects,
especially if (10.7.7) must hold! One such way, theDFP updating formula, is

Hi+1 = Hi +
(xi+1 − xi) ⊗ (xi+1 − xi)

(xi+1 − xi) · (∇fi+1 −∇fi)

− [Hi · (∇fi+1 −∇fi)] ⊗ [Hi · (∇fi+1 −∇fi)]
(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)

(10.7.8)

where⊗ denotes the “outer” or “direct” product of two vectors, a matrix: Theij
component ofu⊗v isuivj . (You might want to verify that 10.7.8 does satisfy 10.7.7.)

TheBFGS updating formula is exactly the same, but with one additional term,

· · · + [(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)] u ⊗ u (10.7.9)

whereu is defined as the vector

u ≡ (xi+1 − xi)
(xi+1 − xi) · (∇fi+1 −∇fi)

− Hi · (∇fi+1 −∇fi)
(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)

(10.7.10)

(You might also verify that this satisfies 10.7.7.)
You will have to take on faith — or else consult[3] for details of — the “deep”

result that equation (10.7.8), with or without (10.7.9), does in fact converge toA −1

in N steps, iff is a quadratic form.
Here now is the routinedfpmin that implements the quasi-Newton method, and

useslnsrch from §9.7. As mentioned at the end ofnewt in §9.7, this algorithm
can fail if your variables are badly scaled.
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SUBROUTINE dfpmin(p,n,gtol,iter,fret,func,dfunc)
INTEGER iter,n,NMAX,ITMAX
REAL fret,gtol,p(n),func,EPS,STPMX,TOLX
PARAMETER (NMAX=50,ITMAX=200,STPMX=100.,EPS=3.e-8,TOLX=4.*EPS)
EXTERNAL dfunc,func

C USES dfunc,func,lnsrch
Given a starting point p(1:n) that is a vector of length n, the Broyden-Fletcher-Goldfarb-
Shanno variant of Davidon-Fletcher-Powell minimization is performed on a function func,
using its gradient as calculated by a routine dfunc. The convergence requirement on zeroing
the gradient is input as gtol. Returned quantities are p(1:n) (the location of the mini-
mum), iter (the number of iterations that were performed), and fret (the minimum value
of the function). The routine lnsrch is called to perform approximate line minimizations.
Parameters: NMAX is the maximum anticipated value of n; ITMAX is the maximum allowed
number of iterations; STPMX is the scaled maximum step length allowed in line searches;
TOLX is the convergence criterion on x values.

INTEGER i,its,j
LOGICAL check
REAL den,fac,fad,fae,fp,stpmax,sum,sumdg,sumxi,temp,test,

* dg(NMAX),g(NMAX),hdg(NMAX),hessin(NMAX,NMAX),
* pnew(NMAX),xi(NMAX)

fp=func(p) Calculate starting function value and gradient,
call dfunc(p,g)
sum=0.
do 12 i=1,n and initialize the inverse Hessian to the unit matrix.

do 11 j=1,n
hessin(i,j)=0.

enddo 11

hessin(i,i)=1.
xi(i)=-g(i) Initial line direction.
sum=sum+p(i)**2

enddo 12

stpmax=STPMX*max(sqrt(sum),float(n))
do 27 its=1,ITMAX Main loop over the iterations.

iter=its
call lnsrch(n,p,fp,g,xi,pnew,fret,stpmax,check,func)
The new function evaluation occurs in lnsrch; save the function value in fp for the next
line search. It is usually safe to ignore the value of check.

fp=fret
do 13 i=1,n

xi(i)=pnew(i)-p(i) Update the line direction,
p(i)=pnew(i) and the current point.

enddo 13

test=0. Test for convergence on ∆x.
do 14 i=1,n

temp=abs(xi(i))/max(abs(p(i)),1.)
if(temp.gt.test)test=temp

enddo 14

if(test.lt.TOLX)return
do 15 i=1,n Save the old gradient,

dg(i)=g(i)
enddo 15

call dfunc(p,g) and get the new gradient.
test=0. Test for convergence on zero gradient.
den=max(fret,1.)
do 16 i=1,n

temp=abs(g(i))*max(abs(p(i)),1.)/den
if(temp.gt.test)test=temp

enddo 16

if(test.lt.gtol)return
do 17 i=1,n Compute difference of gradients,

dg(i)=g(i)-dg(i)
enddo 17

do 19 i=1,n and difference times current matrix.
hdg(i)=0.
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do 18 j=1,n
hdg(i)=hdg(i)+hessin(i,j)*dg(j)

enddo 18

enddo 19

fac=0. Calculate dot products for the denominators.
fae=0.
sumdg=0.
sumxi=0.
do 21 i=1,n

fac=fac+dg(i)*xi(i)
fae=fae+dg(i)*hdg(i)
sumdg=sumdg+dg(i)**2
sumxi=sumxi+xi(i)**2

enddo 21

if(fac.gt.sqrt(EPS*sumdg*sumxi))then Skip update if fac not sufficiently positive.
fac=1./fac
fad=1./fae
do 22 i=1,n The vector that makes BFGS different from DFP:

dg(i)=fac*xi(i)-fad*hdg(i)
enddo 22

do 24 i=1,n The BFGS updating formula:
do 23 j=i,n

hessin(i,j)=hessin(i,j)+fac*xi(i)*xi(j)
* -fad*hdg(i)*hdg(j)+fae*dg(i)*dg(j)

hessin(j,i)=hessin(i,j)
enddo 23

enddo 24

endif
do 26 i=1,n Now calculate the next direction to go,

xi(i)=0.
do 25 j=1,n

xi(i)=xi(i)-hessin(i,j)*g(j)
enddo 25

enddo 26

enddo 27 and go back for another iteration.
pause ’too many iterations in dfpmin’
return
END

Quasi-Newton methods likedfpmin work well with the approximate line
minimization done bylnsrch. The routinespowell (§10.5) andfrprmn (§10.6),
however, need more accurate line minimization, which is carried out by the routine
linmin.

Advanced Implementations of Variable Metric Methods

Although rare, it can conceivably happen that roundoff errors cause the matrixHi to
become nearly singular or non-positive-definite. This can be serious, because the supposed
search directions might then not lead downhill, and because nearly singularHi’s tend to give
subsequentHi’s that are also nearly singular.

There is a simple fix for this rare problem, the same as was mentioned in§10.4: In case
of any doubt, you shouldrestart the algorithm at the claimed minimum point, and see if it
goes anywhere. Simple, but not very elegant. Modern implementations of variable metric
methods deal with the problem in a more sophisticated way.

Instead of building up an approximation toA−1, it is possible to build up an approximation
of A itself. Then, instead of calculating the left-hand side of (10.7.4) directly, one solves
the set of linear equations

A · (x − xi) = −∇f(xi) (10.7.11)

At first glance this seems like a bad idea, since solving (10.7.11) is a process of order
N3 — and anyway, how does this help the roundoff problem? The trick is not to storeA but
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rather a triangular decomposition ofA, its Cholesky decomposition (cf. §2.9). The updating
formula used for the Cholesky decomposition ofA is of orderN2 and can be arranged to
guarantee that the matrix remains positive definite and nonsingular, even in the presence of
finite roundoff. This method is due to Gill and Murray[1,2].
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10.8 Linear Programming and the Simplex
Method

The subject oflinear programming, sometimes calledlinear optimization,
concerns itself with the following problem: ForN independent variablesx 1, . . . , xN ,
maximize the function

z = a01x1 + a02x2 + · · · + a0NxN (10.8.1)

subject to the primary constraints

x1 ≥ 0, x2 ≥ 0, . . . xN ≥ 0 (10.8.2)

and simultaneously subject toM = m1 + m2 + m3 additional constraints,m1 of
them of the form

ai1x1 + ai2x2 + · · · + aiNxN ≤ bi (bi ≥ 0) i = 1, . . . , m1 (10.8.3)

m2 of them of the form

aj1x1 + aj2x2 + · · ·+ ajNxN ≥ bj ≥ 0 j = m1 + 1, . . . , m1 + m2 (10.8.4)

and m3 of them of the form

ak1x1 + ak2x2 + · · · + akNxN = bk ≥ 0

k = m1 + m2 + 1, . . . , m1 + m2 + m3

(10.8.5)

The variousaij ’s can have either sign, or be zero. The fact that theb’s must all be
nonnegative (as indicated by the final inequality in the above three equations) is a
matter of convention only, since you can multiply any contrary inequality by−1.
There is no particular significance in the number of constraintsM being less than,
equal to, or greater than the number of unknownsN .
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A set of values x1 . . . xN that satisfies the constraints (10.8.2)–(10.8.5) is called
a feasible vector. The function that we are trying to maximize is called the objective
function. The feasible vector that maximizes the objective function is called the
optimal feasible vector. An optimal feasible vector can fail to exist for two distinct
reasons: (i) there are no feasible vectors, i.e., the given constraints are incompatible,
or (ii) there is no maximum, i.e., there is a direction in N space where one or more
of the variables can be taken to infinity while still satisfying the constraints, giving
an unbounded value for the objective function.

As you see, the subject of linear programming is surrounded by notational and
terminological thickets. Both of these thorny defenses are lovingly cultivated by a
coterie of stern acolytes who have devoted themselves to the field. Actually, the
basic ideas of linear programming are quite simple. Avoiding the shrubbery, we
want to teach you the basics by means of a couple of specific examples; it should
then be quite obvious how to generalize.

Why is linear programming so important? (i) Because “nonnegativity” is the
usual constraint on any variable xi that represents the tangible amount of some
physical commodity, like guns, butter, dollars, units of vitamin E, food calories,
kilowatt hours, mass, etc. Hence equation (10.8.2). (ii) Because one is often
interested in additive (linear) limitations or bounds imposed by man or nature:
minimum nutritional requirement, maximum affordable cost, maximum on available
labor or capital, minimum tolerable level of voter approval, etc. Hence equations
(10.8.3)–(10.8.5). (iii) Because the function that one wants to optimize may be
linear, or else may at least be approximated by a linear function — since that is the
problem that linear programming can solve. Hence equation (10.8.1). For a short,
semipopular survey of linear programming applications, see Bland [1].

Here is a specific example of a problem in linear programming, which has
N = 4, m1 = 2, m2 = m3 = 1, hence M = 4:

Maximize z = x1 + x2 + 3x3 − 1
2x4 (10.8.6)

with all the x’s nonnegative and also with

x1 + 2x3 ≤ 740

2x2 − 7x4 ≤ 0

x2 − x3 + 2x4 ≥ 1
2

x1 + x2 + x3 + x4 = 9

(10.8.7)

The answer turns out to be (to 2 decimals) x1 = 0, x2 = 3.33, x3 = 4.73, x4 = 0.95.
In the rest of this section we will learn how this answer is obtained. Figure 10.8.1
summarizes some of the terminology thus far.
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(not optimal)

pr
im

ar
y 

co
ns

tr
ai

nt

additional constraint (equality)

z = 3.1

z = 2.9z = 2.8z = 2.7z = 2.6z = 2.5z = 2.4

z = 3.0

Figure 10.8.1. Basic concepts of linear programming. The case of only two independent variables,
x1, x2, is shown. The linear function z, to be maximized, is represented by its contour lines. Primary
constraints require x1 and x2 to be positive. Additional constraints may restrict the solution to regions
(inequality constraints) or to surfaces of lower dimensionality (equality constraints). Feasible vectors
satisfy all constraints. Feasible basic vectors also lie on the boundary of the allowed region. The simplex
method steps among feasible basic vectors until the optimal feasible vector is found.

Fundamental Theorem of Linear Optimization

Imagine that we start with a full N -dimensional space of candidate vectors. Then
(in mind’s eye, at least) we carve away the regions that are eliminated in turn by each
imposed constraint. Since the constraints are linear, every boundary introduced by
this process is a plane, or rather hyperplane. Equality constraints of the form (10.8.5)
force the feasible region onto hyperplanes of smaller dimension, while inequalities
simply divide the then-feasible region into allowed and nonallowed pieces.

When all the constraints are imposed, either we are left with some feasible
region or else there are no feasible vectors. Since the feasible region is bounded by
hyperplanes, it is geometrically a kind of convex polyhedron or simplex (cf. §10.4).
If there is a feasible region, can the optimal feasible vector be somewhere in its
interior, away from the boundaries? No, because the objective function is linear.
This means that it always has a nonzero vector gradient. This, in turn, means that
we could always increase the objective function by running up the gradient until
we hit a boundary wall.

The boundary of any geometrical region has one less dimension than its interior.
Therefore, we can now run up the gradient projected into the boundary wall until we
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reach an edge of that wall. We can then run up that edge, and so on, down through
whatever number of dimensions, until we finally arrive at a point, a vertex of the
original simplex. Since this point has all N of its coordinates defined, it must be
the solution of N simultaneous equalities drawn from the original set of equalities
and inequalities (10.8.2)–(10.8.5).

Points that are feasible vectors and that satisfy N of the original constraints
as equalities, are termed feasible basic vectors. If N > M , then a feasible basic
vector has at least N − M of its components equal to zero, since at least that many
of the constraints (10.8.2) will be needed to make up the total of N . Put the other
way, at most M components of a feasible basic vector are nonzero. In the example
(10.8.6)–(10.8.7), you can check that the solution as given satisfies as equalities the
last three constraints of (10.8.7) and the constraint x1 ≥ 0, for the required total of 4.

Put together the two preceding paragraphs and you have the Fundamental
Theorem of Linear Optimization: If an optimal feasible vector exists, then there is a
feasible basic vector that is optimal. (Didn’t we warn you about the terminological
thicket?)

The importance of the fundamental theorem is that it reduces the optimization
problem to a “combinatorial” problem, that of determining which N constraints
(out of the M + N constraints in 10.8.2–10.8.5) should be satisfied by the optimal
feasible vector. We have only to keep trying different combinations, and computing
the objective function for each trial, until we find the best.

Doing this blindly would take halfway to forever. The simplex method, first
published by Dantzig in 1948 (see [2]), is a way of organizing the procedure so that
(i) a series of combinations is tried for which the objective function increases at each
step, and (ii) the optimal feasible vector is reached after a number of iterations that
is almost always no larger than of order M or N , whichever is larger. An interesting
mathematical sidelight is that this second property, although known empirically ever
since the simplex method was devised, was not proved to be true until the 1982 work
of Stephen Smale. (For a contemporary account, see [3].)

Simplex Method for a Restricted Normal Form

A linear programming problem is said to be in normal form if it has no
constraints in the form (10.8.3) or (10.8.4), but rather only equality constraints of the
form (10.8.5) and nonnegativity constraints of the form (10.8.2).

For our purposes it will be useful to consider an even more restricted set of cases,
with this additional property: Each equality constraint of the form (10.8.5) must
have at least one variable that has a positive coefficient and that appears uniquely in
that one constraint only. We can then choose one such variable in each constraint
equation, and solve that constraint equation for it. The variables thus chosen are
called left-hand variables or basic variables, and there are exactly M (= m 3) of
them. The remaining N − M variables are called right-hand variables or nonbasic
variables. Obviously this restricted normal form can be achieved only in the case
M ≤ N , so that is the case that we will consider.

You may be thinking that our restricted normal form is so specialized that
it is unlikely to include the linear programming problem that you wish to solve.
Not at all! We will presently show how any linear programming problem can be
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transformed into restricted normal form. Therefore bear with us and learn how to
apply the simplex method to a restricted normal form.

Here is an example of a problem in restricted normal form:

Maximize z = 2x2 − 4x3 (10.8.8)

with x1, x2, x3, and x4 all nonnegative and also with

x1 = 2 − 6x2 + x3

x4 = 8 + 3x2 − 4x3

(10.8.9)

This example has N = 4, M = 2; the left-hand variables are x1 and x4; the
right-hand variables are x2 and x3. The objective function (10.8.8) is written so
as to depend only on right-hand variables; note, however, that this is not an actual
restriction on objective functions in restricted normal form, since any left-hand
variables appearing in the objective function could be eliminated algebraically by
use of (10.8.9) or its analogs.

For any problem in restricted normal form, we can instantly read off a feasible
basic vector (although not necessarily the optimal feasible basic vector). Simply set
all right-hand variables equal to zero, and equation (10.8.9) then gives the values of
the left-hand variables for which the constraints are satisfied. The idea of the simplex
method is to proceed by a series of exchanges. In each exchange, a right-hand
variable and a left-hand variable change places. At each stage we maintain a problem
in restricted normal form that is equivalent to the original problem.

It is notationally convenient to record the information content of equations
(10.8.8) and (10.8.9) in a so-called tableau, as follows:

x2 x3

z 0 2 −4
x1 2 −6 1
x4 8 3 −4 (10.8.10)

You should study (10.8.10) to be sure that you understand where each entry comes
from, and how to translate back and forth between the tableau and equation formats
of a problem in restricted normal form.

The first step in the simplex method is to examine the top row of the tableau,
which we will call the “z-row.” Look at the entries in columns labeled by right-hand
variables (we will call these “right-columns”). We want to imagine in turn the effect
of increasing each right-hand variable from its present value of zero, while leaving
all the other right-hand variables at zero. Will the objective function increase or
decrease? The answer is given by the sign of the entry in the z-row. Since we want
to increase the objective function, only right columns having positive z-row entries
are of interest. In (10.8.10) there is only one such column, whose z-row entry is 2.

The second step is to examine the column entries below each z-row entry that
was selected by step one. We want to ask how much we can increase the right-hand
variable before one of the left-hand variables is driven negative, which is not allowed.
If the tableau element at the intersection of the right-hand column and the left-hand
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variable’s row is positive, then it poses no restriction: the corresponding left-hand
variable will just be driven more and more positive. If all the entries in any right-hand
column are positive, then there is no bound on the objective function and (having
said so) we are done with the problem.

If one or more entries below a positive z-row entry are negative, then we have
to figure out which such entry first limits the increase of that column’s right-hand
variable. Evidently the limiting increase is given by dividing the element in the right-
hand column (which is called the pivot element) into the element in the “constant
column” (leftmost column) of the pivot element’s row. A value that is small in
magnitude is most restrictive. The increase in the objective function for this choice
of pivot element is then that value multiplied by the z-row entry of that column. We
repeat this procedure on all possible right-hand columns to find the pivot element
with the largest such increase. That completes our “choice of a pivot element.”

In the above example, the only positive z-row entry is 2. There is only one
negative entry below it, namely −6, so this is the pivot element. Its constant-column
entry is 2. This pivot will therefore allow x2 to be increased by 2÷ |6|, which results
in an increase of the objective function by an amount (2 × 2) ÷ |6|.

The third step is to do the increase of the selected right-hand variable, thus
making it a left-hand variable; and simultaneously to modify the left-hand variables,
reducing the pivot-row element to zero and thus making it a right-hand variable. For
our above example let’s do this first by hand: We begin by solving the pivot-row
equation for the new left-hand variable x2 in favor of the old one x1, namely

x1 = 2 − 6x2 + x3 → x2 = 1
3 − 1

6x1 + 1
6x3 (10.8.11)

We then substitute this into the old z-row,

z = 2x2 − 4x3 = 2
[
1
3 − 1

6x1 + 1
6x3

] − 4x3 = 2
3 − 1

3x1 − 11
3 x3 (10.8.12)

and into all other left-variable rows, in this case only x4,

x4 = 8 + 3
[
1
3 − 1

6x1 + 1
6x3

] − 4x3 = 9 − 1
2x1 − 7

2x3 (10.8.13)

Equations (10.8.11)–(10.8.13) form the new tableau

x1 x3

z 2
3 − 1

3 − 11
3

x2
1
3 − 1

6
1
6

x4 9 − 1
2 − 7

2 (10.8.14)

The fourth step is to go back and repeat the first step, looking for another possible
increase of the objective function. We do this as many times as possible, that is, until
all the right-hand entries in the z-row are negative, signaling that no further increase
is possible. In the present example, this already occurs in (10.8.14), so we are done.

The answer can now be read from the constant column of the final tableau. In
(10.8.14) we see that the objective function is maximized to a value of 2/3 for the
solution vector x2 = 1/3, x4 = 9, x1 = x3 = 0.

Now look back over the procedure that led from (10.8.10) to (10.8.14). You will
find that it could be summarized entirely in tableau format as a series of prescribed
elementary matrix operations:
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• Locate the pivot element and save it.
• Save the whole pivot column.
• Replace each row, except the pivot row, by that linear combination of itself

and the pivot row which makes its pivot-column entry zero.
• Divide the pivot row by the negative of the pivot.
• Replace the pivot element by the reciprocal of its saved value.
• Replace the rest of the pivot column by its saved values divided by the

saved pivot element.
This is the sequence of operations actually performed by a linear programming
routine, such as the one that we will presently give.

You should now be able to solve almost any linear programming problem that
starts in restricted normal form. The only special case that might stump you is
if an entry in the constant column turns out to be zero at some stage, so that a
left-hand variable is zero at the same time as all the right-hand variables are zero.
This is called a degenerate feasible vector. To proceed, you may need to exchange
the degenerate left-hand variable for one of the right-hand variables, perhaps even
making several such exchanges.

Writing the General Problem in Restricted Normal Form

Here is a pleasant surprise. There exist a couple of clever tricks that render
trivial the task of translating a general linear programming problem into restricted
normal form!

First, we need to get rid of the inequalities of the form (10.8.3) or (10.8.4), for
example, the first three constraints in (10.8.7). We do this by adding to the problem
so-called slack variables which, when their nonnegativity is required, convert the
inequalities to equalities. We will denote slack variables as yi. There will be
m1 + m2 of them. Once they are introduced, you treat them on an equal footing
with the original variables xi; then, at the very end, you simply ignore them.

For example, introducing slack variables leaves (10.8.6) unchanged but turns
(10.8.7) into

x1 + 2x3 + y1 = 740

2x2 − 7x4 + y2 = 0

x2 − x3 + 2x4 − y3 = 1
2

x1 + x2 + x3 + x4 = 9

(10.8.15)

(Notice how the sign of the coefficient of the slack variable is determined by which
sense of inequality it is replacing.)

Second, we need to insure that there is a set of M left-hand vectors, so that we
can set up a starting tableau in restricted normal form. (In other words, we need to
find a “feasible basic starting vector.”) The trick is again to invent new variables!
There are M of these, and they are called artificial variables; we denote them by z i.
You put exactly one artificial variable into each constraint equation on the following
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model for the example (10.8.15):

z1 = 740 − x1 − 2x3 − y1

z2 = −2x2 + 7x4 − y2

z3 = 1
2 − x2 + x3 − 2x4 + y3

z4 = 9 − x1 − x2 − x3 − x4

(10.8.16)

Our example is now in restricted normal form.
Now you may object that (10.8.16) is not the same problem as (10.8.15) or

(10.8.7) unless all the zi’s are zero. Right you are! There is some subtlety here!
We must proceed to solve our problem in two phases. First phase: We replace our
objective function (10.8.6) by a so-called auxiliary objective function

z′ ≡ −z1 − z2 − z3 − z4 = −(749 1
2 − 2x1 − 4x2 − 2x3 + 4x4 − y1 − y2 + y3)

(10.8.17)
(where the last equality follows from using 10.8.16). We now perform the simplex
method on the auxiliary objective function (10.8.17) with the constraints (10.8.16).
Obviously the auxiliary objective function will be maximized for nonnegative z i’s if
all the zi’s are zero. We therefore expect the simplex method in this first phase to
produce a set of left-hand variables drawn from the x i’s and yi’s only, with all the
zi’s being right-hand variables. Aha! We then cross out the z i’s, leaving a problem
involving only xi’s and yi’s in restricted normal form. In other words, the first phase
produces an initial feasible basic vector. Second phase: Solve the problem produced
by the first phase, using the original objective function, not the auxiliary.

And what if the first phase doesn’t produce zero values for all the z i’s? That
signals that there is no initial feasible basic vector, i.e., that the constraints given to
us are inconsistent among themselves. Report that fact, and you are done.

Here is how to translate into tableau format the information needed for both the
first and second phases of the overall method. As before, the underlying problem
to be solved is as posed in equations (10.8.6)–(10.8.7).

x1 x2 x3 x4 y1 y2 y3

z 0 1 1 3 − 1
2 0 0 0

z1 740 −1 0 −2 0 −1 0 0

z2 0 0 −2 0 7 0 −1 0

z3
1
2 0 −1 1 −2 0 0 1

z4 9 −1 −1 −1 −1 0 0 0

z′ −749 1
2 2 4 2 −4 1 1 −1

(10.8.18)

This is not as daunting as it may, at first sight, appear. The table entries inside
the box of double lines are no more than the coefficients of the original problem
(10.8.6)–(10.8.7) organized into a tabular form. In fact, these entries, along with
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the values of N , M , m1, m2, and m3, are the only input that is needed by the
simplex method routine below. The columns under the slack variables y i simply
record whether each of the M constraints is of the form ≤, ≥, or =; this is redundant
information with the values m1, m2, m3, as long as we are sure to enter the rows of
the tableau in the correct respective order. The coefficients of the auxiliary objective
function (bottom row) are just the negatives of the column sums of the rows above,
so these are easily calculated automatically.

The output from a simplex routine will be (i) a flag telling whether a finite
solution, no solution, or an unbounded solution was found,and (ii) an updated tableau.
The output tableau that derives from (10.8.18), given to two significant figures, is

x1 y2 y3 · · ·
z 17.03 −.95 −.05 −1.05 · · ·
x2 3.33 −.35 −.15 .35 · · ·
x3 4.73 −.55 .05 −.45 · · ·
x4 .95 −.10 .10 .10 · · ·
y1 730.55 .10 −.10 .90 · · ·

(10.8.19)

A little counting of the xi’s and yi’s will convince you that there are M + 1
rows (including the z-row) in both the input and the output tableaux, but that only
N + 1 − m3 columns of the output tableau (including the constant column) contain
any useful information, the other columns belonging to now-discarded artificial
variables. In the output, the first numerical column contains the solution vector,
along with the maximum value of the objective function. Where a slack variable (y i)
appears on the left, the corresponding value is the amount by which its inequality
is safely satisfied. Variables that are not left-hand variables in the output tableau
have zero values. Slack variables with zero values represent constraints that are
satisfied as equalities.

Routine Implementing the Simplex Method

The following routine is based algorithmically on the implementation of Kuenzi,
Tzschach, and Zehnder [4]. Aside from input values of M , N , m1, m2, m3, the
principal input to the routine is a two-dimensional array a containing the portion of
the tableau (10.8.18) that is contained between the double lines. This input occupies
the first M + 1 rows and N + 1 columns of a. Note, however, that reference is made
internally to row M + 2 of a (used for the auxiliary objective function, just as in
10.8.18). Therefore the physical dimensions of a,

REAL a(MP,NP) (10.8.20)

must have NP≥ N + 1 and MP≥ M + 2.You will suffer endless agonies if you fail
to understand this simple point. Also do not neglect to order the rows of a in the
same order as equations (10.8.1), (10.8.3), (10.8.4), and (10.8.5), that is, objective
function, ≤-constraints, ≥-constraints, =-constraints.
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On output, the tableau a is indexed by two returned arrays of integers. iposv(j)
contains, for j= 1 . . .M , the number i whose original variable x i is now represented
by row j+1 of a. These are thus the left-hand variables in the solution. (The first row
of a is of course the z-row.) A value i > N indicates that the variable is a y i rather
than an xi, xN+j ≡ yj . Likewise, izrov(j) contains, for j= 1 . . .N , the number i
whose original variable xi is now a right-hand variable, represented by column j+1
of a. These variables are all zero in the solution. The meaning of i > N is the same
as above, except that i > N + m1 + m2 denotes an artificial or slack variable which
was used only internally and should now be entirely ignored.

The flag icase is returned as zero if a finite solution is found, +1 if the objective
function is unbounded, −1 if no solution satisfies the given constraints.

The routine treats the case of degenerate feasible vectors, so don’t worry about
them. You may also wish to admire the fact that the routine does not require storage
for the columns of the tableau (10.8.18) that are to the right of the double line; it
keeps track of slack variables by more efficient bookkeeping.

Please note that, as given, the routine is only “semi-sophisticated” in its tests
for convergence. While the routine properly implements tests for inequality with
zero as tests against some small parameter EPS, it does not adjust this parameter to
reflect the scale of the input data. This is adequate for many problems, where the
input data do not differ from unity by too many orders of magnitude. If, however,
you encounter endless cycling, then you should modify EPS in the routines simplx
and simp2. Permuting your variables can also help. Finally, consult [5].

SUBROUTINE simplx(a,m,n,mp,np,m1,m2,m3,icase,izrov,iposv)
INTEGER icase,m,m1,m2,m3,mp,n,np,iposv(m),izrov(n),MMAX,NMAX
REAL a(mp,np),EPS
PARAMETER (MMAX=100,NMAX=100,EPS=1.e-6)

C USES simp1,simp2,simp3
Simplex method for linear programming. Input parameters a, m, n, mp, np, m1, m2, and m3,
and output parameters a, icase, izrov, and iposv are described above.
Parameters: MMAX is the maximum number of constraints expected; NMAX is the maximum
number of variables expected; EPS is the absolute precision, which should be adjusted to
the scale of your variables.

INTEGER i,ip,is,k,kh,kp,nl1,l1(NMAX),l3(MMAX)
REAL bmax,q1
if(m.ne.m1+m2+m3)pause ’bad input constraint counts in simplx’
nl1=n
do 11 k=1,n

l1(k)=k Initialize index list of columns admissible for exchange.
izrov(k)=k Initially make all variables right-hand.

enddo 11

do 12 i=1,m
if(a(i+1,1).lt.0.)pause ’bad input tableau in simplx’ Constants bi must be non-

negative.iposv(i)=n+i
Initial left-hand variables. m1 type constraints are represented by having their slack vari-
able initially left-hand, with no artificial variable. m2 type constraints have their slack
variable initially left-hand, with a minus sign, and their artificial variable handled implic-
itly during their first exchange. m3 type constraints have their artificial variable initially
left-hand.

enddo 12

if(m2+m3.eq.0)goto 30 The origin is a feasible starting solution. Go to phase two.
do 13 i=1,m2 Initialize list of m2 constraints whose slack variables have never

been exchanged out of the initial basis.l3(i)=1
enddo 13

do 15 k=1,n+1 Compute the auxiliary objective function.
q1=0.
do 14 i=m1+1,m
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q1=q1+a(i+1,k)
enddo 14

a(m+2,k)=-q1
enddo 15

10 call simp1(a,mp,np,m+1,l1,nl1,0,kp,bmax) Find max. coeff. of auxiliary objec-
tive fn.if(bmax.le.EPS.and.a(m+2,1).lt.-EPS)then

icase=-1 Auxiliary objective function is still negative and can’t be im-
proved, hence no feasible solution exists.return

else if(bmax.le.EPS.and.a(m+2,1).le.EPS)then
Auxiliary objective function is zero and can’t be improved; we have a feasible starting vec-
tor. Clean out the artificial variables corresponding to any remaining equality constraints by
goto 1’s and then move on to phase two by goto 30.
do 16 ip=m1+m2+1,m

if(iposv(ip).eq.ip+n)then Found an artificial variable for an equality
constraint.call simp1(a,mp,np,ip,l1,nl1,1,kp,bmax)

if(bmax.gt.EPS)goto 1 Exchange with column corresponding to max-
imum pivot element in row.endif

enddo 16

do 18 i=m1+1,m1+m2 Change sign of row for any m2 constraints
still present from the initial basis.if(l3(i-m1).eq.1)then

do 17 k=1,n+1
a(i+1,k)=-a(i+1,k)

enddo 17

endif
enddo 18

goto 30 Go to phase two.
endif
call simp2(a,m,n,mp,np,ip,kp) Locate a pivot element (phase one).
if(ip.eq.0)then Maximum of auxiliary objective function is

unbounded, so no feasible solution ex-
ists.

icase=-1
return

endif
1 call simp3(a,mp,np,m+1,n,ip,kp)

Exchange a left- and a right-hand variable (phase one), then update lists.
if(iposv(ip).ge.n+m1+m2+1)then Exchanged out an artificial variable for an

equality constraint. Make sure it stays
out by removing it from the l1 list.

do 19 k=1,nl1
if(l1(k).eq.kp)goto 2

enddo 19

2 nl1=nl1-1
do 21 is=k,nl1

l1(is)=l1(is+1)
enddo 21

else
kh=iposv(ip)-m1-n
if(kh.ge.1)then Exchanged out an m2 type constraint.

if(l3(kh).ne.0)then If it’s the first time, correct the pivot col-
umn for the minus sign and the implicit
artificial variable.

l3(kh)=0
a(m+2,kp+1)=a(m+2,kp+1)+1.
do 22 i=1,m+2

a(i,kp+1)=-a(i,kp+1)
enddo 22

endif
endif

endif
is=izrov(kp) Update lists of left- and right-hand variables.
izrov(kp)=iposv(ip)
iposv(ip)=is
goto 10 Still in phase one, go back to 10.

End of phase one code for finding an initial feasible solution. Now, in phase two, optimize it.
30 call simp1(a,mp,np,0,l1,nl1,0,kp,bmax) Test the z-row for doneness.

if(bmax.le.EPS)then Done. Solution found. Return with the good news.
icase=0
return

endif
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call simp2(a,m,n,mp,np,ip,kp) Locate a pivot element (phase two).
if(ip.eq.0)then Objective function is unbounded. Report and return.

icase=1
return

endif
call simp3(a,mp,np,m,n,ip,kp) Exchange a left- and a right-hand variable (phase two),
is=izrov(kp) update lists of left- and right-hand variables,
izrov(kp)=iposv(ip)
iposv(ip)=is
goto 30 and return for another iteration.
END

The preceding routine makes use of the following utility subroutines.

SUBROUTINE simp1(a,mp,np,mm,ll,nll,iabf,kp,bmax)
INTEGER iabf,kp,mm,mp,nll,np,ll(np)
REAL bmax,a(mp,np)

Determines the maximum of those elements whose index is contained in the supplied list
ll, either with or without taking the absolute value, as flagged by iabf.

INTEGER k
REAL test
if(nll.le.0)then No eligible columns.

bmax=0.
else

kp=ll(1)
bmax=a(mm+1,kp+1)
do 11 k=2,nll

if(iabf.eq.0)then
test=a(mm+1,ll(k)+1)-bmax

else
test=abs(a(mm+1,ll(k)+1))-abs(bmax)

endif
if(test.gt.0.)then

bmax=a(mm+1,ll(k)+1)
kp=ll(k)

endif
enddo 11

endif
return
END

SUBROUTINE simp2(a,m,n,mp,np,ip,kp)
INTEGER ip,kp,m,mp,n,np
REAL a(mp,np),EPS
PARAMETER (EPS=1.e-6)

Locate a pivot element, taking degeneracy into account.
INTEGER i,k
REAL q,q0,q1,qp
ip=0
do 11 i=1,m

if(a(i+1,kp+1).lt.-EPS)goto 1
enddo 11

return No possible pivots. Return with message.
1 q1=-a(i+1,1)/a(i+1,kp+1)

ip=i
do 13 i=ip+1,m

if(a(i+1,kp+1).lt.-EPS)then
q=-a(i+1,1)/a(i+1,kp+1)
if(q.lt.q1)then

ip=i
q1=q

else if (q.eq.q1) then We have a degeneracy.
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do 12 k=1,n
qp=-a(ip+1,k+1)/a(ip+1,kp+1)
q0=-a(i+1,k+1)/a(i+1,kp+1)
if(q0.ne.qp)goto 2

enddo 12

2 if(q0.lt.qp)ip=i
endif

endif
enddo 13

return
END

SUBROUTINE simp3(a,mp,np,i1,k1,ip,kp)
INTEGER i1,ip,k1,kp,mp,np
REAL a(mp,np)

Matrix operations to exchange a left-hand and right-hand variable (see text).
INTEGER ii,kk
REAL piv
piv=1./a(ip+1,kp+1)
do 12 ii=1,i1+1

if(ii-1.ne.ip)then
a(ii,kp+1)=a(ii,kp+1)*piv
do 11 kk=1,k1+1

if(kk-1.ne.kp)then
a(ii,kk)=a(ii,kk)-a(ip+1,kk)*a(ii,kp+1)

endif
enddo 11

endif
enddo 12

do 13 kk=1,k1+1
if(kk-1.ne.kp)a(ip+1,kk)=-a(ip+1,kk)*piv

enddo 13

a(ip+1,kp+1)=piv
return
END

Other Topics Briefly Mentioned

Every linear programming problem in normal form with N variables and M
constraints has a corresponding dual problem with M variables and N constraints.
The tableau of the dual problem is, in essence, the transpose of the tableau of the
original (sometimes called primal) problem. It is possible to go from a solution
of the dual to a solution of the primal. This can occasionally be computationally
useful, but generally it is no big deal.

The revised simplex method is exactly equivalent to the simplex method in its
choice of which left-hand and right-hand variables are exchanged. Its computational
effort is not significantly less than that of the simplex method. It does differ in
the organization of its storage, requiring only a matrix of size M × M , rather than
M × N , in its intermediate stages. If you have a lot of constraints, and memory
size is one of them, then you should look into it.

The primal-dual algorithm and the composite simplex algorithm are two dif-
ferent methods for avoiding the two phases of the usual simplex method: Progress
is made simultaneously towards finding a feasible solution and finding an optimal
solution. There seems to be no clearcut evidence that these methods are superior
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to the usual method by any factor substantially larger than the “tender-loving-care
factor” (which reflects the programming effort of the proponents).

Problems where the objective function and/or one or more of the constraints are
replaced by expressions nonlinear in the variables are called nonlinear programming
problems. The literature on such problems is vast, but outside our scope. The special
case of quadratic expressions is called quadratic programming. Optimization prob-
lems where the variables take on only integer values are called integer programming
problems, a special case of discrete optimization generally. The next section looks
at a particular kind of discrete optimization problem.
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10.9 Simulated Annealing Methods

The method of simulated annealing [1,2] is a technique that has attracted signif-
icant attention as suitable for optimization problems of large scale, especially ones
where a desired global extremum is hidden among many, poorer, local extrema. For
practical purposes, simulated annealing has effectively “solved” the famous traveling
salesman problem of finding the shortest cyclical itinerary for a traveling salesman
who must visit each of N cities in turn. (Other practical methods have also been
found.) The method has also been used successfully for designing complex integrated
circuits: The arrangement of several hundred thousand circuit elements on a tiny
silicon substrate is optimized so as to minimize interference among their connecting
wires [3,4]. Surprisingly, the implementation of the algorithm is relatively simple.

Notice that the two applications cited are both examples of combinatorial
minimization. There is an objective function to be minimized, as usual; but the space
over which that function is defined is not simply the N -dimensional space of N
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continuouslyvariable parameters. Rather, it is a discrete, but very large, configuration
space, like the set of possible orders of cities, or the set of possible allocations of
silicon “real estate” blocks to circuit elements. The number of elements in the
configuration space is factorially large, so that they cannot be explored exhaustively.
Furthermore, since the set is discrete, we are deprived of any notion of “continuing
downhill in a favorable direction.” The concept of “direction” may not have any
meaning in the configuration space.

Below, we will also discuss how to use simulated annealing methods for spaces
with continuous control parameters, like those of§§10.4–10.7. This application is
actually more complicated than the combinatorial one, since the familiar problem of
“long, narrow valleys” again asserts itself. Simulated annealing, as we will see, tries
“random” steps; but in a long, narrow valley, almost all random steps are uphill!
Some additional finesse is therefore required.

At the heart of the method of simulated annealing is an analogy with thermody-
namics, specifically with the way that liquids freeze and crystallize, or metals cool
and anneal. At high temperatures, the molecules of a liquid move freely with respect
to one another. If the liquid is cooled slowly, thermal mobility is lost. The atoms are
often able to line themselves up and form a pure crystal that is completely ordered
over a distance up to billions of times the size of an individual atom in all directions.
This crystal is the state of minimum energy for this system. The amazing fact is that,
for slowly cooled systems, nature is able to find this minimum energy state. In fact, if
a liquid metal is cooled quickly or “quenched,” it does not reach this state but rather
ends up in a polycrystalline or amorphous state having somewhat higher energy.

So the essence of the process isslow cooling, allowing ample time for
redistribution of the atoms as they lose mobility. This is the technical definition of
annealing, and it is essential for ensuring that a low energy state will be achieved.

Although the analogy is not perfect, there is a sense in which all of the
minimization algorithms thus far in this chapter correspond to rapid cooling or
quenching. In all cases, we have gone greedily for the quick, nearby solution: From
the starting point, go immediately downhill as far as you can go. This, as often
remarked above, leads to a local, but not necessarily a global, minimum. Nature’s
own minimization algorithm is based on quite a different procedure. The so-called
Boltzmann probability distribution,

Prob(E) ∼ exp(−E/kT ) (10.9.1)

expresses the idea that a system in thermal equilibrium at temperatureT has its
energy probabilistically distributed among all different energy statesE. Even at
low temperature, there is a chance, albeit very small, of a system being in a high
energy state. Therefore, there is a corresponding chance for the system to get out of
a local energy minimum in favor of finding a better, more global, one. The quantity
k (Boltzmann’s constant) is a constant of nature that relates temperature to energy.
In other words, the system sometimes goesuphill as well as downhill; but the lower
the temperature, the less likely is any significant uphill excursion.

In 1953, Metropolis and coworkers[5] first incorporated these kinds of prin-
ciples into numerical calculations. Offered a succession of options, a simulated
thermodynamic system was assumed to change its configuration from energyE 1 to
energyE2 with probabilityp = exp[−(E2 − E1)/kT ]. Notice that ifE2 < E1, this
probability is greater than unity; in such cases the change is arbitrarily assigned a
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probabilityp = 1, i.e., the systemalways took such an option. This general scheme,
of always taking a downhill step whilesometimes taking an uphill step, has come
to be known as the Metropolis algorithm.

To make use of the Metropolis algorithm for other than thermodynamic systems,
one must provide the following elements:

1. A description of possible system configurations.
2. A generator of random changes in the configuration; these changes are the

“options” presented to the system.
3. An objective functionE (analog of energy) whose minimization is the

goal of the procedure.
4. A control parameterT (analog of temperature) and anannealing schedule

which tells how it is lowered from high to low values, e.g., after how many random
changes in configuration is each downward step inT taken, and how large is that
step. The meaning of “high” and “low” in this context, and the assignment of a
schedule, may require physical insight and/or trial-and-error experiments.

Combinatorial Minimization: The Traveling Salesman

A concrete illustration is provided by the traveling salesman problem. The
proverbial seller visitsN cities with given positions(xi, yi), returning finally to his or
her city of origin. Each city is to be visited only once, and the route is to be made as
short as possible. This problem belongs to a class known asNP-complete problems,
whose computation time for anexact solution increases withN asexp(const.× N),
becoming rapidly prohibitive in cost asN increases. The traveling salesman problem
also belongs to a class of minimization problems for which the objective functionE
has many local minima. In practical cases, it is often enough to be able to choose
from these a minimum which, even if not absolute, cannot be significantly improved
upon. The annealing method manages to achieve this, while limiting its calculations
to scale as a small power ofN .

As a problem in simulated annealing, the traveling salesman problem is handled
as follows:

1. Configuration. The cities are numberedi = 1 . . .N and each has coordinates
(xi, yi). A configuration is a permutation of the number1 . . .N , interpreted as the
order in which the cities are visited.

2. Rearrangements. An efficient set of moves has been suggested by Lin[6].
The moves consist of two types: (a) A section of path is removed and then replaced
with the same cities running in the opposite order; or (b) a section of path is removed
and then replaced in between two cities on another, randomly chosen, part of the path.

3. Objective Function. In the simplest form of the problem,E is taken just
as the total length of journey,

E = L ≡
N∑

i=1

√
(xi − xi+1)2 + (yi − yi+1)2 (10.9.2)

with the convention that pointN + 1 is identified with point1. To illustrate the
flexibility of the method, however, we can add the following additional wrinkle:
Suppose that the salesman has an irrational fear of flying over the Mississippi River.
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In that case, we would assign each city a parameterµ i, equal to+1 if it is east of the
Mississippi,−1 if it is west, and take the objective function to be

E =
N∑

i=1

[√
(xi − xi+1)2 + (yi − yi+1)2 + λ(µi − µi+1)2

]
(10.9.3)

A penalty4λ is thereby assigned to any river crossing. The algorithm now finds
the shortest path that avoids crossings. The relative importance that it assigns to
length of path versus river crossings is determined by our choice ofλ. Figure 10.9.1
shows the results obtained. Clearly, this technique can be generalized to include
many conflicting goals in the minimization.

4. Annealing schedule. This requires experimentation. We first generate some
random rearrangements, and use them to determine the range of values of∆E that
will be encountered from move to move. Choosing a starting value for the parameter
T which is considerably larger than the largest∆E normally encountered, we
proceed downward in multiplicative steps each amounting to a 10 percent decrease
in T . We hold each new value ofT constant for, say,100N reconfigurations, or for
10N successful reconfigurations, whichever comes first. When efforts to reduceE
further become sufficiently discouraging, we stop.

The following traveling salesman program, using the Metropolis algorithm,
illustrates the main aspects of the simulated annealing technique for combinatorial
problems.

SUBROUTINE anneal(x,y,iorder,ncity)
INTEGER ncity,iorder(ncity)
REAL x(ncity),y(ncity)

C USES irbit1,metrop,ran3,revcst,revers,trncst,trnspt
This algorithm finds the shortest round-trip path to ncity cities whose coordinates are in
the arrays x(1:ncity),y(1:ncity). The array iorder(1:ncity) specifies the order
in which the cities are visited. On input, the elements of iorder may be set to any per-
mutation of the numbers 1 to ncity. This routine will return the best alternative path
it can find.

INTEGER i,i1,i2,idec,idum,iseed,j,k,nlimit,nn,nover,nsucc,n(6),
* irbit1

REAL de,path,t,tfactr,ran3,alen,x1,x2,y1,y2
LOGICAL ans
alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)
nover=100*ncity Maximum number of paths tried at any temperature.
nlimit=10*ncity Maximum number of successful path changes before continuing.
tfactr=0.9 Annealing schedule: t is reduced by this factor on each step.
path=0.0
t=0.5
do 11 i=1,ncity-1 Calculate initial path length.

i1=iorder(i)
i2=iorder(i+1)
path=path+alen(x(i1),x(i2),y(i1),y(i2))

enddo 11

i1=iorder(ncity) Close the loop by tying path ends together.
i2=iorder(1)
path=path+alen(x(i1),x(i2),y(i1),y(i2))
idum=-1
iseed=111
do 13 j=1,100 Try up to 100 temperature steps.

nsucc=0
do 12 k=1,nover

1 n(1)=1+int(ncity*ran3(idum)) Choose beginning of segment ..
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Figure 10.9.1. Traveling salesman problem solved by simulated annealing. The (nearly) shortest path
among 100 randomly positioned cities is shown in (a). The dotted line is a river, but there is no penalty in
crossing. In (b) the river-crossing penalty is made large, and the solution restricts itself to the minimum
number of crossings, two. In (c) the penalty has been made negative: the salesman is actually a smuggler
who crosses the river on the flimsiest excuse!
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n(2)=1+int((ncity-1)*ran3(idum)) ..and end of segment.
if (n(2).ge.n(1)) n(2)=n(2)+1
nn=1+mod((n(1)-n(2)+ncity-1),ncity) nn is the number of cities not on the

segment.if (nn.lt.3) goto 1
idec=irbit1(iseed) Decide whether to do a segment reversal or transport.
if (idec.eq.0) then Do a transport.

n(3)=n(2)+int(abs(nn-2)*ran3(idum))+1
n(3)=1+mod(n(3)-1,ncity) Transport to a location not on the path.
call trncst(x,y,iorder,ncity,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call trnspt(iorder,ncity,n) Carry out the transport.

endif
else Do a path reversal.

call revcst(x,y,iorder,ncity,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call revers(iorder,ncity,n) Carry out the reversal.

endif
endif
if (nsucc.ge.nlimit) goto 2 Finish early if we have enough

successful changes.enddo 12

2 write(*,*)
write(*,*) ’T =’,t,’ Path Length =’,path
write(*,*) ’Successful Moves: ’,nsucc
t=t*tfactr Annealing schedule.
if (nsucc.eq.0) return If no success, we are done.

enddo 13

return
END

SUBROUTINE revcst(x,y,iorder,ncity,n,de)
INTEGER ncity,iorder(ncity),n(6)
REAL de,x(ncity),y(ncity)

This subroutine returns the value of the cost function for a proposed path reversal. ncity
is the number of cities, and arrays x(1:ncity),y(1:ncity) give the coordinates of these
cities. iorder(1:ncity) holds the present itinerary. The first two values n(1) and n(2)
of array n give the starting and ending cities along the path segment which is to be reversed.
On output, de is the cost of making the reversal. The actual reversal is not performed by
this routine.

INTEGER ii,j
REAL alen,xx(4),yy(4),x1,x2,y1,y2
alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)
n(3)=1+mod((n(1)+ncity-2),ncity) Find the city before n(1) ..
n(4)=1+mod(n(2),ncity) .. and the city after n(2).
do 11 j=1,4

ii=iorder(n(j)) Find coordinates for the four cities involved.
xx(j)=x(ii)
yy(j)=y(ii)

enddo 11

de=-alen(xx(1),xx(3),yy(1),yy(3)) Calculate cost of disconnecting the segment
at both ends and reconnecting in the op-
posite order.

* -alen(xx(2),xx(4),yy(2),yy(4))
* +alen(xx(1),xx(4),yy(1),yy(4))
* +alen(xx(2),xx(3),yy(2),yy(3))

return
END
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SUBROUTINE revers(iorder,ncity,n)
INTEGER ncity,iorder(ncity),n(6)

This routine performs a path segment reversal. iorder(1:ncity) is an input array giving
the present itinerary. The vector n has as its first four elements the first and last cities
n(1),n(2) of the path segment to be reversed, and the two cities n(3) and n(4) that
immediately precede and follow this segment. n(3) and n(4) are found by subroutine
revcst. On output, iorder(1:ncity) contains the segment from n(1) to n(2) in
reversed order.

INTEGER itmp,j,k,l,nn
nn=(1+mod(n(2)-n(1)+ncity,ncity))/2 This many cities must be swapped to effect

the reversal.do 11 j=1,nn
k=1+mod((n(1)+j-2),ncity) Start at the ends of the segment and swap

pairs of cities, moving toward the cen-
ter.

l=1+mod((n(2)-j+ncity),ncity)
itmp=iorder(k)
iorder(k)=iorder(l)
iorder(l)=itmp

enddo 11

return
END

SUBROUTINE trncst(x,y,iorder, ncity,n,de)
INTEGER ncity,iorder(ncity),n(6)
REAL de,x(ncity),y(ncity)

This subroutine returns the value of the cost function for a proposed path segment transport.
ncity is the number of cities, and arrays x(1:ncity) and y(1:ncity) give the city
coordinates. iorder is an array giving the present itinerary. The first three elements of
array n give the starting and ending cities of the path to be transported, and the point
among the remaining cities after which it is to be inserted. On output, de is the cost of
the change. The actual transport is not performed by this routine.

INTEGER ii,j
REAL xx(6),yy(6),alen,x1,x2,y1,y2
alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)
n(4)=1+mod(n(3),ncity) Find the city following n(3)..
n(5)=1+mod((n(1)+ncity-2),ncity) ..and the one preceding n(1)..
n(6)=1+mod(n(2),ncity) ..and the one following n(2).
do 11 j=1,6

ii=iorder(n(j)) Determine coordinates for the six cities in-
volved.xx(j)=x(ii)

yy(j)=y(ii)
enddo 11

de=-alen(xx(2),xx(6),yy(2),yy(6)) Calculate the cost of disconnecting the path
segment from n(1) to n(2), opening a
space between n(3) and n(4), connect-
ing the segment in the space, and con-
necting n(5) to n(6).

* -alen(xx(1),xx(5),yy(1),yy(5))
* -alen(xx(3),xx(4),yy(3),yy(4))
* +alen(xx(1),xx(3),yy(1),yy(3))
* +alen(xx(2),xx(4),yy(2),yy(4))
* +alen(xx(5),xx(6),yy(5),yy(6))

return
END

SUBROUTINE trnspt(iorder,ncity,n)
INTEGER ncity,iorder(ncity),n(6),MXCITY
PARAMETER (MXCITY=1000) Maximum number of cities anticipated.

This routine does the actual path transport, once metrop has approved. iorder is an
input array of length ncity giving the present itinerary. The array n has as its six elements
the beginning n(1) and end n(2) of the path to be transported, the adjacent cities n(3)
and n(4) between which the path is to be placed, and the cities n(5) and n(6) that
precede and follow the path. n(4), n(5), and n(6) are calculated by subroutine trncst.
On output, iorder is modified to reflect the movement of the path segment.

INTEGER j,jj,m1,m2,m3,nn,jorder(MXCITY)
m1=1+mod((n(2)-n(1)+ncity),ncity) Find number of cities from n(1) to n(2)
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m2=1+mod((n(5)-n(4)+ncity),ncity) ...and the number from n(4) to n(5)
m3=1+mod((n(3)-n(6)+ncity),ncity) ...and the number from n(6) to n(3).
nn=1
do 11 j=1,m1

jj=1+mod((j+n(1)-2),ncity) Copy the chosen segment.
jorder(nn)=iorder(jj)
nn=nn+1

enddo 11

do 12 j=1,m2 Then copy the segment from n(4) to n(5).
jj=1+mod((j+n(4)-2),ncity)
jorder(nn)=iorder(jj)
nn=nn+1

enddo 12

do 13 j=1,m3 Finally, the segment from n(6) to n(3).
jj=1+mod((j+n(6)-2),ncity)
jorder(nn)=iorder(jj)
nn=nn+1

enddo 13

do 14 j=1,ncity
iorder(j)=jorder(j) Copy jorder back into iorder.

enddo 14

return
END

SUBROUTINE metrop(de,t,ans)
REAL de,t
LOGICAL ans

C USES ran3
Metropolis algorithm. ans is a logical variable that issues a verdict on whether to accept a
reconfiguration that leads to a change de in the objective function e. If de<0, ans=.true.,
while if de>0, ans is only .true. with probability exp(-de/t), where t is a temperature
determined by the annealing schedule.

INTEGER jdum
REAL ran3
SAVE jdum
DATA jdum /1/
ans=(de.lt.0.0).or.(ran3(jdum).lt.exp(-de/t))
return
END

Continuous Minimization by Simulated Annealing

The basic ideas of simulated annealing are also applicable to optimization
problems with continuous N -dimensional control spaces, e.g., finding the (ideally,
global) minimum of some function f(x), in the presence of many local minima,
where x is an N -dimensional vector. The four elements required by the Metropolis
procedure are now as follows: The value of f is the objective function. The
system state is the point x. The control parameter T is, as before, something like a
temperature, with an annealing schedule by which it is gradually reduced. And there
must be a generator of random changes in the configuration, that is, a procedure for
taking a random step from x to x + ∆x.
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The last of these elements is the most problematical. The literature to date [7-10]

describes several different schemes for choosing ∆x, none of which, in our view,
inspire complete confidence. The problem is one of efficiency: A generator of
random changes is inefficient if, when local downhill moves exist, it nevertheless
almost always proposes an uphill move. A good generator, we think, should not
become inefficient in narrow valleys; nor should it become more and more inefficient
as convergence to a minimum is approached. Except possibly for [7], all of the
schemes that we have seen are inefficient in one or both of these situations.

Our own way of doing simulated annealing minimization on continuous control
spaces is to use a modification of the downhill simplex method (§10.4). This amounts
to replacing the single point x as a description of the system state by a simplex of
N + 1 points. The “moves” are the same as described in §10.4, namely reflections,
expansions, and contractions of the simplex. The implementation of the Metropolis
procedure is slightly subtle: We add a positive, logarithmically distributed random
variable, proportional to the temperature T , to the stored function value associated
with every vertex of the simplex, and we subtract a similar random variable from
the function value of every new point that is tried as a replacement point. Like the
ordinary Metropolis procedure, this method always accepts a true downhill step, but
sometimes accepts an uphill one. In the limit T → 0, this algorithm reduces exactly
to the downhill simplex method and converges to a local minimum.

At a finite value of T , the simplex expands to a scale that approximates the size
of the region that can be reached at this temperature, and then executes a stochastic,
tumbling Brownian motion within that region, sampling new, approximately random,
points as it does so. The efficiency with which a region is explored is independent
of its narrowness (for an ellipsoidal valley, the ratio of its principal axes) and
orientation. If the temperature is reduced sufficiently slowly, it becomes highly
likely that the simplex will shrink into that region containing the lowest relative
minimum encountered.

As in all applications of simulated annealing, there can be quite a lot of
problem-dependent subtlety in the phrase “sufficiently slowly” ; success or failure
is quite often determined by the choice of annealing schedule. Here are some
possibilities worth trying:

• Reduce T to (1 − ε)T after every m moves, where ε/m is determined
by experiment.

• Budget a total of K moves, and reduce T after every m moves to a value
T = T0(1 − k/K)α, where k is the cumulative number of moves thus far,
and α is a constant, say 1, 2, or 4. The optimal value for α depends on the
statistical distribution of relative minima of various depths. Larger values
of α spend more iterations at lower temperature.

• After every m moves, set T to β times f1−fb, where β is an experimentally
determined constant of order 1, f1 is the smallest function value currently
represented in the simplex, and fb is the best function ever encountered.
However, never reduce T by more than some fraction γ at a time.

Another strategic question is whether to do an occasional restart, where a vertex
of the simplex is discarded in favor of the “best-ever” point. (You must be sure that
the best-ever point is not currently in the simplex when you do this!) We have found
problems for which restarts — every time the temperature has decreased by a factor
of 3, say — are highly beneficial; we have found other problems for which restarts
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have no positive, or a somewhat negative, effect.
You should compare the following routine, amebsa, with its counterpartamoeba

in §10.4. Note that the argument iter is used in a somewhat different manner.

SUBROUTINE amebsa(p,y,mp,np,ndim,pb,yb,ftol,funk,iter,temptr)
INTEGER iter,mp,ndim,np,NMAX
REAL ftol,temptr,yb,p(mp,np),pb(np),y(mp),funk
PARAMETER (NMAX=200)
EXTERNAL funk

C USES amotsa,funk,ran1
Multidimensional minimization of the function funk(x) where x(1:ndim) is a vector in
ndim dimensions, by simulated annealing combined with the downhill simplex method of
Nelder and Mead. The input matrix p(1..ndim+1,1..ndim) has ndim+1 rows, each an
ndim-dimensional vector which is a vertex of the starting simplex. Also input is the vector
y(1:ndim+1), whose components must be pre-initialized to the values of funk evaluated at
the ndim+1 vertices (rows) of p; ftol, the fractional convergence tolerance to be achieved
in the function value for an early return; iter, and temptr. The routine makes iter
function evaluations at an annealing temperature temptr, then returns. You should then
decrease temptr according to your annealing schedule, reset iter, and call the routine
again (leaving other arguments unaltered between calls). If iter is returned with a positive
value, then early convergence and return occurred. If you initialize yb to a very large value
on the first call, then yb and pb(1:ndim) will subsequently return the best function value
and point ever encountered (even if it is no longer a point in the simplex).

INTEGER i,idum,ihi,ilo,j,m,n
REAL rtol,sum,swap,tt,yhi,ylo,ynhi,ysave,yt,ytry,psum(NMAX),

* amotsa,ran1
COMMON /ambsa/ tt,idum
tt=-temptr

1 do 12 n=1,ndim Enter here when starting or after overall contraction.
sum=0. Recompute psum.
do 11 m=1,ndim+1

sum=sum+p(m,n)
enddo 11

psum(n)=sum
enddo 12

2 ilo=1 Enter here after changing a single point. Find which point
is the highest (worst), next-highest, and lowest (best).ihi=2

ylo=y(1)+tt*log(ran1(idum)) Whenever we “look at” a vertex, it gets a random thermal
fluctuation.ynhi=ylo

yhi=y(2)+tt*log(ran1(idum))
if (ylo.gt.yhi) then

ihi=1
ilo=2
ynhi=yhi
yhi=ylo
ylo=ynhi

endif
do 13 i=3,ndim+1 Loop over the points in the simplex.

yt=y(i)+tt*log(ran1(idum)) More thermal fluctuations.
if(yt.le.ylo) then

ilo=i
ylo=yt

endif
if(yt.gt.yhi) then

ynhi=yhi
ihi=i
yhi=yt

else if(yt.gt.ynhi) then
ynhi=yt

endif
enddo 13

rtol=2.*abs(yhi-ylo)/(abs(yhi)+abs(ylo))
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Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol.lt.ftol.or.iter.lt.0) then If returning, put best point and value in slot 1.

swap=y(1)
y(1)=y(ilo)
y(ilo)=swap
do 14 n=1,ndim

swap=p(1,n)
p(1,n)=p(ilo,n)
p(ilo,n)=swap

enddo 14

return
endif
iter=iter-2
Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex across
from the high point, i.e., reflect the simplex from the high point.

ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,-1.0)
if (ytry.le.ylo) then
Gives a result better than the best point, so try an additional extrapolation by a factor 2.
ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,2.0)

else if (ytry.ge.ynhi) then
The reflected point is worse than the second-highest, so look for an intermediate lower point,
i.e., do a one-dimensional contraction.
ysave=yhi
ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,0.5)
if (ytry.ge.ysave) then Can’t seem to get rid of that high point. Better contract

around the lowest (best) point.do 16 i=1,ndim+1
if(i.ne.ilo)then

do 15 j=1,ndim
psum(j)=0.5*(p(i,j)+p(ilo,j))
p(i,j)=psum(j)

enddo 15

y(i)=funk(psum)
endif

enddo 16

iter=iter-ndim
goto 1

endif
else

iter=iter+1 Correct the evaluation count.
endif
goto 2
END

FUNCTION amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,fac)
INTEGER ihi,mp,ndim,np,NMAX
REAL amotsa,fac,yb,yhi,p(mp,np),pb(np),psum(np),y(mp),funk
PARAMETER (NMAX=200)
EXTERNAL funk

C USES funk,ran1
Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

INTEGER idum,j
REAL fac1,fac2,tt,yflu,ytry,ptry(NMAX),ran1
COMMON /ambsa/ tt,idum
fac1=(1.-fac)/ndim
fac2=fac1-fac
do 11 j=1,ndim

ptry(j)=psum(j)*fac1-p(ihi,j)*fac2
enddo 11
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ytry=funk(ptry)
if (ytry.le.yb) then Save the best-ever.

do 12 j=1,ndim
pb(j)=ptry(j)

enddo 12

yb=ytry
endif
yflu=ytry-tt*log(ran1(idum)) We added a thermal fluctuation to all the current vertices,

but we subtract it here, so as to give the simplex
a thermal Brownian motion: It likes to accept any
suggested change.

if (yflu.lt.yhi) then
y(ihi)=ytry
yhi=yflu
do 13 j=1,ndim

psum(j)=psum(j)-p(ihi,j)+ptry(j)
p(ihi,j)=ptry(j)

enddo 13

endif
amotsa=yflu
return
END

There is not yet enough practical experience with the method of simulated
annealing to say definitively what its future place among optimization methods
will be. The method has several extremely attractive features, rather unique when
compared with other optimization techniques.

First, it is not “greedy,” in the sense that it is not easily fooled by the quick
payoff achieved by falling into unfavorable local minima. Provided that sufficiently
general reconfigurations are given, it wanders freely among local minima of depth
less than about T . As T is lowered, the number of such minima qualifying for
frequent visits is gradually reduced.

Second, configuration decisions tend to proceed in a logical order. Changes
that cause the greatest energy differences are sifted over when the control parameter
T is large. These decisions become more permanent as T is lowered, and attention
then shifts more to smaller refinements in the solution. For example, in the traveling
salesman problem with the Mississippi River twist, if λ is large, a decision to cross
the Mississippi only twice is made at high T , while the specific routes on each side
of the river are determined only at later stages.

The analogies to thermodynamics may be pursued to a greater extent than we
have done here. Quantities analogous to specific heat and entropy may be defined,
and these can be useful in monitoring the progress of the algorithm towards an
acceptable solution. Information on this subject is found in [1].
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